Biodiversity Characterization at Landscape Level Using Remote Sensing and GIS in Kerala

Total Page:16

File Type:pdf, Size:1020Kb

Biodiversity Characterization at Landscape Level Using Remote Sensing and GIS in Kerala KFRI Research Report No. 274 ISSN 0970-8103 Biodiversity Characterization at Landscape Level Using Remote Sensing and GIS in Kerala A.R.R.Menon N.Sasidharan Kerala Forest Research Institute Peechi – 680653, Thrissur Kerala August 2005 Contents Page Acknowledgements i Abstract ii Introduction 1- 8 Materials and methods 9 - 19 Study area 9 Data 9 - 10 Vegetation classification scheme 10 - 12 Phytosociology 13 - 19 Observation highlights 20 - 30 Tree diversity analysis 31 - 37 Forest status 37 - 214 Idukki district 38 - 78 Ernakulam district 79 - 88 Thrissur district 89 - 121 Palakkad district 122 - 150 Malappuram district 151 - 168 Kannur district 169 - 180 Kozhikode district 181 - 199 Wayanad district 200 - 214 Discussion and Conclusion 215 Reference 216 - 217 Acknowledgements We are thankful to Dr. J. K. Sharma, Director, Kerala Forest Research Institute and Dr. K. Balasubramanyan, Scientist in charge (Rtd.), Ecology Division , KFRI, for their encouragement throughout the period of this study. We appreciate the financial assistance and co-operation extended by National Remote Sensing Agency, Department of Space, Govt. of India,for this study. Authors are also grateful to Kerala Forest Depatrment for permitting to establish the study plots in the forests of Kerala and for the extensive support. We appreciate the help rendered by Dr. A. O. Varghese, Research Associate, Sri. O. L. Pious and Sri. E S. Abhilash, Research fellows, and Sri. K. Krishnakumar, Technical Assistant of the project. Thanks are due to Dr. C. Renuka and Dr.K. Swarupanandan, Scientists, K.F.R.I. for their valuable comments and suggestions in improving the manuscript. Abstract Biodiversity characterization at landscape level has been carried out using Indian Remote Sensing Satellite data of Kerala. The study, sponsored by the Department of Space, is part of a major initiative taken up by the Department of Biotechnology under its Network programme for Bioprospecting, commenced in 1997. The programme is a true implementation of “gene to ecosystem” concept in biodiversity conservation and prospecting. This project is a pioneering effort to create geospatial database on vegetation cover types, disturbance regimes and biological richness. The spatial data have also been linked with the species database and field sample data laid down in different strata of vegetation. The vegetation status of the forests of selected eight northern districts of Kerala, viz. Kannur, Wayanad, Kozhikode, Palakkad, Malappuram, Thrissur, Ernakulam and Idukki, has been covered in detail. The information system evolved in the present study through multicriteria analysis in GIS facilitates the rapid assessment of biodiversity and its monitoring (loss and/or gain), assessment of nature of habitats and disturbance regime therein; evolving species-habitat relationship, mapping biological richness and gap analysis; and prioritizing conservation and bioprospecting. Abstract of project proposal Code: KFRI 329/1999 Title: Biodiversity characterization at landscape level using remote sensing and GIS in Kerala Objectives: 1.Gathering structural and compositional data of vegetation to prioritize biodiversity conservation in Kerala 2. Preparation of biome/ ecological maps using satellite remote sensing data Date of commencement: May 1999 Date of completion: June 2004 Funding agency: National Remote Sensing Agency Investigators: A.R.R.Menon N.Sasidharan INTRODUCTION Sustainable management of natural resources has become a key issue for survival of life on planet Earth. In this effort, conservation of biodiversity has been put to the highest priority through Global Biodiversity Conservation (GBC). It is realised that the threats to the species/ecosystems are the greatest in recent times mainly due to unsustainable exploitation of biological resources. However, natural hazards also contribute to the loss of biodiversity. Thus there is an urgent need to conserve gene pool ‘in situ’ before it is lost forever. The most appropriate method to do that would be to assess the ecological sustainability by way of understanding the ecosystems/landscape complexities and their uniqueness. There could be several factors either acting singly or in combination, for the extinction of a species. For