An Architecture for a Nuclear Powered Cryobot to Access the Oceans of Icy Worlds
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Wunda-Full World? Carbon Dioxide Ice Deposits on Umbriel and Other Uranian Moons
Icarus 290 (2017) 1–13 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus A Wunda-full world? Carbon dioxide ice deposits on Umbriel and other Uranian moons ∗ Michael M. Sori , Jonathan Bapst, Ali M. Bramson, Shane Byrne, Margaret E. Landis Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA a r t i c l e i n f o a b s t r a c t Article history: Carbon dioxide has been detected on the trailing hemispheres of several Uranian satellites, but the exact Received 22 June 2016 nature and distribution of the molecules remain unknown. One such satellite, Umbriel, has a prominent Revised 28 January 2017 high albedo annulus-shaped feature within the 131-km-diameter impact crater Wunda. We hypothesize Accepted 28 February 2017 that this feature is a solid deposit of CO ice. We combine thermal and ballistic transport modeling to Available online 2 March 2017 2 study the evolution of CO 2 molecules on the surface of Umbriel, a high-obliquity ( ∼98 °) body. Consid- ering processes such as sublimation and Jeans escape, we find that CO 2 ice migrates to low latitudes on geologically short (100s–1000 s of years) timescales. Crater morphology and location create a local cold trap inside Wunda, and the slopes of crater walls and a central peak explain the deposit’s annular shape. The high albedo and thermal inertia of CO 2 ice relative to regolith allows deposits 15-m-thick or greater to be stable over the age of the solar system. -
Planetary Nomenclature: an Overview and Update
3rd Planetary Data Workshop 2017 (LPI Contrib. No. 1986) 7119.pdf PLANETARY NOMENCLATURE: AN OVERVIEW AND UPDATE. T. Gaither1, R. K. Hayward1, J. Blue1, L. Gaddis1, R. Schulz2, K. Aksnes3, G. Burba4, G. Consolmagno5, R. M. C. Lopes6, P. Masson7, W. Sheehan8, B.A. Smith9, G. Williams10, C. Wood11, 1USGS Astrogeology Science Center, Flagstaff, Ar- izona ([email protected]); 2ESA Scientific Support Office, Noordwijk, The Netherlands; 3Institute for Theoretical Astrophysics, Oslo, Norway; 4Vernadsky Institute, Moscow, Russia; 5Specola Vaticana, Vati- can City State; 6Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California; 7Uni- versite de Paris-Sud, Orsay, France; 8Lowell Observatory, Flagstaff, Arizona; 9Santa Fe, New Mexico; 10Minor Planet Center, Cambridge, Massachusetts; 11Planetary Science Institute, Tucson, Arizona. Introduction: The task of naming planetary Asteroids surface features, rings, and natural satellites is Ceres 113 managed by the International Astronomical Un- Dactyl 2 ion’s (IAU) Working Group for Planetary System Eros 41 Nomenclature (WGPSN). The members of the Gaspra 34 WGPSN and its task groups have worked since the Ida 25 early 1970s to provide a clear, unambiguous sys- Itokawa 17 tem of planetary nomenclature that represents cul- Lutetia 37 tures and countries from all regions of Earth. Mathilde 23 WGPSN members include Rita Schulz (chair) and Steins 24 9 other members representing countries around the Vesta 106 globe (see author list). In 2013, Blue et al. [1] pre- Jupiter sented an overview of planetary nomenclature, and Amalthea 4 in 2016 Hayward et al. [2] provided an update to Thebe 1 this overview. Given the extensive planetary ex- Io 224 ploration and research that has taken place since Europa 111 2013, it is time to update the community on the sta- Ganymede 195 tus of planetary nomenclature, the purpose and Callisto 153 rules, the process for submitting name requests, and the IAU approval process. -
When the Net Force That Acts on a Hockey Puck Is 10 N, the Puck
