Comparison Between Automatic Repeat Request (ARQ) Protocols and Solving the Buffer Problem

Total Page:16

File Type:pdf, Size:1020Kb

Comparison Between Automatic Repeat Request (ARQ) Protocols and Solving the Buffer Problem 2020 International Conference on Computational Science and Computational Intelligence (CSCI) Comparison between Automatic Repeat Request (ARQ) Protocols and solving the Buffer Problem Mohammed Rajhi Hatim Madkhali Department of Computer Science and Networking Department of Information Technology Jazan University Jazan University Jazan, Saudi Arabia Jazan, Saudi Arabia Email: [email protected] Email: [email protected] Abstract— Today is the era of fast and dynamic internet and It provides an environment for easy developing and sharing of communication technologies which make communication projects. The simulation engine presents a context for various convenient compared to the past. Communication technology, through different channels, such as mobile phones and simulation scenarios [2]. It also provides numerous computers, has become pervasive. In almost every means of implemented models of how computer networks work. NS-3 telecommunication, retransmission protocols have played a provides an opportunity to study system behavior while also significant role in the protocol stack layers. The primary aim of providing a detailed investigation of how networks work in a this study is to compare Automatic Repeat Request (ARQ) greatly controlled, reproductive environment [2]. protocols and solve the Buffer problem. The first section compares ARQ protocols (Go-Back-N, selective repeat, stop and II. TRANSMISSION CONTROL PROTOCOLS wait ARQ), using TCP and UDP. The study compares these Transmission Control Protocol (TCP) is one of the main protocols' efficiency and changes the behaviors of stop and wait protocols to selective repeat. The second section includes solving protocols in the transport layer in ISO/OSI (International the buffer problems. The paper contains the theoretical part as Standards Organization / Open System Interconnection) well. model. Many application protocols use TCP. User Datagram Protocol (UDP) is recognized as another Keyword: Selective Repeat, Stop and wait, ARQ, TCP, Buffer essential protocol on the transport layer with some I. INTRODUCTION various characteristics and services, frequently compared to TCP [8]. Simulation environments are helpful tools in different informative fields. Simulation software allows testing of A. Connection-oriented of TCP protocol real time situations without one having to actually buy a TCP is a connection-oriented protocol. It establishes a product or service. This has resulted in the software pragmatic path between the source and the destination of being widely appreciated by students and professionals. data transfer and close the connection [8]. During data With that angle, this project is using an open-source transfer, there is a three-way handshake that creates a complicated network simulation termed as NS-3. The connection in the first part that opens connection This main objective of this project is to design two different sends a segment with a random initial sequence number, simulation scenarios. Data transfer requires that and SYN Flag is set. The other part responds with a reliability is an essential factor, specifically in the case segment that sets SYN and ACK flags bits [8]. of packer networks. Automatic-Repeat Request (ARQ) has various mechanisms. The most important mechanisms in this respect are; Stop-and-Wait and Selective-Repeat. Various protocols are using these mechanisms to ensure controlled flow, controlled errors, and congested controls. Go-Back-N is also a significant mechanism, but this study does not target it [1]. These mechanisms play an important role in transporting layers of ISO/OSI (International Standards Organization / Open System Interconnection) model for wire networks. The most reliable and the base protocol of the transport layer is TCP (Transmission Control Protocol). In the same way, ARQ mechanisms play an important role in establishing a link layer in wireless networks. A. Network Simulator (NS-3) The NS-3 simulator is an open-source discrete-event network Fig. 1: The connection using three-way handshake [9] simulator primarily used for research or education. 978-1-7281-7624-6/20/$31.00 ©2020 IEEE 195 DOI 10.1109/CSCI51800.2020.00040 After establishing connection, data transfer continues. out-of-order segments, it is combined with the behavior Sequence and acknowledgment numbers are changed in of Selective-Repeat ARQ. the same pathway of establishing connection. The data's size increases the numbers [8]. III. LITERATURE REVIEW Various researchers and scholars have previously B. TCP send and receive windows investigated mechanisms for ARQ. Ramadan, Z., & TCP utilizes two windows for each direction of data Siahaan, A. P. U. (2016) suggested that transmission can transfer. The first one is a send window and the second face damage in sending data leading to corrupt data [4]. one is a receive window. Therefore, Corrupted