Reclamation Matters: 2011 Fall

Total Page:16

File Type:pdf, Size:1020Kb

Reclamation Matters: 2011 Fall FALL 2011 OFFICIAL PUBLICATION OF THE AMERICAN SOCIETY OF MINING AND RECLAMATION reclamation The Wilds: Center for restoration, conservation, and outreach Reclamation is a serious business in North Dakota Returning heavy mineral sands to productive agricultural use THE GRASS IS ALWAYS GREENER AFTER WE’RE DONE. WE WILL LEAVE THE LAND IN A CONDITION EQUAL TO OR BETTER THAN WE FOUND IT. This pledge is core to our mission. Peabody Energy (NYSE: BTU) has a long history of restoring superior rangeland, magnificent wildlife preserves, sturdy hardwood forests and pristine wetlands, often returning land to a higher use. We are the world’s largest private-sector coal company and a global leader in clean coal solutions that advance energy security, economic stimulus and environmental improvement. We are proud to be globally recognized for environmental excellence, earning the industry’s top honors for best practices in reclamation and good neighbor partnerships around the world. And we are pleased to support the American Society of Mining and Reclamation. PeabodyEnergy.com CoalCanDoThat.com reclamation matters is published by: DEL Communications Inc. Suite 300, 6 Roslyn Road Winnipeg, Manitoba contents Canada R3L 0G5 President’s Message – Eddie Bearden PRESIDENT: 4 David Langstaff ASSOCIATE PUBLISHER: Message from the Editor – Jeff Skousen 6 Jason Stefanik EDITOR: Early Career Message – Abbey Foster Wick 7 Lyndon McLean ACCOUNT REPRESENTATIVES: Awards 8 - 11 Cheryl Ezinicki Ross James Colin James Trakalo 2011 Exhibitors’ Photos 12 - 15 PRODUCTION SERVICES: Reclamation is a Serious Business in North Dakota 16 S.G. Bennett Marketing Services www.sgbennett.com The Wilds: Center for ART DIRECTOR : Kathy Cable Restoration, Conservation, and Outreach 19 LAYOUT/ DESIGN: Dana Jensen Returning Heavy Mineral Sands Mines to ADVERTISING ART: Productive Agricultural Use 24 Deryn Bothe ASMR in 2012 – Tupelo, Mississippi 30 © 2011 DEL Communications Inc. All rights reserved. Contents may not be reproduced by any means, in whole or in part, without the prior written permission of the publisher. While every effort has been made to ensure the accuracy of the information contained herein and the reliability of the source, the publisher in no way guarantees nor warrants the information and is not responsible for errors, Aquafix Systems Inc. 6 Lexington Mine Reclamation Services 9 omissions or statements made by advertisers. Opinions and recommendations made by ArborGen Inc. 26 MVTL Laboratories 18 contributors or advertisers are not Pawnee Buttes Seed Inc. 25 necessarily those of the publisher, its directors, Biomost, Inc. OBC officers or employees. Powder River Coal, LLC Peabody Energy IFC Ernst Seeds 28 Publications Mail Agreement #40934510 Return undeliverable Canadian addresses to: Presto Geosystems 5 DEL Communications Inc. Golder Associates Inc. 5 Suite 300, 6 Roslyn Road Rocky Mountain Bio Products 29 Winnipeg, Manitoba R3L 0G5 Granite Seed Company 27 Email: [email protected] Shooting Star Native Seeds 4 Hedin Environmental 28 DEL Skelly and Loy, Inc. 11 Communications Inc. Inter Mountain Labs 31 Trihydro 31 PRINTED IN U.S.A. | 09/2011 RECLAMATION MATTERS ◆ Fall 2011 3 ASMR PRESIDENT’S MESSAGE Gratitude and Anticipation Eddie Bearden, President of ASMR know it’s still a couple of months until has accepted another year as past president young (or those of you who are still stu- the official Thanksgiving holiday. But since Kim cannot do so. dents), how you anticipated the end of the Iit’s never untimely to offer thanks when The NEC members also deserve a word school year? Or remember how you and to whom they are due. of thanks. Many hours were spent in con- looked forward to Christmas, or your As an organization, ASMR owes a big ference calls this past year as we struggled birthday? Here are some things to antici- debt of gratitude to Kimery Vories. Kim with the operations of the Society. Other pate for ASMR. was elected as president for the 2010–2011 folks to thank are those of you who will You should all be aware by now of our year and served admirably from the meet- step up and allow your names to be placed Early Career Professionals group. Anticipate ing in Pittsburgh until right before the Bis- on the ballot for NEC members in the fu- becoming involved with this group, marck meeting when he had to resign his ture. It’s somewhat intimidating when you whether you have fewer than 10 years in position. He spent countless hours plan- pause to think about accepting the chal- your career or if you have many more than ning agendas, running meetings and con- lenge, but it’s also very rewarding when 10. I remember how important it was to me ference calls, and just thinking about how you can