generating baseline data on plant species, habitats, ecosystems and for subsequent monitoring, reliable and well-documented information is a prerequisite. This would help in identification of ‘hot spots’. It is interesting to note that majority of ‘hot spots’ are confined to most species rich tropical habitats. India with a geographical area of 2.4 percent of the world has about 8 percent of the world’s total biodiversity. India is very rich in plant diversity with an estimated 50,000 species, of which about 15,000 are flowering plants. Of these, approximately 5000 species are endemic to India and distributed over 141 genera under more than 47 families. The endemism of Indian flora is very high, about 31.5 percent of which, nearly one third of the flowering plants, are represented as endemic species. In the light of the current problem of loss of biodiversity, it is necessary to identify priority areas for conservation of genetic resources. Successful action to conserve biodiversity must address full range of causes, of its current loss and focus its attention to embrace gene, species and ecosystem through integrated approach. In this context the Department of Space (DOS), at the behest of Department of Biotechnology, Ministry of Science & Technology (DBT), Government of India, New Delhi has taken up a project on, “Characterising the biological richness at landscape level using satellite remote sensing data”. Three test areas viz. North-eastern Himalayas, Western Ghats and Western Himalayas have been chosen, based on, existing knowledge about these biodiversity ‘hot spots’. Under this programme, a collaborative project was undertaken by Kerala Forest Research Institute (KFRI) with National Remote Sensing Agency (NRSA) for the biodiversity characterisation study of Kerala part of Western Ghats. The hierarchy of biological organization and the approaches to study the biodiversity at different levels of biological organizations are given in Figures 1 and 2. 1 Fig.1. Hierarchy of Biological Organisation Fig.2. Approach for Biodiversity Characterisation Bio prospecting Biodiversity provides to the mankind enormous direct economic benefits in the form of food, medicine, industrial products etc. and has potential for providing many more yet unknown benefits. It is felt that bio prospecting of this enormous biological wealth will require reliable information on the status of bio resources, their distribution pattern, interactions and anthropogenic disturbances if any. A schematic approach for biodiversity characterization is given in Figure 3. Fig. 3. Schematic approach for Biodiversity study at different levels of biological organisation The spatial database has to be linked to the non spatial (ground inventory data) to assess their possible distribution pattern and quantity. It will also provide information on site conditions that can be utilized for multiplication, regeneration, afforestation and conservation. A national strategy for bio prospecting, hence, will require i) spatial knowledge of distribution of habitats, 2 their ecological significance, disturbance regimes and biological richness; ii) floristic inventory, habitat-species relationship, traditional knowledge, identification of genotypes and gene bank accessories; and iii) evolving biotechnological tools to conserve the species both ‘in situ’ and ‘ex situ’. Biodiversity of Western Ghats Western Ghats consist of a series of mountains stretching from southern coast of Kerala to southern part of Gujarat encompassing six Peninsular Indian States. The forests of these regions are dense with luxuriant vegetation with high biodiversity, comprising tropical evergreen rainforests, mixed deciduous forests and subtropical or temperate forests in the peninsular mountains. Mangrove forests, grasslands and dwarf forests have their characteristic presence. The ‘Sholas’ of Anamalai and Nilgiri hills at an altitude of 2300 m. is a unique feature of the region. The tropical evergreen forests have a multilayered forest with tall trees comprising Toona ciliata, Dipteropcarpus indicus, Hopea parviflora, Mesua ferrea, Dysoxylum malabaricum etc. Other species viz. Tectona grandis, Terminalaia tomentosa, Terminalia paniculata, Dalbergia latifolia etc. are found in the mix-deciduous forests. There are several of endemics in Western Ghats. Among the largest genera in India, 77 species of Impatiens are found in this region. The important minor forest products are bamboo, charcoal, cane, medicinal