Chapter 5 Circular Motion, the Planets, and Gravity Uniform Circular Motion Uniform circular motion is the. motion of an object traveling at a constant (uniform) speed in a circular path. • Because velocity is a vector, with a magnitude and direction, an object that is turning at a constant speed has a change in velocity. The object is accelerating. – If the object was not accelerating, it would be traveling at a constant speed in a straight line. – We will determine the magnitude and direction of the acceleration for an object moving at a constant speed in a circle Direction of Acceleration for Uniform Circular Motion. v Define an axis that is always tangential to the velocity (t), and an axis that is always perpendicular to that, radial (r), or centripetal (c). What would an acceleration in the tangential direction do? It must change the speed of the object. But for uniform circular motion, the speed doesn’t change, so the acceleration can not be tangential and must be radial. Consider a object that is twirled on a v1 string in a circle at a constant speed in a clockwise direction, as shown. Let’s P1 find the direction of the average P2 acceleration between points P1 and P2? v2 – v1 = Dv v1 + Dv = v2 v2 v This direction of Δv is the direction 1 of the acceleration. It is directly toward the center of the circle at the v2 Dv point midway between P1 and P2. The direction of acceleration is toward the center of the circle. It is called centripetal (center-seeking) acceleration. -
Abernathy, Adams, Addison, Alewine, Allen, Allred
BUSCAPRONTA www.buscapronta.com ARQUIVO 14 DE PESQUISAS GENEALÓGICAS 168 PÁGINAS – MÉDIA DE 54.100 SOBRENOMES/OCORRÊNCIA Para pesquisar, utilize a ferramenta EDITAR/LOCALIZAR do WORD. A cada vez que você clicar ENTER e aparecer o sobrenome pesquisado GRIFADO (FUNDO PRETO) corresponderá um endereço Internet correspondente que foi pesquisado por nossa equipe. Ao solicitar seus endereços de acesso Internet, informe o SOBRENOME PESQUISADO, o número do ARQUIVO BUSCAPRONTA DIV ou BUSCAPRONTA GEN correspondente e o número de vezes em que encontrou o SOBRENOME PESQUISADO. Número eventualmente existente à direita do sobrenome (e na mesma linha) indica número de pessoas com aquele sobrenome cujas informações genealógicas são apresentadas. O valor de cada endereço Internet solicitado está em nosso site www.buscapronta.com . Para dados especificamente de registros gerais pesquise nos arquivos BUSCAPRONTA DIV. ATENÇÃO: Quando pesquisar em nossos arquivos, ao digitar o sobrenome procurado, faça- o, sempre que julgar necessário, COM E SEM os acentos agudo, grave, circunflexo, crase, til e trema. Sobrenomes com (ç) cedilha, digite também somente com (c) ou com dois esses (ss). Sobrenomes com dois esses (ss), digite com somente um esse (s) e com (ç). (ZZ) digite, também (Z) e vice-versa. (LL) digite, também (L) e vice-versa. Van Wolfgang – pesquise Wolfgang (faça o mesmo com outros complementos: Van der, De la etc) Sobrenomes compostos ( Mendes Caldeira) pesquise separadamente: MENDES e depois CALDEIRA. Tendo dificuldade com caracter Ø HAMMERSHØY – pesquise HAMMERSH HØJBJERG – pesquise JBJERG BUSCAPRONTA não reproduz dados genealógicos das pessoas, sendo necessário acessar os documentos Internet correspondentes para obter tais dados e informações. DESEJAMOS PLENO SUCESSO EM SUA PESQUISA. -
A Midsummer Night's Dream, by William Shakespeare Being Most
A Midsummer Night's Dream, by William Shakespeare Being Most Shamelessly Condensed for a Small Company and Limited Duration by Jennifer Moser Jurling With Mechanics Set Forth for Use in the Role-Playing Game The Play's the Thing, by Mark Truman With Thanks to MIT for http://shakespeare.mit.edu/ DRAMATIS PERSONAE OBERON, king of Faerie. Part: Faerie. Plot: Betrayer to Titania. Prop: Lantern. PUCK, servant to Oberon. Part: Faerie. Plot: Sworn to Oberon. Prop: Disguise. TITANIA: queen of Faerie. Part: Faerie. Plot: Rival to Oberon. Prop: Coin. THESEUS: duke of Athens. Part: Ruler. Plot: In Love with Hippolyta. Prop: Crown. HIPPOLYTA: queen of Amazons. Part: Maiden. Plot: In Love with Theseus. Prop: Crown. PETER QUINCE: director, Athens Acting Guild. Part: Hero. Plot: Rival to Nick Bottom. Prop: Letter. NICK BOTTOM: actor in the guild. Part: Fool. Plot: Rival to Peter Quince. Prop: Lantern. SNUG: actor in the guild. Part: Commoner. Plot: Friend to Peter Quince. Prop: Disguise. Note to Playwright: You may wish to use “In Love with Hippolyta” as Oberon’s starting plot and “In Love with Theseus” as Titania’s starting plot. Of course, these can also be added later or not at all. ACT I Faerie king Oberon and his queen, Titania, quarrel. (Titania has a changeling human boy among her attendants, and she refuses to let him be one of Oberon’s henchmen. They also argue over Oberon’s love for Hippolyta and Titania’s love for Theseus.) Oberon enlists his servant Puck to fetch a flower that will enable him to cast a love spell on Titania, so that she will fall in love with a monstrous beast. -