data cannot fulfill the needs of data 1) A Send Window transmission. Stop-and-wait methods of Automatic- The receiver changes the window size as flow control Repeat- Request can help resolve these errors. Data using congestion control mechanism. The Send window transmission requires a sending and a receiving then opens, closes, or shrinks [8]. There is a usable computer [2]. Stop-and-Wait- methods of Automatic- window portion in the send window and a part where Repeat- Request ensures packet drops do not cause loss bytes are awaiting acknowledgement. The window size of data, and that data is received accurately. The stop- is thousands of bytes [8]. and-Wait method can automatically fix corrupted data. In another study, Bada, A. B. (2017) stated that Automatic Repeat Request (ARQ) protocols play an important role in offering a wide range of paths for reliable transmission of data [3]. Similarly, Automatic Repeat Request (ARQ) protocols are widely used in error control systems with a primary aim to ensure reliability and validity of transferred data. Some of the most significant types of protocols in this regard include Stop and wait (SW), Go-Back-N (GBN), and Selective Repeat (SR). The study highlights various advantages Fig 2. The send window size with change [9] and limitations of these different types of protocols. This study also highlights the most reliable transmission 2) A Receive Window system named Hybrid ARQ (HARQ) in detail [6]. The receiver window size defines how multiple bytes can be received from the sender before overflow; this IV. AUTOMATIC REPEAT REQUEST (ARQ) process is called flow control [8]. TCP works by default The paper uses three basic ARQ methods; Stop-and- cumulative acknowledgment by advertising the Wait ARQ method, Go back N method, and Selective- following expected byte to receive. Selective Repeat ARQ method. Often, the data link or transport acknowledgments can be set in TCP header options [8]. layer of the ISO/OSI model uses these ARQ methods [4]. It is important to note that a reliable transport layer protocol such as TCP is needed for successful incorporation of ARQ and wireless data link protocols [4]. A. Stop-and-Wait ARQ Stop-and-wait method is the most significant method whereby the receiver and sender have sliding window (size 1). The sender in this method is allowed to send only one segment. The sender cannot send this segment Fig 3. The receive window size with change [9] to another sender unless they receive acknowledgement C. The similarity to Automatic repeat request for already sent segments. This method also allows (ARQ) receiver to detect corrupted segment using the checksum Most TCP implementations are implemented without field [4] and the sender has an opportunity to retransmit Selective acknowledgment and only cumulative the segment after time-out. acknowledgments sent. In this case, it mimics the Go- 1) Numberin system Back-N ARQ method though with temporary storing of This method allows sending of only one segment unless an acknowledgement to send another segment has been 196 received. The sequence number field has only binary 푡0 퐸[푡푡표푡푎푙] = [7] digits; 0 and 1. Though, the sequence number changes 1 − 푃푓 with change in the segment [5]. Therefore, the transmission rate effectiveness becomes: 2) Efficiency 푛푓 − 푛0 Assuming the link rate is R, frame size in bits will be 푛 푅푒푓푓 = 푓 퐸[푡푡표푡푎푙] and acknowledgment size in bits be 푛푎. Assuming there (푛푓 − 푛0) is a processing delay at the both of 푡 . Then the time = (1 − 푃푓) (1 푝푟표푐 푡0 to send a frame, to receive and acknowledgment 0 − 푃푓)푅푒푓푓 [7] becomes: Efficiency of the transmission is: 푛푓 푛푎 푡 = 2푡 + 2푡 + + [7] 휂 = (1 − 푃 )휂 [7] 0 푝푟표푝 푝푟표푐 푅 푅 푓 0 푛 When 푓 is the transmission delay of the frame, the The presence of errors diminishes the effective 푅 transmission rate and efficiency by a factor of (1 − 푃 ) transmission rate effectiveness in the absence of the 푓 where 푃 is the probability of the errored frame. errors becomes: 푓 0 푛푓 − 푛0 B. Selective repeat ARQ 푅푒푓푓 = [7] 푡0 The second method under consideration is selective- Where 푛0 is number of overhead bits in the frame. repeat method. Go-Bank-N has substantial limitations Transmission efficiency of the stop and wait scheme is that reduce efficiency of this method. Nevertheless, then: selective-repeat method solves this problem making it 푛 − 푛 푓 0 easier for simulators to deal with such challenges. This 푡0 휂0 = method primarily suggests that the information tracked 푅 is for only one segment and it must not be used in 푛0 1 − previous sections [7]. 푛푓 = [7] 1) Windows and timers 푛 2(푡 + 2푡 )푅 1 + 0 + 푝푟표푝 푝푟표푐 It is important to ensure that the sender window is of the 푛 푛 푓 푓 same size as the receiver window. It is also important to The numerator illustrates loss in efficiency due to header 푛 ensure that all segments deliver application layer with a bits while the denominator 푎 illustrates the loss in 푛푓 primary aim to eliminate errors [8]. efficiency due to the time demanded for the 2) Efficiency The purpose of selective repeat is to retransmit the acknowledgment message.