serve. One area the NEC is asking as a young soil scientist to get some career to improve our organization. for volunteers is to help guide the invest- suggestions from someone with more ex- Another person we need to thank is ment policy for the Society. Remember perience or to just have an older soil scien- tist show some interest in me as a person. Dennis Neuman, who served as president that the Society would cease to exist were Another thing to anticipate is a new Ex- before Kim. He did a fantastic job of rep- it not for volunteers. ecutive Secretary. You each should have re- resenting our Society as president in 2009. And now let’s think about anticipation, ceived a letter from Dick Barnhisel an- Many of you may not be aware that the specifically as it relates to ASMR. Anticipa- nouncing that he will be retiring from the past president continues to serve on the tion means “an expectation, foreknowl- position in a couple of years, and the NEC for a year, and Dennis has done so in edge.” We all anticipate various events in search is beginning to find a replacement. a very involved manner. And now Dennis our lives. Remember when you were Anticipate recruiting someone new to the Society. Remember our goal for the year – Recruit One Member. If each of us would recruit just one new member for SHOOTING STAR ASMR, we would double our size. This is important not only for the sake of grow- NATIVE SEEDS ing but because many of us are reaching retirement age and becoming less involved in the Society. NATIVE PRAIRIE GRASS AND WILDFLOWER SEEDS Our society has a few needs I would like to address. One of the main things we Production and sales of native seed need to do better (and have needed to im- Installation and management of prairies and wetlands prove since I have been involved in the reclamation business) is to publicize our Native seed mixes for CRP, CREP, DOT, BWSR, successes. When I was a reclamation spe- reclamation, residential, commercial, and public projects cialist working for TXU, I told everyone who would stand still long enough to lis- phone: 507.498.3944 ten that we needed more exposure in both 20740 County Road 33 Ɣ Spring Grove, MN 55974 the mining and reclamation process. And [email protected] yet, when my sons were playing soccer or www.shootingstarnativeseed.com I was asked by someone at church what I 4 AMERICAN SOCIETY OF MINING AND RECLAMATION ◆ Fall 2011 do for a living and I told them I work in the data, and he could be convinced and regulatory leaders – those who mining reclamation, they frequently ex- that you were doing the right thing – if know us best – love us, but others think pressed surprise that we have mining in and only if the data supported it. He we’re the worst thing to ever walk the Texas! That still occasionally happens, eventually became a strong supporter – face of the earth. So we will always have and I usually point out that about 40% but then he retired, and we had to start areas for compromise. Let’s all work to- of their electricity comes from burning all over with someone new. And the di- gether and try to educate ourselves and coal, most of it mined locally. rection of our government changes others so we can reach our mutual One way to publicize our story – and every few years. Some governmental goals. ■ something Texas has done well for many years – is in sponsoring teacher work- shops. The workshops in Texas began in GOLDER ASSOCIATES INC. 1991 and are funded solely by mining companies. The teachers spend an entire √ 150 OFFICES WORLDWIDE √ MINED LAND RECLAMATION DESIGN week (Sunday evening through Friday √ 45 OFFICES THROUGHOUT THE U.S. √ DESIGN-BUILD SERVICES EXPERTS IN PASSIVE TREATMENT OF MINING INNOVATIVE FOAM TECHNOLOGY FOR ACID noon) learning about mining and recla- √ √ INFLUENCED WATER ROCK DRAINAGE MITIGATION mation from exploration all the way √ ACTIVE TREATMENT SYSTEM DESIGN through final bond release. Many folks from the mining community come to- gether to share their expertise and experi- ence with these teachers. To date, we have trained more than 900 teachers about Contact Jim Gusek at [email protected] coal mining, mining of industrial miner- als, and uranium mining. The Texas Min- ing and Reclamation Association (TMRA) GEOWEB® estimates over a million students have The Presto system been reached with the mining and recla- ...is the ultimate economical and mation message via these teachers. environmental solution to You would think by now that we challenging slope and would have the mining and reclamation geomembrane protection business well in hand, right? But think problems. again – there will always be retirements, so new people come into the field every year. I once wished for a brain transplant (or at least an information dump) from some of the folks I worked with who had decades of experience and knowledge.