November, 1935 Central Edition
November, 1935 Central Edition k ARMISTICE MURAL PANEL BY EUGENE SAVAGE ELKS NATIONAL MEMORIAL BUILDING CHICAGO, ILL. i What Is Good Taste? And mellow as a lute note That's the kind Old Overholt Good rye whiskey Straight rye whiskey is ... Should taste of good rye Has been for 125 years Should remind you And it's back again now When you sip it Bottled in bond Of tall stalks 4'/^ years old Heavy with sun-plump kernels And as gracious to the palate Nodding in the breeze As barreled Nature Should be extra rich A corking drink to uncork! In body too Robust in flavor Deep in color Grainy in bouquet h- m R«r. V.S.Vtu (jS. BOTTLED IN BOND UNDER U. S. GOVERNMENT SUPERVtSION , A. Ovechoh BiCo.. inc.. BrOsd Ford. Pa. A GOOD GUIDE TO GOOD WHISKCyJ November, 1935 The 7§UfSt AmMUiiQ. SHAKESPEARE 8MiqiCMt ivetOffe^tcd! Yes, Only 98c—in full and with no further pay ments—for this beautiful volume of Shakespeare's Complete Works! And you don't even have to send I the 98c now! Unless you are fully convinced that this is the biggest book bargain you have ever seen after reading the book for 7 days at our risk, you may return it. Just mailing the coupon below will bring your copy at once. But send it NOW—because this offer has never been made before and may never be made again! COMPLETE—Every Word He Ever Wrote IM , Now, in one single volume is the world's marvelous knowledge of language and supreme literature—very word Shakespeare psychology will make you a better ever wrote. -
The Distributed Spacecraft Attitude Control System Simulator: from Design Concept to Decentralized Control
The Distributed Spacecraft Attitude Control System Simulator: From Design Concept to Decentralized Control Jana L. Schwartz Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Aerospace Engineering Dr. Christopher D. Hall, Committee Chair Dr. Mary E. Kasarda, Committee Member Dr. Hanspeter Schaub, Committee Member Dr. Daniel J. Stilwell, Committee Member Dr. Craig A. Woolsey, Committee Member July 7, 2004 Blacksburg, Virginia Keywords: Air Bearing Table, Spacecraft Simulator, Formation Flying, Attitude Estimation, Parameter Estimation c 2004, Jana L. Schwartz The Distributed Spacecraft Attitude Control System Simulator: From Design Concept to Decentralized Control Jana L. Schwartz (ABSTRACT) A spacecraft formation possesses several benefits over a single-satellite mission. How- ever, launching a fleet of satellites is a high-cost, high-risk venture. One way to mitigate much of this risk is to demonstrate hardware and algorithm performance in ground- based testbeds. It is typically difficult to experimentally replicate satellite dynamics in an Earth-bound laboratory because of the influences of gravity and friction. An air bearing provides a very low-torque environment for experimentation, thereby recapturing the freedom of the space environment as effectively as possible. Depending upon con- figuration, air-bearing systems provide some combination of translational and rotational freedom; the three degrees of rotational freedom provided by a spherical air bearing are ideal for investigation of spacecraft attitude dynamics and control problems. An interest in experimental demonstration of formation flying led directly to the develop- ment of the Distributed Spacecraft Attitude Control System Simulator (DSACSS). -
Architecture for Going to the Outer Solar System