Recommended publications
  • Technical Characteristics for a VHF Data Exchange System in the VHF Maritime Mobile Band
    Recommendation ITU-R M.2092-0 (10/2015) Technical characteristics for a VHF data exchange system in the VHF maritime mobile band M Series Mobile, radiodetermination, amateur and related satellite services ii Rec. ITU-R M.2092-0 Foreword The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio- frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted. The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups. Policy on Intellectual Property Right (IPR) ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/ITU-R/ISO/IEC referenced in Annex 1 of Resolution ITU-R 1. Forms to be used for the submission of patent statements and licensing declarations by patent holders are available from http://www.itu.int/ITU-R/go/patents/en where the Guidelines for Implementation of the Common Patent Policy for ITU-T/ITU-R/ISO/IEC and the ITU-R patent information database can also be found. Series of ITU-R Recommendations (Also available online at http://www.itu.int/publ/R-REC/en) Series Title BO Satellite delivery BR Recording for production, archival and play-out; film for television BS Broadcasting service (sound) BT Broadcasting service (television) F Fixed service M Mobile, radiodetermination, amateur and related satellite services P Radiowave propagation RA Radio astronomy RS Remote sensing systems S Fixed-satellite service SA Space applications and meteorology SF Frequency sharing and coordination between fixed-satellite and fixed service systems SM Spectrum management SNG Satellite news gathering TF Time signals and frequency standards emissions V Vocabulary and related subjects Note: This ITU-R Recommendation was approved in English under the procedure detailed in Resolution ITU-R 1.
    [Show full text]
  • (19) United States (12) Patent Application Publication (10) Pub
    US 20140071868A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2014/0071868 A1 Bergquist et al. (43) Pub. Date: Mar. 13, 2014 (54) APPARATUSES AND METHODS FOR Publication Classi?cation MANAGING PENDING HARQ RETRANSMISSIONS (51) Int. Cl. H04W 76/04 (2006.01) (71) Applicants:Gunnar Bergquist, Kista (SE); Riikka H04L 1/18 (2006.01) Susitaival, Helsinki (Fl); Anders Ohlsson, Jarfalla (SE); Mikael (52) US. Cl. Wittberg, Uppsala (SE) CPC ......... .. H04W 76/048 (2013.01); H04L 1/1803 (2013.01) (72) Inventors: Gunnar Bergquist, Kista (SE); Riikka USPC ......................................... .. 370/311; 370/328 Susitaival, Helsinki (Fl); Anders Ohlsson, Jarfalla (SE); Mikael Wittberg, Uppsala (SE) (57) ABSTRACT (73) Assignee: Telefonaktiebolaget L M Ericsson (publ), Stockholm (SE) Methods and systems present solutions to, for example, the (21) Appl. No .: 13/825,462 problem of unnecessary preparedness for suspended retrans missions in the user equipment (UE) Which contributes to (22) PCT Filed: Nov. 9, 2012 poWer drain in the device battery. One method for monitoring a Physical DoWnlink Control Channel (PDCCH) for adaptive PCT No.: PCT/SE2012/051225 (86) retransmission grants in a radio communication system § 371 (0X1), includes: monitoring, by a user equipment (U E), the PDCCH (2), (4) Date: Mar. 21, 2013 for adaptive retransmission grants; receiving, by the UE, a Related US. Application Data hybrid automatic repeat request (HARQ) acknowledge (ACK) message, and ceasing, by the UE, to monitor the (60) Provisional application No. 61/646,757, ?led on May PDCCH for adaptive retransmission grants after receipt of the 14, 2012. HARQ ACK message. -------- -- RADIO BEARERS BCCH PCCH SEGM.