Recommended publications
  • Default Emissions from Biofuels
    Definition of input data to assess GHG default emissions from biofuels in EU legislation Version 1c - July 2017 Edwards, R. Padella, M. Giuntoli, J. Koeble, R. O’Connell, A. Bulgheroni, C. Marelli, L. 2017 EUR 28349 EN This publication is a Science for Policy report by the Joint Research Centre (JRC), the European Commission’s science and knowledge service. It aims to provide evidence-based scientific support to the European policymaking process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use that might be made of this publication. JRC Science Hub https://ec.europa.eu/jrc JRC104483 EUR 28349 EN PDF ISBN 978-92-79-64617-1 ISSN 1831-9424 doi:10.2790/658143 Print ISBN 978-92-79-64616-4 ISSN 1018-5593 doi:10.2790/22354 Luxembourg: Publications Office of the European Union, 2017 © European Union, 2017 The reuse of the document is authorised, provided the source is acknowledged and the original meaning or message of the texts are not distorted. The European Commission shall not be held liable for any consequences stemming from the reuse. How to cite this report: Edwards, R., Padella, M., Giuntoli, J., Koeble, R., O’Connell, A., Bulgheroni, C., Marelli, L., Definition of input data to assess GHG default emissions from biofuels in EU legislation, Version 1c – July 2017 , EUR28349 EN, doi: 10.2790/658143 All images © European Union 2017 Title Definition of input data to assess GHG default emissions from biofuels in EU legislation, Version 1c – July 2017 Abstract The Renewable Energy Directive (RED) (2009/28/EC) and the Fuel Quality Directive (FQD) (2009/30/EC), amended in 2015 by Directive (EU) 2015/1513 (so called ‘ILUC Directive’), fix a minimum requirement for greenhouse gas (GHG) savings for biofuels and bioliquids for the period until 2020, and set the rules for calculating the greenhouse impact of biofuels, bioliquids and their fossil fuels comparators.
    [Show full text]
  • Choosing Effective Liming Materials ► Acidic Soils Require Lime to Maintain the Proper Ph for Growing Crops and Forage
    AGRICULTURE Choosing Effective Liming Materials ► Acidic soils require lime to maintain the proper pH for growing crops and forage. Learn how to test and maintain your soil for optimal production. Most Alabama soils are naturally low in pH and must How Lime Recommendations be limed to create soil conditions that increase plant Are Determined nutrient availability and decrease aluminum toxicity. The ideal pH for most Alabama crops is in the range The amount of liming material needed to reach a target of 6.0 to 6.5. When the pH of a soil falls below a value soil pH depends on the soil’s current pH and the soil’s of 6.0, the availability of most macronutrients (such buffer pH. Soil pH is a measurement of the acidity or as nitrogen, phosphorous, and potassium) needed for alkalinity of a soil, while buffer pH is used to measure crop and forage production begins to decrease. When the soil’s resistance to change in pH. pH increases above 6.5, the availability of most plant Soils that are high in organic matter and clay content micronutrients (such as zinc, manganese, copper, and have a higher buffering capacity. More lime is therefore iron) tends to decrease. required to raise the pH in these soils than in soils that Maintaining pH according to soil testing laboratory are sandy and low in organic matter. For example, a recommendations will ensure that the availability of sandy soil at pH 5.0 may require only 1 ton of ground all plant nutrients is maximized and that any fertilizers limestone to raise the pH to 6.5, while a clay soil at the applied to the soil will not go to waste.
    [Show full text]
  • Agricultural Lime Recommendations Based on Lime Quality E.L
    University of Kentucky College of Agriculture, Food and Environment ID-163 Cooperative Extension Service Agricultural Lime Recommendations Based on Lime Quality E.L. Ritchey, L.W. Murdock, D. Ditsch, and J.M. McGrath, Plant and Soil Sciences; F.J. Sikora, Division of Regulatory Services oil acidity is one of the most important soil factors affect- Figure 1. Liming acid soils increases exchangeable Ca and Mg. Sing crop growth and ultimately, yield and profitability. It is determined by measuring the soil pH, which is a measure Acid Soil Limed Soil Ca2+ H+ H+ Ca2+ Ca2+ of the amount of hydrogen ions in the soil solution. As soil Lime Applied H+ H+ H+ H+ Ca2+ acidity increases, the soil pH decreases. Soils tend to be + + + 2+ + naturally acidic in areas where rainfall is sufficient to cause H H H Mg H substantial leaching of basic ions (such as calcium and mag- nesium), which are replaced by hydrogen ions. Most soils in Kentucky are naturally acidic because of our abundant rainfall. Nitrogen fertilization can also contribute to soil acid- The majority of the hydrogen ions are actually held on ity as the nitrification of ammonium increases the hydrogen cation exchange sites. To effectively neutralize soil acidity, ion concentration in the soil through the following reaction: hydrogen ions must be removed from both the soil solution and the exchange sites. While soil pH only measures the solu- + - - + NH4 + 2O2 --> NO3 = H2O + 2H tion hydrogen, the buffer pH is an indication of exchangeable acidity and how much ag lime is actually needed. It is possible Periodically, agricultural limestone (ag lime) is needed to for two soils to have the same water pH but different lime neutralize soil acidity and maintain crop productivity.
