Consumption of Cooked Black Beans Stimulates a Cluster of Some Clostridia Class Bacteria Decreasing Inflammatory Response and Improving Insulin Sensitivity
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio In
microorganisms Review The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio in the Treatment of Obesity and Inflammatory Bowel disease Spase Stojanov 1,2, Aleš Berlec 1,2 and Borut Štrukelj 1,2,* 1 Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia; [email protected] (S.S.); [email protected] (A.B.) 2 Department of Biotechnology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia * Correspondence: borut.strukelj@ffa.uni-lj.si Received: 16 September 2020; Accepted: 31 October 2020; Published: 1 November 2020 Abstract: The two most important bacterial phyla in the gastrointestinal tract, Firmicutes and Bacteroidetes, have gained much attention in recent years. The Firmicutes/Bacteroidetes (F/B) ratio is widely accepted to have an important influence in maintaining normal intestinal homeostasis. Increased or decreased F/B ratio is regarded as dysbiosis, whereby the former is usually observed with obesity, and the latter with inflammatory bowel disease (IBD). Probiotics as live microorganisms can confer health benefits to the host when administered in adequate amounts. There is considerable evidence of their nutritional and immunosuppressive properties including reports that elucidate the association of probiotics with the F/B ratio, obesity, and IBD. Orally administered probiotics can contribute to the restoration of dysbiotic microbiota and to the prevention of obesity or IBD. However, as the effects of different probiotics on the F/B ratio differ, selecting the appropriate species or mixture is crucial. The most commonly tested probiotics for modifying the F/B ratio and treating obesity and IBD are from the genus Lactobacillus. In this paper, we review the effects of probiotics on the F/B ratio that lead to weight loss or immunosuppression. -
The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service. -
Evaluation of 16S Rrna Primer Sets for Characterisation of Microbiota in Paediatric Patients with Autism Spectrum Disorder L
www.nature.com/scientificreports OPEN Evaluation of 16S rRNA primer sets for characterisation of microbiota in paediatric patients with autism spectrum disorder L. Palkova1,2, A. Tomova3, G. Repiska3, K. Babinska3, B. Bokor4, I. Mikula5, G. Minarik2, D. Ostatnikova3 & K. Soltys4,6* Abstract intestinal microbiota is becoming a signifcant marker that refects diferences between health and disease status also in terms of gut-brain axis communication. Studies show that children with autism spectrum disorder (ASD) often have a mix of gut microbes that is distinct from the neurotypical children. Various assays are being used for microbiota investigation and were considered to be universal. However, newer studies showed that protocol for preparing DNA sequencing libraries is a key factor infuencing results of microbiota investigation. The choice of DNA amplifcation primers seems to be the crucial for the outcome of analysis. In our study, we have tested 3 primer sets to investigate diferences in outcome of sequencing analysis of microbiota in children with ASD. We found out that primers detected diferent portion of bacteria in samples especially at phylum level; signifcantly higher abundance of Bacteroides and lower Firmicutes were detected using 515f/806r compared to 27f/1492r and 27f*/1495f primers. So, the question is whether a gold standard of Firmicutes/Bacteroidetes ratio is a valuable and reliable universal marker, since two primer sets towards 16S rRNA can provide opposite information. Moreover, signifcantly higher relative abundance of Proteobacteria was detected using 27f/1492r. The beta diversity of sample groups difered remarkably and so the number of observed bacterial genera. An advent of massively parallel sequencing (MPS) technologies has revolutionized an investigating of human microbiota1. -