    [Show full text]
  • Flow Control and ARQ Media Access Physical
    Data Link Layer The Data Link layer can be further subdivided into: Computer Networks application 1. Logical Link Control (LLC): provides flow and error control transport • different link protocols may provide different services, e.g., Ethernet doesn’t provide reliable network delivery (error recovery) Lecture 26: 2. Media Access Control (MAC): framing and LLC MAC Flow Control and ARQ media access physical Link Layer Services Flow Control Flow Control: What is flow control? • pacing between adjacent sending and receiving nodes • receiver telling sender to slow down Error Control: Why do you need flow control? • errors caused by signal attenuation, noise • ARQ: receiver detects presence of errors and asks sender for retransmission Flow control protocols at data link layer (single hop): • FEC: receiver identifies and corrects bit error(s), • XON/XOFF without resorting to retransmission • Stop & Wait Protocol • Sliding Window Protocol Reliable delivery between adjacent nodes • seldom used on low bit error links (fiber, some twisted pair) Similar issues and mechanisms apply at the • plays an important role in wireless links with high error rates transport layer (end-to-end) • Q: why do we need both link-level and end-end reliability? XON/XOFF Stop and Wait (S&W) Protocol ! : propagation After sending a packet, sender must wait for delay SR acknowledgment (ACK) before sending the next packet sender receiver Sender Receiver S R round-trip Algorithm: time (rtt) t • S sends stream of data Time ! : propagation • R sends XOFF, S stops transmission pkt
    [Show full text]
  • Master's Thesis
    MASTER'S THESIS Analysis of UDP-based Reliable Transport using Network Emulation Andreas Vernersson 2015 Master of Science in Engineering Technology Computer Science and Engineering Luleå University of Technology Department of Computer Science, Electrical and Space Engineering Abstract The TCP protocol is the foundation of the Internet of yesterday and today. In most cases it simply works and is both robust and versatile. However, in recent years there has been a renewed interest in building new reliable transport protocols based on UDP to handle certain problems and situations better, such as head-of-line blocking and IP address changes. The first part of the thesis starts with a study of a few existing reliable UDP-based transport protocols, SCTP which can also be used natively on IP, QUIC and uTP, to see what they can offer and how they work, in terms of features and underlying mechanisms. The second part consists of performance and congestion tests of QUIC and uTP imple- mentations. The emulation framework Mininet was used to perform these tests using controllable network properties. While easy to get started with, a number of issues were found in Mininet that had to be resolved to improve the accuracy of emulation. The tests of QUIC have shown performance improvements since a similar test in 2013 by Connectify, while new tests have identified specific areas that might require further analysis such as QUIC’s fairness to TCP and performance impact of delay jitter. The tests of two different uTP implementations have shown that they are very similar, but also a few differences such as slow-start growth and back-off handling.