herbs, gum, Dry fruits etc. Forest plantation and tea gardens are also contributed significantly to the regional economic growth. Protected Area Concept A protected area is defined as a ‘geographically defined area, which is designated or regulated and managed to achieve specific conservation objectives’. The land in the protected areas has certain legal provisions, which facilitates the management of protected areas. The protected areas have figured very prominently in biodiversity conservation efforts around the world. India’s strategies for conservation and sustainable utilization of biodiversity in the past have comprised of providing special status and protection to biodiversity rich areas by declaring them as National Parks, Wildlife Sanctuaries, Biosphere reserves, ecologically fragile and
Recommended publications
  • Vegetation Composition, Structure and Patterns of Diversity: a Case Study from the Tropical Wet Evergreen Forests of the Western Ghats, India
    E D I N B U R G H J O U R N A L O F B O T A N Y 65 (3): 1–22 (2008) 1 Ó Trustees of the Royal Botanic Garden Edinburgh (2008) doi:10.1017/S0960428608004952 VEGETATION COMPOSITION, STRUCTURE AND PATTERNS OF DIVERSITY: A CASE STUDY FROM THE TROPICAL WET EVERGREEN FORESTS OF THE WESTERN GHATS, INDIA , A. GIRIRAJ1 2 ,M.S.R.MURTHY1 &B.R.RAMESH3 The composition, abundance, population structure and distribution patterns of the woody species having a girth at breast height of $ 10 cm were investigated in the tropical wet evergreen forests of the Kalakad-Mundanthurai Tiger Reserve in the southern Western Ghats, India. A 3 ha plot was established with an altitudinal range of 1170 to 1306 m. In the study plot 5624 individuals (mean density 1875 haÀ1) covering 68 woody species belonging to 52 genera and 27 families were enumerated. The mean basal area was 47.01 m2 ha–1 and the Shannon and Simpson diversity indices were 4.89 and 0.95, respectively. Of these woody species nearly 51% are endemic to the Western Ghats. The four dominant species, Cullenia exarillata, Palaquium ellipticum, Aglaia bourdillonii and Myristica dactyloides, account for 34% of the trees and 67% of the basal area, and therefore constitute the main structure of the forest. Within this forest type, five species assemblages corresponding to altitudinal gradient were identified using correspondence analysis. Management of such mid elevation evergreen forests necessarily depends on knowledge of recognisable community types and their environmental variables. The present study provides essential background for formulating strategies for sustainable conservation of forest communities at the local level.
    [Show full text]
  • A CONCISE REPORT on BIODIVERSITY LOSS DUE to 2018 FLOOD in KERALA (Impact Assessment Conducted by Kerala State Biodiversity Board)
    1 A CONCISE REPORT ON BIODIVERSITY LOSS DUE TO 2018 FLOOD IN KERALA (Impact assessment conducted by Kerala State Biodiversity Board) Editors Dr. S.C. Joshi IFS (Rtd.), Dr. V. Balakrishnan, Dr. N. Preetha Editorial Board Dr. K. Satheeshkumar Sri. K.V. Govindan Dr. K.T. Chandramohanan Dr. T.S. Swapna Sri. A.K. Dharni IFS © Kerala State Biodiversity Board 2020 All rights reserved. No part of this book may be reproduced, stored in a retrieval system, tramsmitted in any form or by any means graphics, electronic, mechanical or otherwise, without the prior writted permission of the publisher. Published By Member Secretary Kerala State Biodiversity Board ISBN: 978-81-934231-3-4 Design and Layout Dr. Baijulal B A CONCISE REPORT ON BIODIVERSITY LOSS DUE TO 2018 FLOOD IN KERALA (Impact assessment conducted by Kerala State Biodiversity Board) EdItorS Dr. S.C. Joshi IFS (Rtd.) Dr. V. Balakrishnan Dr. N. Preetha Kerala State Biodiversity Board No.30 (3)/Press/CMO/2020. 06th January, 2020. MESSAGE The Kerala State Biodiversity Board in association with the Biodiversity Management Committees - which exist in all Panchayats, Municipalities and Corporations in the State - had conducted a rapid Impact Assessment of floods and landslides on the State’s biodiversity, following the natural disaster of 2018. This assessment has laid the foundation for a recovery and ecosystem based rejuvenation process at the local level. Subsequently, as a follow up, Universities and R&D institutions have conducted 28 studies on areas requiring attention, with an emphasis on riverine rejuvenation. I am happy to note that a compilation of the key outcomes are being published.