Gut Microbiota Features Associated with Clostridioides Difficile Colonization in Dairy Calves
bioRxiv preprint doi: https://doi.org/10.1101/2021.05.11.443551; this version posted May 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Gut microbiota features associated with Clostridioides 2 difficile colonization in dairy calves 3 4 Laurel E. Redding1, Alexander S. Berry2,3, Nagaraju Indugu1, Elizabeth Huang1, Daniel P. Beiting3, Dipti 5 Pitta1 6 7 8 1Department of Clinical Sciences, University of Pennsylvania, School of Veterinary Medicine, Kennett 9 Square, PA, USA 10 11 2Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, 12 PA, USA 13 14 3Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 15 USA 16 17 18 Corresponding author: Laurel Redding, [email protected] 19 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.05.11.443551; this version posted May 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 20 Abstract 21 Diarrheal disease, a major cause of morbidity and mortality in dairy calves, is strongly associated with the 22 health and composition of the gut microbiome. Clostridioides difficile is an opportunistic pathogen that 23 proliferates and can produce enterotoxins when the host experiences gut dysbiosis. -
Analyse Bibliographique Sur Le Microbiote Intestinal Et Son Etude Dans Des Modeles Animaux De Maladies Metaboliques, En Particulier Chez Le Primate Non Humain These
VETAGRO SUP CAMPUS VETERINAIRE DE LYON Année 2019 - Thèse n°111 ANALYSE BIBLIOGRAPHIQUE SUR LE MICROBIOTE INTESTINAL ET SON ETUDE DANS DES MODELES ANIMAUX DE MALADIES METABOLIQUES, EN PARTICULIER CHEZ LE PRIMATE NON HUMAIN THESE Présentée à l’UNIVERSITE CLAUDE-BERNARD - LYON I (Médecine - Pharmacie) et soutenue publiquement le 6 décembre 2019 pour obtenir le grade de Docteur Vétérinaire par SCHUTZ Charlotte Née le 5 mars 1994 à Zürich (Suisse) VETAGRO SUP CAMPUS VETERINAIRE DE LYON Année 2019 - Thèse n°111 ANALYSE BIBLIOGRAPHIQUE SUR LE MICROBIOTE INTESTINAL ET SON ETUDE DANS DES MODELES ANIMAUX DE MALADIES METABOLIQUES, EN PARTICULIER CHEZ LE PRIMATE NON HUMAIN THESE Présentée à l’UNIVERSITE CLAUDE-BERNARD - LYON I (Médecine - Pharmacie) et soutenue publiquement le 6 décembre 2019 pour obtenir le grade de Docteur Vétérinaire par SCHUTZ Charlotte Née le 5 mars 1994 à Zürich (Suisse) Liste du corps enseignant Liste des Enseignants du Campus Vétérinaire de Lyon (01-09-2019) ABITBOL Marie DEPT-BASIC-SCIENCES Professeur ALVES-DE-OLIVEIRA Laurent DEPT-BASIC-SCIENCES Maître de conférences ARCANGIOLI Marie-Anne DEPT-ELEVAGE-SPV Professeur AYRAL Florence DEPT-ELEVAGE-SPV Maître de conférences BECKER Claire DEPT-ELEVAGE-SPV Maître de conférences BELLUCO Sara DEPT-AC-LOISIR-SPORT Maître de conférences BENAMOU-SMITH Agnès DEPT-AC-LOISIR-SPORT Maître de conférences BENOIT Etienne DEPT-BASIC-SCIENCES Professeur BERNY Philippe DEPT-BASIC-SCIENCES Professeur BONNET-GARIN Jeanne-Marie DEPT-BASIC-SCIENCES Professeur BOULOCHER Caroline DEPT-BASIC-SCIENCES -
Dietary Supplementation with Inulin-Propionate Ester Or Inulin
Gut microbiota ORIGINAL ARTICLE Dietary supplementation with inulin-propionate ester Gut: first published as 10.1136/gutjnl-2019-318424 on 10 April 2019. Downloaded from or inulin improves insulin sensitivity in adults with overweight and obesity with distinct effects on the gut microbiota, plasma metabolome and systemic inflammatory responses: a randomised cross- over trial Edward S Chambers, 1 Claire S Byrne,1 Douglas J Morrison,2 Kevin G Murphy,3 Tom Preston,2 Catriona Tedford,4 Isabel Garcia-Perez,5 Sofia Fountana,5 Jose Ivan Serrano-Contreras,5 Elaine Holmes,5 Catherine J Reynolds,6 Jordie F Roberts,6 Rosemary J Boyton,6 Daniel M Altmann,6 Julie A K McDonald, 7 Julian R Marchesi,7,8 Arne N Akbar,9 Natalie E Riddell,10 Gareth A Wallis,11 Gary S Frost1 ► Additional material is ABSTRact published online only. To view Objective To investigate the underlying mechanisms Significance of this study please visit the journal online behind changes in glucose homeostasis with delivery (http:// dx. doi. org/ 10. 1136/ What is already known on this subject? gutjnl- 2019- 318424). of propionate to the human colon by comprehensive and coordinated analysis of gut bacterial composition, ► Short-chain fatty acids (SCFA), derived from For numbered affiliations see fermentation of dietary fibre by the gut end of article. plasma metabolome and immune responses. Design Twelve non-diabetic adults with overweight microbiota, have been shown to improve host insulin sensitivity. Correspondence to and obesity received 20 g/day of inulin-propionate ester (IPE), -