    [Show full text]
  • Chapter 5 Peer-To-Peer Protocols and Data Link Layer
    Chapter 5 Peer-to-Peer Protocols and Data Link Layer PART I: Peer-to-Peer Protocols Peer-to-Peer Protocols and Service Models ARQ Protocols and Reliable Data Transfer Flow Control Timing Recovery TCP Reliable Stream Service & Flow Control Chapter 5 Peer-to-Peer Protocols and Data Link Layer PART II: Data Link Controls Framing Point-to-Point Protocol High-Level Data Link Control Link Sharing Using Statistical Multiplexing Chapter Overview z Peer-to-Peer protocols: many protocols involve the interaction between two peers z Service Models are discussed & examples given z Detailed discussion of ARQ provides example of development of peer-to-peer protocols z Flow control, TCP reliable stream, and timing recovery z Data Link Layer z Framing z PPP & HDLC protocols z Statistical multiplexing for link sharing Chapter 5 Peer-to-Peer Protocols and Data Link Layer Peer-to-Peer Protocols and Service Models Peer-to-Peer Protocols zzz zzz z Peer-to-Peer processes execute layer-n protocol to provide service to n + 1 peer process n + 1 peer process layer-(n+1) z Layer-(n+1) peer calls SDU SDU layer-n and passes PDU Service Data Units n peer process n peer process (SDUs) for transfer z Layer-n peers exchange Protocol Data Units (PDUs) to effect transfer n – 1 peer process n – 1 peer process z Layer-n delivers SDUs to destination layer-(n+1) peer zzz zzz Service Models z The service model specifies the information transfer service layer-n provides to layer-(n+1) z The most important distinction is whether the service is: z Connection-oriented z Connectionless z Service model possible features: z Arbitrary message size or structure z Sequencing and Reliability z Timing, Pacing, and Flow control z Multiplexing z Privacy, integrity, and authentication Connection-Oriented Transfer Service z Connection Establishment z Connection must be established between layer-(n+1) peers z Layer-n protocol must: Set initial parameters, e.g.
    [Show full text]
  • Satellite and Terrestrial Network for 5G
    SaT5G (761413) D4.3 May 2020 Satellite and Terrestrial Network for 5G D4.3 Multi-link and Heterogeneous Transport - Analysis, Design and Proof of Concepts SaT5G (761413) D4.3 May 2020 Document History Version Date Modifications Source 0.1 28/06/18 Initial structure OA 0.8 17/10/18 Multi-Access state of the art and Multi-Access at 3GPP OA 0.85 1/11/19 QoS in Satcom TNO 0.9 10/11/19 MPTCP and MPQUIC BT 1.0 18/12/19 Prototypes, PEP and Standardization OA Topic ICT-07-2017 Project Title Satellite and Terrestrial Network for 5G Project Number 761413 Project Acronym SaT5G Contractual Delivery Date Aug 2019 (M27) Actual Delivery Date 30/12/2019 Contributing WP WP4.3 Project Start Date 01/06/2017 Project Duration 33 months Dissemination Level PU Editor OA Contributors SES, ADS, TNO, i2CAT SaT5G (761413) D4.3 May 2020 Name Organization Mamoutou Diarra OA Relja Djapic TNO M. (Miodrag) Djurica TNO Philip Eardley BT Thierry Masson OA Franck Messaoudi OA Luc Ottavj OA Boris Tiomela Jou ADS Simon Watts AVA Hamzeh Khalili I2CAT Ning Wang UoS SaT5G (761413) D4.3 May 2020 Table of Contents Table of Contents .................................................................................................................................. 4 List of Figures ....................................................................................................................................... 6 List of Tables ......................................................................................................................................... 7 List of Acronyms
    [Show full text]
  • Chapter 3: ARQ Protocols —Reference 1, Sections 2.1, 2.4, 2.6-2.9
    -1- Chapter 3: ARQ Protocols —Reference 1, sections 2.1, 2.4, 2.6-2.9 1. ARQ retransmission strategies Automatic Repeat reQuest - The receiverdetects a transmission unit ( a frame or a packet or a message ) with an error and asks the transmitter to retransmit that unit. Problems: 1. Correctness: Does the receiveraccept every transmission unit once and only once, and place them in the same order as the source. 2. Efficiency: Howmanyextra transmissions are made and howmuch time is spent in an idle state Channel model In a layered architecture, the channel model is the service provided by the lower layers of the architecture to the layer with the protocol The services provided by the protocol are provided to the layers above the protocol —variable delay —packets are receivedinthe same order that theyare transmitted. • This is not the case on the Internet • Alower layer of the architecture may re-order the packets when theyare receivedout of order, or may simply discard a packet if its sequence number is less than that of a previously received packet. • Exactly howthe sequencing is obtained, depends on the specific protocol that is used at the lower layer. • However, the guarantees are obtained does not concern the protocol at this layer. —Onahalf-duplexchannel, a lower layer coordinates transmissions between the source and receiverso that only one transmits at a time. —2types of losses 1. Unit 2nev erarrivesatthe receiver 2. Unit 4arrives, but an error is detected. 1 2 3 Xmitter t Lost Rcvd. Error Rcvr 4 -2- 2. Stop and wait ARQ —Full duplexchannel - the source and receivercan transmit messages to each other at the same time.