ARGOSY ARGOSY: ARchitecture for Going to the Outer solar SYstem Ralph L. McNutt Jr. ll solar system objects are, in principle, targets for human in situ exploration. ARGOSY (ARchitecture for Going to the Outer solar SYstem) addresses anew the problem of human exploration to the outer planets. The ARGOSY architecture approach is scalable in size and power so that increasingly distant destinations—the systems of Jupiter, Saturn, Uranus, and Neptune—can be reached with the same crew size and time require- ments. To enable such missions, achievable technologies with appropriate margins must be used to construct a viable technical approach at the systems level. ARGOSY thus takes the step past Mars in addressing the most difficult part of the Vision for Space AExploration: To extend human presence across the solar system. INTRODUCTION The Vision for Space Exploration “The reasonable man adapts himself to the world: the unreason- 2. Extend human presence across the solar system, start- able one persists in trying to adapt the world to himself. Therefore ing with a return to the Moon by the year 2020, in 1 all progress depends on the unreasonable man.” preparation for human exploration of Mars and other G. B. Shaw destinations 3. Develop the innovative technologies, knowledge, On 14 January 2004, President Bush proposed a new and infrastructures to explore and support decisions four-point Vision for Space Exploration for NASA.2 about destinations for human exploration 1. Implement a sustained and affordable human and 4. Promote international and commercial participation robotic program to explore the solar system and in exploration to further U.S. -
Uranian and Saturnian Satellites in Comparison
Compara've Planetology between the Uranian and Saturnian Satellite Systems - Focus on Ariel Oberon Umbriel Titania Ariel Miranda Puck Julie Cas'llo-Rogez1 and Elizabeth Turtle2 1 – JPL, California Ins'tute of Technology 2 – APL, John HopKins University 1 Objecves Revisit observa'ons of Voyager in the Uranian system in the light of Cassini-Huygens’ results – Constrain planetary subnebula, satellites, and rings system origin – Evaluate satellites’ poten'al for endogenic and geological ac'vity Uranian Satellite System • Large popula'on • System architecture almost similar to Saturn’s – “small” < 200 Km embedded in rings – “medium-sized” > 200 Km diameter – No “large” satellite – Irregular satellites • Rela'vely high albedo • CO2 ice, possibly ammonia hydrates Daphnis in Keeler gap Accre'on in Rings? Charnoz et al. (2011) Charnoz et al., Icarus, in press) Porco et al. (2007) ) 3 Ariel Titania Oberon Density(kg/m Umbriel Configuraon determined by 'dal interac'on with Saturn Configura'on determined by 'dal interac'on within the rings Distance to Planet (Rp) Configuraon determined by Titania Oberon Ariel 'dal interac'on with Saturn Umbriel Configura'on determined by 'dal interac'on within the rings Distance to Planet (Rp) Evidence for Ac'vity? “Blue” ring found in both systems Product of Enceladus’ outgassing ac'vity Associated with Mab in Uranus’ system, but source if TBD Evidence for past episode of ac'vity in Uranus’ satellite? Saturn’s and Uranus’ rings systems – both planets are scaled to the same size (Hammel 2006) Ariel • Comparatively low -
D a R K N E S S V I S I B L E : I N S T R U M E N Tat
DARKNESS VISIBLE: INSTRUMENTATION AND THERMAL DESIGN TO ACCESS THE HIDDEN MOON Jeffrey E. Van Cleve1, Jonathan D. 1 2 In poetic language, people often talk about “The Dark Side of the Moon,” while their astronomical meaning is the “Far Side of the Moon.” In this workshop, we are literally discussing the dark Weinberg , Clive R. Neal , Richard 3 1 Moon – the entire Moon during the 14-day lunar night at the equator, and the regions of eternal darkness in polar craters that are rich in volatiles1 which may be rich in volatiles for use as C. Elphic , Gary Mills , Kevin resources, and as a valuable record of the Moon’s history. The dark Moon has been hidden for most of the history of spaceflight, as no human missions and few robotic missions have persisted Weed1, David Glaister1 through even one lunar night, and no missions whatsoever have landed in the permanently-shadowed regions. In this poster, we discuss “Night” mission concepts, previously developed by the 1 authors with NASA funding, that remain directly relevant to NASA robotic and human science and exploration of the Moon - a long-lived (> 6 y) lunar geophysical network and a