    [Show full text]
  • Check List of Wild Angiosperms of Bhagwan Mahavir (Molem
    Check List 9(2): 186–207, 2013 © 2013 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution Check List of Wild Angiosperms of Bhagwan Mahavir PECIES S OF Mandar Nilkanth Datar 1* and P. Lakshminarasimhan 2 ISTS L (Molem) National Park, Goa, India *1 CorrespondingAgharkar Research author Institute, E-mail: G. [email protected] G. Agarkar Road, Pune - 411 004. Maharashtra, India. 2 Central National Herbarium, Botanical Survey of India, P. O. Botanic Garden, Howrah - 711 103. West Bengal, India. Abstract: Bhagwan Mahavir (Molem) National Park, the only National park in Goa, was evaluated for it’s diversity of Angiosperms. A total number of 721 wild species belonging to 119 families were documented from this protected area of which 126 are endemics. A checklist of these species is provided here. Introduction in the National Park are Laterite and Deccan trap Basalt Protected areas are most important in many ways for (Naik, 1995). Soil in most places of the National Park area conservation of biodiversity. Worldwide there are 102,102 is laterite of high and low level type formed by natural Protected Areas covering 18.8 million km2 metamorphosis and degradation of undulation rocks. network of 660 Protected Areas including 99 National Minerals like bauxite, iron and manganese are obtained Parks, 514 Wildlife Sanctuaries, 43 Conservation. India Reserves has a from these soils. The general climate of the area is tropical and 4 Community Reserves covering a total of 158,373 km2 with high percentage of humidity throughout the year.
    [Show full text]
  • Hematobiochemical, Pathomorphological And
    The Pharma Innovation Journal 2020; 9(4): 363-368 ISSN (E): 2277- 7695 ISSN (P): 2349-8242 NAAS Rating: 5.03 Hematobiochemical, pathomorphological and TPI 2020; 9(4): 363-368 © 2020 TPI therapeutic features of Ficus tsjahela toxicity in Malnad www.thepharmajournal.com Received: 20-02-2020 Gidda cattle Accepted: 22-03-2020 NB Shridhar NB Shridhar Principal Investigator and Head Obscure Disease Research Center Veterinary College Campus, DOI: https://doi.org/10.22271/tpi.2020.v9.i4f.4614 KVAFSU, Shivamogga, Karnataka, India Abstract Malnad Gidda cattle native of Western Ghat districts of Karnataka do consume the leaves of Ficus tsjahela accidently and succumb to toxicity. The clinical signs of the toxicity include initial excitation, paddling movements, stereotypic gnawing behavior, ataxia, salivation, hyperaesthesia, nystagmus, generalized tonic clonic seizures, recumbency and eating inanimate objects. The affected Malnad Gidda were managed successfully with administration of diazepam @ 0.5 mg/kg i/v, B-complex vitamin inj 10 ml per animal deep IM, 10% dextrose solution 5-10 ml/kg slow IV 2 times a day at 10 to 12 h for a duration of 3-4 days with administration of activated charcoal @ 2g/kg orally. The estimated hematological parameters like Hb, TC, DLC etc. were unaltered. There was an increasing in serum biochemical parameters like ALT, AST, BUN, creatinine and glucose and no change in calcium, magnesium, phosphorus In post mortem, the gross lesions were extensive hemorrhage in brain and histology revealed the degenerative changes in the neurons and glial cells. Phytoconstituents like glycosides, diterpenes, tannins, terpenes, steroids, lactones and flavonoids were detected in methanol extract of the plant leaf.