Alterations in the Gut Bacterial Microbiome in Fungal Keratitis Patients
RESEARCH ARTICLE Alterations in the gut bacterial microbiome in fungal Keratitis patients Sama Kalyana Chakravarthy1☯, Rajagopalaboopathi Jayasudha1☯, Konduri Ranjith1, Anirban Dutta2, Nishal Kumar Pinna2, Sharmila S. Mande2, Savitri Sharma1, Prashant Garg3, Somasheila I. Murthy3, Sisinthy Shivaji1* 1 Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Kallam Anji Reddy campus, Hyderabad, India, 2 Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Ltd., Pune, India, 3 Tej Kohli Cornea Institute, L. V. Prasad Eye Institute, Kallam Anji Reddy campus, Hyderabad, India a1111111111 a1111111111 ☯ These authors contributed equally to this work. a1111111111 * [email protected] a1111111111 a1111111111 Abstract Dysbiosis in the gut microbiome has been implicated in several diseases including auto- immune diseases, inflammatory diseases, cancers and mental disorders. Keratitis is an OPEN ACCESS inflammatory disease of the eye significantly contributing to corneal blindness in the devel- Citation: Kalyana Chakravarthy S, Jayasudha R, oping world. It would be worthwhile to investigate the possibility of dysbiosis in the gut micro- Ranjith K, Dutta A, Pinna NK, Mande SS, et al. (2018) Alterations in the gut bacterial microbiome biome being associated with Keratitis. Here, we have analyzed fungal and bacterial in fungal Keratitis patients. PLoS ONE 13(6): populations in stool samples through high-throughput sequencing of the ITS2 region for e0199640. https://doi.org/10.1371/journal. fungi and V3-V4 region of 16S rRNA gene for bacteria in healthy controls (HC, n = 31) and pone.0199640 patients with fungal keratitis (FK, n = 32). Candida albicans (2 OTUs), Aspergillus (1 OTU) Editor: Suresh Yenugu, University of Hyderabad, and 3 other denovo-OTUs were enriched in FK samples and an unclassified denovo-OTU INDIA was enriched in HC samples. -
Gut Dysbiosis and Neurobehavioral Alterations in Rats Exposed to Silver Nanoparticles Received: 10 January 2017 Angela B
www.nature.com/scientificreports OPEN Gut Dysbiosis and Neurobehavioral Alterations in Rats Exposed to Silver Nanoparticles Received: 10 January 2017 Angela B. Javurek1, Dhananjay Suresh 2, William G. Spollen3,4, Marcia L. Hart5, Sarah Accepted: 19 April 2017 A. Hansen6, Mark R. Ellersieck7, Nathan J. Bivens 8, Scott A. Givan 3,4,9, Anandhi Published: xx xx xxxx Upendran10,11, Raghuraman Kannan11,12 & Cheryl S. Rosenfeld 4,13,14,15 Due to their antimicrobial properties, silver nanoparticles (AgNPs) are being used in non-edible and edible consumer products. It is not clear though if exposure to these chemicals can exert toxic effects on the host and gut microbiome. Conflicting studies have been reported on whether AgNPs result in gut dysbiosis and other changes within the host. We sought to examine whether exposure of Sprague- Dawley male rats for two weeks to different shapes of AgNPs, cube (AgNC) and sphere (AgNS) affects gut microbiota, select behaviors, and induces histopathological changes in the gastrointestinal system and brain. In the elevated plus maze (EPM), AgNS-exposed rats showed greater number of entries into closed arms and center compared to controls and those exposed to AgNC. AgNS and AgNC treated groups had select reductions in gut microbiota relative to controls. Clostridium spp., Bacteroides uniformis, Christensenellaceae, and Coprococcus eutactus were decreased in AgNC exposed group, whereas, Oscillospira spp., Dehalobacterium spp., Peptococcaeceae, Corynebacterium spp., Aggregatibacter pneumotropica were reduced in AgNS exposed group. Bacterial reductions correlated with select behavioral changes measured in the EPM. No significant histopathological changes were evident in the gastrointestinal system or brain. Findings suggest short-term exposure to AgNS or AgNC can lead to behavioral and gut microbiome changes. -