Discovery-class Ball Aerospace, Boulder CO mission for the in-situ investigation of volatiles in the lunar polar cold traps. We also discuss Ball instrument and thermal technology enabling survival, situational awareness, and operations in 2Notre Dame the dark Moon, including low-light and thermal cameras, flash lidars, advanced multi-layer insulation (MLI), and phase-change material “hockey pucks” that can damp out thermal transients to 3 help moving platforms scuttle through dark regions for 24 h or so on their way between illuminated area such as “the peaks of eternal light” near the lunar south pole, without expending NASA-Ames precious stored electrical power for heat. -
JPL Technology Highlights from 2020
Jet Propulsion LaboratoryJet Propulsion National Aeronautics and Space Administration Technology Highlights Technology 2020 TECHnOLOGY HIGHLIGHTS Jet Propulsion Laboratory National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California www.jpl.nasa.gov 2020 CL#20-6401 This JPL 2020 Technology Highlights presents a diverse set of technology developments — selected by the Chief Technologist out of many similar efforts at JPL — that are essential for JPL’s continuing contribution to NASA’s future success. These technology snapshots represent the work of individuals whose talents bridge science, technology, engineering, and management, and illustrate the broad spectrum of knowledge and technical skills at JPL. While this document identifies important areas of technology development in 2019, many other technologies remain equally important to JPL’s ability to successfully contribute to NASA’s space exploration missions, including mature technologies that are commercially available and technologies whose leadership is firmly established elsewhere. About the cover: the Mars Helicopter, 1 known as Ingenuity, is set to perform the first powered flight on another world. HIGHLIGHTS TECHNOLOGY 2020 As NASA’s leading center for robotic exploration of the universe, JPL develops technologies that advance our pursuit of discoveries to the benefit of humanity. Although our technologies are to enable science, they often have dual use for commercial and urgent societal needs. Despite the pandemic, JPL accomplished Prioritizing technology development and infusion has OFFICE OF THE its biggest goal of 2020. The next Mars always been a crucial piece of the Laboratory’s mission rover, Perseverance, is healthy and well on its success. No one has tried to dig kilometers through the icy way to the Red Planet. -
Class 24: Uranus, Neptune, Pluto Solar System Distances Uranus: A
Class 24: Uranus, Neptune, Pluto Solar System Distances 39 AU 30 AU *Planets not to scale Distances not to scale 19 AU Uranus: A Global Perspective Differences Earth Uranus • Size (radius) 6738 km 4x Earth • Mass 6x1024 kg 145 Earth • Density 5.5 g/cm3 1.3 g/cm3 • Atmosphere 78%N2 21%O2 84%H 14%He 2%CH4 (methane) • Surface temperature 20°C -200°C • Rotation 1 day -17.9 hours 1 Exploring Uranus Herschel Uranus moons Voyager 2 Hubble Space Telescope Uranus’s Interior (1) (2) core Axis of Rotation 23.5° 98 ° Earth Uranus 2 Atmosphere & Magnetic Field ultraviolet magnetic axis visible rotation axis 60° The Rings of Uranus dust bands The Moons of Uranus Oberon (2nd largest) Titania (largest) r ≈ 789 km Umbriel Miranda Puck Ariel 3 Neptune: A Global Perspective Differences Earth Neptune • Size (radius) 6378 km 3.9x Earth • Mass 6x1024 kg 171 Earth • Density 5.5 g/cm3 1.6 g/cm3 • Atmosphere 78%N2 21%O2 84%H 14%He 2%CH4 (methane) • Surface temperature 20°C -210°C • Rotation 1 day 16 hours Exploring Neptune Adams Le Verrier Galle Voyager 2 HST Neptune’s Interior (1) H, He, CH4 (2) H2O, CH4, NH3 core 4 Neptune’s Atmosphere & Clouds Neptune clouds cloud bands Scooter The Great Dark Spot Voyager 2 Voyager 2 Voyager 2 GDS changes Neptune’s Rings & Moons twisted ring? faint rings Nereid Triton 5 A Parting Look Pluto: A Global Perspective Similarities Earth Pluto • Moon 1 - Moon 1 - Charon Differences • Size (radius) 6378 km 0.2x Earth • Mass 6x1024 kg 0.002x Earth • Density 5.5 g/cm3 0.4x Earth • Atmosphere 78% N2 21% O2 probably N2, thin • Surface