    [Show full text]
  • Arborescent Angiosperms of Mundanthurai Range in The
    Check List 8(5): 951–962, 2012 © 2012 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution Arborescent Angiosperms of Mundanthurai Range in PECIES S the Kalakad-Mundanthurai Tiger Reserve (KMTR) of the OF southern Western Ghats, India ISTS L Paulraj Selva Singh Richard 1* and Selvaraj Abraham Muthukumar 2 1 Madras Christian College, Department of Botany, Chennai – 600 059, Tamil Nadu, India. 2 St. John’s College, Department of Botany, Tirunelveli, 627 002, Tamil Nadu, India. [email protected] * Corresponding author. E-mail: Abstract: The present study was carried out to document the diversity of arborescent angiosperm taxa of Mundanthurai representingRange in the 175Kalakad-Mundanthurai genera in 65 families Tiger were Reserve recorded. (KMTR) The most of the speciose southern families Western are Euphorbiaceae Ghats in India. (27 During spp.), the Rubiaceae floristic survey carried out from January 2008 to December 2010, a total of 247 species and intraspecific taxa of trees and shrubs to this region which includes Agasthiyamalaia pauciflora, Elaeocarpus venustus, Garcinia travancorica, Gluta travancorica, (17Goniothalamus spp.), Myrtaceae rhynchantherus, (14 spp.), Lauraceae Homalium (13 travancoricum, spp.) and Annonaceae Homaium (11 jainii, spp.). OropheaOf the 247 uniflora, taxa, 27 Phlogacanthus species are endemic albiflorus, only Polyalthia shendurunii, Symplocos macrocarpa and Symplocos sessilis . This clearly signifies that this range is relevant to the conservation of the local flora. Introduction India for conserving global biological diversity and also The Western Ghats is one of the biodiversity hotspots declared as Regional Centre of Endemism in the Indian of the world (Myers et al.
    [Show full text]
  • Rain Forest Expansion Mediated by Successional Processes in Vegetation Thickets in the Western Ghats of India
    Journal of Biogeography, 30, 1067–1080 Rain forest expansion mediated by successional processes in vegetation thickets in the Western Ghats of India Jean-Philippe Puyravaud*, Ce´line Dufour and Subramanian Aravajy French Institute of Pondicherry, Pondicherry, India Abstract Aim The objective of this study was to document succession from grassland thickets to rain forest, and to provide evidence for their potential as restoration tools. Location The Linganamakki region (State of Karnataka) of the Central Western Ghats of India. Method We selected thirty vegetation thickets ranging from 4 to 439 m2 in area in the vicinity of rain forest. The area of each small thicket was estimated as an oval using its maximum length and its maximum width. When the shape was irregular (mostly in large thickets) the limits of the thicket were mapped and the area calculated from the map. Plant species were identified, the number of individuals was estimated and their heights measured. Results There was a progression in the thickets from early to late successional species. Small thickets were characterized by ecotone species and savanna trees such as Catun- aregam dumetorum. Savanna trees served as a nucleus for thicket formation. Colonizing species were mostly bird-dispersed. As succession proceeded in larger thickets, the proportion of evergreen, late-successional rain forest trees increased. The species com- position of the large thickets differed depending on the species composition of repro- ductive adults in the nearby forested areas. The species within small thickets were also found in the large thickets. The nestedness in species composition suggested that species turnover was deterministic based on thicket size.