    [Show full text]
  • Sliding Window Protocol
    By B.A.Khivsara Asst Prof. Computer Dept SNJB’s KBJ COE,Chandwad Sliding window protocols are used where Reliable In- order delivery of packets is required, & such as in the Data Link Layer (OSI model) in the Transmission Control Protocol(TCP). The sliding window technique places varying limits on the number of data packets that are sent before waiting for an acknowledgment signal back from the receiving computer. The number of data packets is called the window size. protocols are divided into 2 types noiseless (error-free) channels noisy (error- creating) channels Figure Taxonomy of protocols 11.4 Let us first assume we have an ideal channel in which no frames are lost, duplicated, or corrupted. We introduce two protocols for this type of channel. The first is a protocol that does not use flow control; the second is the one use flow control. If data frames arrive at the receiver site faster than they can be processed, the frames must be stored until their use. To prevent the receiver from becoming overwhelmed with frames, we need to tell the sender to slow down. In this protocol the sender sends one frame, stops until it receives confirmation from the receiver and then sends the next frame. Figure Flow diagram for stop and wait Protocol 11.7 NOISY CHANNELS (Sliding Window Protocol) Although the Stop-and-Wait Protocol gives us an idea of how to add flow control to its predecessor, noiseless channels are nonexistent. We discuss three protocols in this section that use error control. Topics discussed in this section: Stop-and-Wait Automatic Repeat Request Go-Back-N Automatic Repeat Request Selective Repeat Automatic Repeat Request 11.8 Note Error correction in Stop-and-Wait ARQ is done by keeping a copy of the sent frame and retransmitting of the frame when the timer expires.
    [Show full text]
  • Go Back N Arq Protocol
    6.263/16.37: Lectures 3 & 4 The Data Link Layer: ARQ Protocols Eytan Modiano MIT Eytan Modiano 1 Automatic Repeat ReQuest (ARQ) • When the receiver detects errors in a packet, how does it let the transmitter know to re-send the corresponding packet? • Systems which automatically request the retransmission of missing packets or packets with errors are called ARQ systems. • Three common schemes – Stop & Wait – Go Back N – Selective Repeat Eytan Modiano 2 Pure Stop and Wait Protocol Transmitter departure times at A Time -----> packet 0 CRC packet 1 CRC packet 1 CRC ACK NAK arrival times at receiver Packet 0 Packet 1 Accepted Accepted • Problem: Lost Packets – Sender will wait forever for an acknowledgement • Packet may be lost due to framing errors • Solution: Use time-out (TO) – Sender retransmits the packet after a timeout Eytan Modiano 3 The Use Of Timeouts For Lost Packets Requires Sequence Numbers packet 0 CRC <---- timeout -----> packet 0 CRC packet 0 or 1? packet 0 accepted • Problem: Unless packets are numbered the receiver cannot tell which packet it received • Solution: Use packet numbers (sequence numbers) Eytan Modiano 4 Request Numbers Are Required On ACKs To Distinguish Packet ACKed 0 packet 0 timeout 0 packet 0 1 packet 1 ? ACK ACK Packet 0 accepted • REQUEST NUMBERS: – Instead of sending "ack" or "nak", the receiver sends the number of the packet currently awaited. – Sequence numbers and request numbers can be sent modulo 2. This works correctly assuming that 1) Frames travel in order (FCFS) on links 2) The CRC never fails to detect errors 3) The system is correctly initialized.