Characterization of Antibiotic Resistance Genes in the Species of the Rumen Microbiota
ARTICLE https://doi.org/10.1038/s41467-019-13118-0 OPEN Characterization of antibiotic resistance genes in the species of the rumen microbiota Yasmin Neves Vieira Sabino1, Mateus Ferreira Santana1, Linda Boniface Oyama2, Fernanda Godoy Santos2, Ana Júlia Silva Moreira1, Sharon Ann Huws2* & Hilário Cuquetto Mantovani 1* Infections caused by multidrug resistant bacteria represent a therapeutic challenge both in clinical settings and in livestock production, but the prevalence of antibiotic resistance genes 1234567890():,; among the species of bacteria that colonize the gastrointestinal tract of ruminants is not well characterized. Here, we investigate the resistome of 435 ruminal microbial genomes in silico and confirm representative phenotypes in vitro. We find a high abundance of genes encoding tetracycline resistance and evidence that the tet(W) gene is under positive selective pres- sure. Our findings reveal that tet(W) is located in a novel integrative and conjugative element in several ruminal bacterial genomes. Analyses of rumen microbial metatranscriptomes confirm the expression of the most abundant antibiotic resistance genes. Our data provide insight into antibiotic resistange gene profiles of the main species of ruminal bacteria and reveal the potential role of mobile genetic elements in shaping the resistome of the rumen microbiome, with implications for human and animal health. 1 Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil. 2 Institute for Global Food Security, School of Biological -
The Human Gut Microbiome in Early-Onset Type 1 Diabetes from the TEDDY Study Tommi Vatanen1*, Eric A
OPEN LETTER https://doi.org/10.1038/s41586-018-0620-2 The human gut microbiome in early-onset type 1 diabetes from the TEDDY study Tommi Vatanen1*, Eric A. Franzosa1,2, Randall Schwager2, Surya Tripathi1, Timothy D. Arthur1, Kendra Vehik3, Åke Lernmark4, William A. Hagopian5, Marian J. Rewers6, Jin-Xiong She7, Jorma Toppari8,9, Anette-G. Ziegler10,11,12, Beena Akolkar13, Jeffrey P. Krischer3, Christopher J. Stewart14,15, Nadim J. Ajami14, Joseph F. Petrosino14, Dirk Gevers1,19, Harri Lähdesmäki16, Hera Vlamakis1, Curtis Huttenhower1,2,20* & Ramnik J. Xavier1,17,18,20* Type 1 diabetes (T1D) is an autoimmune disease that targets species, and deficiency of bacteria that produce short-chain fatty pancreatic islet beta cells and incorporates genetic and acids (SCFAs)7,8 in cases of T1D or islet autoimmunity (IA)8,11,15,18. environmental factors1, including complex genetic elements2, Corroborating these findings, decreased levels of SCFA-producing patient exposures3 and the gut microbiome4. Viral infections5 bacteria were found in adults with type 2 diabetes (T2D)19. In addi- and broader gut dysbioses6 have been identified as potential tion, increased intestinal permeability14 and decreased microbial diver- causes or contributing factors; however, human studies have not sity12 after IA but before T1D diagnosis have been reported. Studies yet identified microbial compositional or functional triggers that using the nonobese diabetic (NOD) mouse model have determined are predictive of islet autoimmunity or T1D. Here we analyse immune mechanisms that mediate the protective effects of SCFAs9 10,913 metagenomes in stool samples from 783 mostly white, non- and the microbiome-linked sex bias in autoimmunity20. -
Temporal Development of the Gut Microbiome in Early Childhood from the TEDDY Study Christopher J