    [Show full text]
  • Johncy Vanam'
    'SHANTHISTHAL' (JOHNCYVANAM) 2013-2018 In Collaboration with Kerala State Biodiversity Board and with the technical support of Department of Botany and M. S. Swaminathan Research Foundation Payyanur college Biodiversity Club established a conservation garden ('Shanthisthal') of Rare Endemic and Threatened flowering plants (RET plants) at Payyanur college campus in 1 acre area. Two hundred and thirty seven seedlings of 71 species of Rare Endemic and Threatened (RET) flowering plants (Angiosperms) of the Western Ghats coming in 29 families have been planted and conserved in the garden. Dr. P.S. Easa, former Director of Kerala Forest Research Institute formally inaugurated the garden as 'Johncyvanam' on 21st October, 2016 (in the name of Prof. Johncy Jacob, former professor of Department of Zoology, Payyanur College) and dedicated to the founders and retired teachers of Payyanur College. More than 65% of these species are coming under various threat categories of IUCN (Nayar, 1997). Among these Vatica chinensis, Poeciloneuron pauciflorum, Nothopegia heyneana and Aglaia malabarica are 'Critically Endangered' (CR) tree species and Syzygium occidentalis, Kunstleria keralensis, Saraca asoca, Myristica malabarica and Palaquium bourdillonii listed as 'Vulnerable' (VU). Nine tree species like Dipterocarpus indicus, Hopea parviflora, and Syzygium stocksii are coming under the category “Endangered” (E). Humboldtia vahliana Vepris bilocularis, Phaeanthus malabaricus and Actinodaphne malabarica are coming under the 'Rare' (R) category of IUCN Red Data Book. Thirteen plants are coming under the IUCN category of 'Locally Rare'. Some of them are Baccaurea courtallensis, Cullenia exarillata, Diospyros pruriens, Flacourtia montana, Otonephelium stipulaceum, Artocarpus hirsutus, and Cinnamomum sulphuratum. Gluta travancorica, and Sageraea laurina are coming under the category of 'Lower Risk' or 'Near Threatened'.
    [Show full text]
  • Threatened Plants of Tamil Nadu
    Threatened Plants of Tamil Nadu Family/ Scientific Name RDB Status Distribution sites & Average altitude ACANTHACEAE Neuracanthus neesianus Endangered North Arcot district. 700-1500 m Santapaua madurensis Endangered Endemic to the S.E. parts of Tamil Nadu. Nallakulam in Alagar hills in Madurai district, Narthamalai in Pudukkottai district, Thiruthuraipoondi in Tanjore district, above 200 m. AMARANTHACEAE Avera wightii Indeterminate Courtallum in Tirunelveli district. ANACARDIACEAE Nothopegia aureo-fulva Endangered Endemic to South India. Tirunelveli hills. ANNONACEAE Desmos viridiflorus Endangered Coimbatore, Anamalais. 1000 m. Goniothalamus rhynchantherus Rare Tiruneveli, Courtallam, Papanasam hills, Kannikatti & Valayar Estate area. 500-1600 m. Miliusa nilagirica Vulnerable Endemic to South India. Western Ghats in the Wynaad, Nilgiris and Anamalai hills. 1500 m. Orophea uniflora Rare Coorg, Wynaad and Travancore, Tirunelveli. 1200 m. Polyalthia rufescens Rare Cochin & Travancore, Tiruvelveli, 800 m. Popowia beddomeana Rare Tirunelveli : Kannikatti and Agastyamalai (Tamil Nadu), 1000-1500 m. APIACEAE Peucedanum anamallayense Rare Anamalai hills,Coimbtore district, Madurai. 1 APONOGETONACEAE Aponogeton appendiculatus Indeterminate - ASCLEPIADACEAE Ceropegia decaisneana Rare Anamalai hills, Nilgiris, Thenmalai Palghat forest divisions. 1000 m. Ceropegia fimbriifera Vulnerable Endemic to South India, 1500-2000 m. Ceropegia maculata Endangered/ Anamalai hills, Naduvengad. 1000 m. Possibly Extinct Ceropegia metziana Rare 1200-2000 m. Ceropegia omissa Endangered Endemic to Tamil Nadu, Travnacore, Courtallum, Sengalteri, Tirunelvelly. Ceropegia pusilla Rare Endemic to South India Nilgiris. 2000 m. Ceropegia spiralis Vulnerable Endemic to Peninsular India. 2500 m. Ceropegia thwaitesii Vulnerable Kodaikanal. Toxocarpus beddomei Rare Kanniyakumari district, Muthukuzhivayal. 1300-1500 m. ASTERACEAE Helichrysum perlanigerum Rare Endemic to Southern Western Ghats (Anamalai hils). Anamalai hills of Coimbatore, Konalar-Thanakamalai of Anamalai hills. 2000 m.