    [Show full text]
  • Implementing Immediate Forwarding for 4G in a Network Simulator
    Implementing immediate forwarding for 4G in a network simulator Magnus Vevik Austrheim Thesis submitted for the degree of Master in Programming and Networks 60 credits Department of Informatics Faculty of mathematics and natural sciences UNIVERSITY OF OSLO Autumn 2018 Implementing immediate forwarding for 4G in a network simulator Magnus Vevik Austrheim © 2018 Magnus Vevik Austrheim Implementing immediate forwarding for 4G in a network simulator http://www.duo.uio.no/ Printed: Reprosentralen, University of Oslo Contents 1 Introduction 3 1.1 Hypothesis . 4 1.2 Experimental Approach . 5 1.3 Limitations . 5 1.4 Research Method . 6 1.5 Main Contributions . 6 1.6 Outline . 7 2 Background 9 2.1 IP . 9 2.2 TCP . 9 2.2.1 Congestion Control and Avoidance . 10 2.2.2 Selective Acknowledgement (SACK) . 11 2.2.3 Recent Acknowlegment (RACK) . 12 2.3 Long Term Evolution (LTE) . 14 2.3.1 The need for LTE . 15 2.3.2 LTE Architecture . 17 2.3.3 LTE Air Interface . 19 2.4 LTE Radio Protocol Stack . 22 2.4.1 Packet Data Convergence (PDCP) . 22 2.4.2 Radio Link Control (RLC) . 23 2.4.3 Medium Access Control (MAC) . 26 2.4.4 Physical layer (PHY) . 29 2.5 Noise and Interference . 30 2.5.1 Signal transmission and reception . 30 2.5.2 Modulation schemes . 32 2.5.3 Propagation . 32 2.5.4 Fading . 33 2.5.5 Metrics . 33 3 Design 35 3.1 Hypothesis . 35 3.1.1 Throughput . 35 3.1.2 Latency . 36 3.1.3 Applicability .
    [Show full text]
  • E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall Description; Stage 2 (3GPP TS 36.300 Version 11.6.0 Release 11
    ETSI TS 136 300 V11.6.0 (2013-07) Technical Specification LTE; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (3GPP TS 36.300 version 11.6.0 Release 11) 3GPP TS 36.300 version 11.6.0 Release 11 1 ETSI TS 136 300 V11.6.0 (2013-07) Reference RTS/TSGR-0236300vb60 Keywords LTE ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice Individual copies of the present document can be downloaded from: http://www.etsi.org The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI_support.asp Copyright Notification No part may be reproduced except as authorized by written permission.
    [Show full text]
  • A Comprehensive Overview of TCP Congestion Control in 5G Networks: Research Challenges and Future Perspectives
    sensors Review A Comprehensive Overview of TCP Congestion Control in 5G Networks: Research Challenges and Future Perspectives Josip Lorincz 1,* , Zvonimir Klarin 2 and Julije Ožegovi´c 1 1 Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture (FESB), University of Split, 21 000 Split, Croatia; [email protected] 2 Polytechnic of Sibenik, Trg Andrije Hebranga 11, 22 000 Sibenik, Croatia; [email protected] * Correspondence: [email protected] Abstract: In today’s data networks, the main protocol used to ensure reliable communications is the transmission control protocol (TCP). The TCP performance is largely determined by the used congestion control (CC) algorithm. TCP CC algorithms have evolved over the past three decades and a large number of CC algorithm variations have been developed to accommodate various network environments. The fifth-generation (5G) mobile network presents a new challenge for the implemen- tation of the TCP CC mechanism, since networks will operate in environments with huge user device density and vast traffic flows. In contrast to the pre-5G networks that operate in the sub-6 GHz bands, the implementation of TCP CC algorithms in 5G mmWave communications will be further compro- mised with high variations in channel quality and susceptibility to blockages due to high penetration losses and atmospheric absorptions. These challenges will be particularly present in environments such as sensor networks and Internet of Things (IoT) applications. To alleviate these challenges, this paper provides an overview of the most popular single-flow and multy-flow TCP CC algorithms used in pre-5G networks. The related work on the previous examinations of TCP CC algorithm Citation: Lorincz, J.; Klarin, Z.; performance in 5G networks is further presented.
    [Show full text]