OPEN LETTER https://doi.org/10.1038/s41586-018-0617-x Temporal development of the gut microbiome in early childhood from the TEDDY study Christopher J. Stewart1,2,18*, Nadim J. Ajami1,18, Jacqueline L. O’Brien1, Diane S. Hutchinson1, Daniel P. Smith1, Matthew C. Wong1, Matthew C. Ross1, Richard E. Lloyd1, HarshaVardhan Doddapaneni3, Ginger A. Metcalf3, Donna Muzny3, Richard A. Gibbs3, Tommi Vatanen4, Curtis Huttenhower4, Ramnik J. Xavier4, Marian Rewers5, William Hagopian6, Jorma Toppari7,8, Anette-G. Ziegler9,10,11, Jin-Xiong She12, Beena Akolkar13, Ake Lernmark14, Heikki Hyoty15,16, Kendra Vehik17, Jeffrey P. Krischer17 & Joseph F. Petrosino1* The development of the microbiome from infancy to childhood is sequencing, n = 10,867 samples from 783 children) and functional dependent on a range of factors, with microbial–immune crosstalk metagenome (metagenomic sequencing only) from longitudinal stool during this time thought to be involved in the pathobiology of later samples (Extended Data Table 1). A companion paper by Vatanen life diseases1–9 such as persistent islet autoimmunity and type 1 et al.14 focused exclusively on metagenomic sequencing data. diabetes10–12. However, to our knowledge, no studies have performed In this cohort of children that are at-risk for developing islet auto- extensive characterization of the microbiome in early life in a large, immunity (IA) or T1D, we aimed to (1) characterize definitively the multi-centre population. Here we analyse longitudinal stool samples longitudinal gut microbiome development from 3 to 46 months of age; from 903 children between 3 and 46 months of age by 16S rRNA gene (2) determine selected maternal and postnatal influences on the developing sequencing (n = 12,005) and metagenomic sequencing (n = 10,867), bacterial community during this same time period of early development; as part of the The Environmental Determinants of Diabetes in the and (3) use a nested case–control analysis to investigate the potential of the Young (TEDDY) study. -
Effect of Fructans, Prebiotics and Fibres on the Human Gut Microbiome Assessed by 16S Rrna-Based Approaches: a Review
Wageningen Academic Beneficial Microbes, 2020; 11(2): 101-129 Publishers Effect of fructans, prebiotics and fibres on the human gut microbiome assessed by 16S rRNA-based approaches: a review K.S. Swanson1, W.M. de Vos2,3, E.C. Martens4, J.A. Gilbert5,6, R.S. Menon7, A. Soto-Vaca7, J. Hautvast8#, P.D. Meyer9, K. Borewicz2, E.E. Vaughan10* and J.L. Slavin11 1Division of Nutritional Sciences, University of Illinois at Urbana-Champaign,1207 W. Gregory Drive, Urbana, IL 61801, USA; 2Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands; 3Human Microbiome Research Programme, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, P.O. Box 21, 00014, Helsinki, Finland; 4Department of Microbiology and Immunology, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI 48130, USA; 5Microbiome Center, Department of Surgery, University of Chicago, Chicago, IL 60637, USA; 6Bioscience Division, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL 60439, USA; 7The Bell Institute of Health and Nutrition, General Mills Inc., 9000 Plymouth Ave N, Minneapolis, MN 55427, USA; 8Division Human Nutrition, Department Agrotechnology and Food Sciences, P.O. Box 17, 6700 AA, Wageningen University; 9Nutrition & Scientific Writing Consultant, Porfierdijk 27, 4706 MH Roosendaal, the Netherlands; 10Sensus (Royal Cosun), Oostelijke Havendijk 15, 4704 RA, Roosendaal, the Netherlands; 11Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Ave, St. Paul, MN 55108, USA; [email protected]; #Emeritus Professor Received: 27 May 2019 / Accepted: 15 December 2019 © 2020 Wageningen Academic Publishers OPEN ACCESS REVIEW ARTICLE Abstract The inherent and diverse capacity of dietary fibres, nondigestible oligosaccharides (NDOs) and prebiotics to modify the gut microbiota and markedly influence health status of the host has attracted rising interest.