    [Show full text]
  • REPORT Conservation Assessment and Management Plan Workshop
    REPORT Conservation Assessment and Management Plan Workshop (C.A.M.P. III) for Selected Species of Medicinal Plants of Southern India Bangalore, 16-18 January 1997 Produced by the Participants Edited by Sanjay Molur and Sally Walker with assistance from B. V. Shetty, C. G. Kushalappa, S. Armougame, P. S. Udayan, Purshottam Singh, S. N. Yoganarasimhan, Keshava Murthy, V. S. Ramachandran, M D. Subash Chandran, K. Ravikumar, A. E. Shanawaz Khan June 1997 Foundation for Revitalisation of Local Health Traditions ZOO/ Conservation Breeding Specialist Group, India Medicinal Plants Specialist Group, SSC, IUCN CONTENTS Section I Executive Summary Summary Data Tables List of Participants Activities of FRLHT using 1995 and 1996 CAMP species results Commitments : suggested species for further assessment CAMP Definition FRLHT's Priority List of Plants Role of collaborating organisations Section II Report and Discussion Definitions of Taxon Data Sheet terminology Appendix I Taxon Data Sheets IUCN Guidelines Section I Executive Summary, Summary Data Table, and Related material Executive Summary The Convention on Biological Diversity signed by 150 states in Rio de Janerio in 1992 calls on signatories to identify and components of their state biodiversity and prioritise ecosystems and habitats, species and communities and genomes of social, scientific and economic value. The new IUCN Red List criteria have been revised by IUCN to reflect the need for greater objectivity and precision when categorising species for conservation action. The CAMP process, developed by the Conservation Breeding Specialist Group, has emerged as an effective, flexible, participatory and scientific methodology for conducting species prioritisation exercises using the IUCN criteria. Since 1995, the Foundation for Revitalisation of Local Health Traditions has been con- ducting CAMP Workshops for one of the major groups of conservation concern, medici- nal plants.
    [Show full text]
  • Chapter 6 ENUMERATION
    Chapter 6 ENUMERATION . ENUMERATION The spermatophytic plants with their accepted names as per The Plant List [http://www.theplantlist.org/ ], through proper taxonomic treatments of recorded species and infra-specific taxa, collected from Gorumara National Park has been arranged in compliance with the presently accepted APG-III (Chase & Reveal, 2009) system of classification. Further, for better convenience the presentation of each species in the enumeration the genera and species under the families are arranged in alphabetical order. In case of Gymnosperms, four families with their genera and species also arranged in alphabetical order. The following sequence of enumeration is taken into consideration while enumerating each identified plants. (a) Accepted name, (b) Basionym if any, (c) Synonyms if any, (d) Homonym if any, (e) Vernacular name if any, (f) Description, (g) Flowering and fruiting periods, (h) Specimen cited, (i) Local distribution, and (j) General distribution. Each individual taxon is being treated here with the protologue at first along with the author citation and then referring the available important references for overall and/or adjacent floras and taxonomic treatments. Mentioned below is the list of important books, selected scientific journals, papers, newsletters and periodicals those have been referred during the citation of references. Chronicles of literature of reference: Names of the important books referred: Beng. Pl. : Bengal Plants En. Fl .Pl. Nepal : An Enumeration of the Flowering Plants of Nepal Fasc.Fl.India : Fascicles of Flora of India Fl.Brit.India : The Flora of British India Fl.Bhutan : Flora of Bhutan Fl.E.Him. : Flora of Eastern Himalaya Fl.India : Flora of India Fl Indi.
    [Show full text]
  • I Is the Sunda-Sahul Floristic Exchange Ongoing?
    Is the Sunda-Sahul floristic exchange ongoing? A study of distributions, functional traits, climate and landscape genomics to investigate the invasion in Australian rainforests By Jia-Yee Samantha Yap Bachelor of Biotechnology Hons. A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2018 Queensland Alliance for Agriculture and Food Innovation i Abstract Australian rainforests are of mixed biogeographical histories, resulting from the collision between Sahul (Australia) and Sunda shelves that led to extensive immigration of rainforest lineages with Sunda ancestry to Australia. Although comprehensive fossil records and molecular phylogenies distinguish between the Sunda and Sahul floristic elements, species distributions, functional traits or landscape dynamics have not been used to distinguish between the two elements in the Australian rainforest flora. The overall aim of this study was to investigate both Sunda and Sahul components in the Australian rainforest flora by (1) exploring their continental-wide distributional patterns and observing how functional characteristics and environmental preferences determine these patterns, (2) investigating continental-wide genomic diversities and distances of multiple species and measuring local species accumulation rates across multiple sites to observe whether past biotic exchange left detectable and consistent patterns in the rainforest flora, (3) coupling genomic data and species distribution models of lineages of known Sunda and Sahul ancestry to examine landscape-level dynamics and habitat preferences to relate to the impact of historical processes. First, the continental distributions of rainforest woody representatives that could be ascribed to Sahul (795 species) and Sunda origins (604 species) and their dispersal and persistence characteristics and key functional characteristics (leaf size, fruit size, wood density and maximum height at maturity) of were compared.
    [Show full text]
  • Endemic Trees of Western Ghats–A Check List from Wayanad District, Kerala, India
    Received: 30th Mar-2013 Revised: 11th April-2013 Accepted: 12th April 2013 Research article ENDEMIC TREES OF WESTERN GHATS–A CHECK LIST FROM WAYANAD DISTRICT, KERALA, INDIA Volga V. R.1, M. K. Ratheesh Narayanan1, 2, N. Anil Kumar1 1M S Swaminathan Research Foundation, Puthoorvayal, Kalpetta 673131, Wayanad Dist., Kerala, India 2present address: Dept. Of Botany, Payyannur College, Payyannur 670327, Kannur Dist., Kerala, India [email protected], [email protected] ABSTRACT: A study was conducted to find out the diversity of endemic tree species of southern Western Ghats in Wayanad District of Kerala, India. For this several field trips were conducted in all area of Wayanad and collected materials for identification. A total number of 136 species comes under 38 family were recorded. Out of these family Lauraceae shows more number of plants with 17 species. Key words: Endemic, Western Ghats, Wayanad INTRODUCTION The Western Ghats is a chain of mountains of 1600 Km in length running parallel to West cost of Peninsular India from the river Tapthi to Kanyakumari, the southern tip of peninsular India. Western Ghats is one of the 33 recognized ecologically sensitive zones in the World, which is a home to 1500 flowering plants, at least 84 amphibian species, 16 bird species, 7 mammals and, which are not only found nowhere else in the world, but restricted to specific habitat niches. The significance of the Western Ghats is that along with its rich biodiversity, it also supports a rich Environment-dependant civilization of several thousand years. It is estimated that there are four thousand species of flowering plants known from the Western Ghats and 1,500 (nearly 38 percent) of these are endemic [4].
    [Show full text]