    [Show full text]
  • Agricultural Lime Recommendations Based on Lime Quality Greg Schwab University of Kentucky, [email protected]
    University of Kentucky UKnowledge Agriculture and Natural Resources Publications Cooperative Extension Service 3-2007 Agricultural Lime Recommendations Based on Lime Quality Greg Schwab University of Kentucky, [email protected] Lloyd W. Murdock University of Kentucky, [email protected] David C. Ditsch University of Kentucky, [email protected] Monroe Rasnake University of Kentucky, [email protected] Frank J. Sikora University of Kentucky, [email protected] See next page for additional authors Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/anr_reports Part of the Agriculture Commons, and the Environmental Sciences Commons Repository Citation Schwab, Greg; Murdock, Lloyd W.; Ditsch, David C.; Rasnake, Monroe; Sikora, Frank J.; and Frye, Wilbur, "Agricultural Lime Recommendations Based on Lime Quality" (2007). Agriculture and Natural Resources Publications. 76. https://uknowledge.uky.edu/anr_reports/76 This Report is brought to you for free and open access by the Cooperative Extension Service at UKnowledge. It has been accepted for inclusion in Agriculture and Natural Resources Publications by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Authors Greg Schwab, Lloyd W. Murdock, David C. Ditsch, Monroe Rasnake, Frank J. Sikora, and Wilbur Frye This report is available at UKnowledge: https://uknowledge.uky.edu/anr_reports/76 ID-163 Agricultural Lime Recommendations Based on Lime Quality G.J. Schwab, L.W. Murdock, D. Ditsch, and M. Rasnake, UK Department of Plant and Soil Sciences; F.J. Sikora, UK Division of Regulatory Services; W.
    [Show full text]
  • Lime Guidelines for Field Crops in New York
    Lime Guidelines for Field Crops in New York. First Release. CSS E06-2. June 2006. LIME GUIDELINES FOR FIELD CROPS IN NEW YORK Quirine M. Ketterings, W. Shaw Reid, and Karl J. Czymmek Department of Crop and Soil Sciences Extension Series E06-2 Cornell University June 9, 2006 Quirine M. Ketterings is Associate Professor of Nutrient Management in Agricultural Systems, Department of Crop and Soil Sciences, Cornell University. W. Shaw Reid is Emeritus Professor of Soil Fertility, Department of Crop and Soil Sciences, Cornell University. Karl J. Czymmek is Senior Extension Associate in Field Crops and Nutrient Management with PRO-DAIRY, Cornell University. Lime Guidelines for Field Crops in New York. First Release. CSS E06-2. June 2006. Acknowledgments: We thank Carl Albers, Area Field Crops Extension Educator, Cornell Cooperative Extension of Steuben, Chemung, and Schuyler Counties, for his review of an earlier draft of this extension bulletin. Correct citation: Ketterings, Q.M., W.S. Reid, and K.J. Czymmek (2006). Lime guidelines for field crops in New York. First Release. Department of Crop and Soil Sciences Extension Series E06-2. Cornell University, Ithaca NY. 35 pages. Downloadable from: http://nmsp.css.cornell.edu/nutrient_guidelines/ For more information: For more information contact Quirine Ketterings at the Department of Crop and Soil Sciences, Cornell University, 817 Bradfield Hall, Ithaca NY 14583, or e- mail: [email protected]. Nutrient Management Spear Program Collaboration among the Cornell University Department of Crop and Soil Sciences, PRODAIRY and Cornell Cooperative Extension http://nmsp.css.cornell.edu/ Lime Guidelines for Field Crops in New York. First Release.
    [Show full text]
  • Lime for Michigan Soils
    Extension Bulletin E-471 • Revised • December 2010 LIME FOR MICHIGAN SOILS Darryl Warncke, Laura Bast and Don Christenson Department of Crop and Soil Sciences pplying lime to agricultural soils can provide farm- WHAT IS SOIL ACIDITY? ers with a very good return on investment. Long- Although the use of synthetic fertilizers contributes to soil term experiments in Michigan and other Great Lakes A acidity, soil acidification results from the natural leaching states indicate that every dollar spent on agricultural lime of calcium (Ca) and magnesium (Mg) from the soil and the applied according to soil test recommendations returns decomposition of plant residues. Positively charged hydro- $5 to $10. Liming acid soils improves nutrient availability, gen ions in the soil solution (water in the soil) and on the microbial activity and overall soil productivity. Soil-applied surface of clay and organic matter particles that make up the lime neutralizes (or corrects) acidity, a soil chemical condi- soil contribute to the active acidity of the soil. Soil pH is tion that affects the growth of crops. Lime also supplies soil the measure of this active acidity. A pH value below 7.0 is with two essential plant nutrients: calcium and magnesium. acid, 7.0 is neutral, and above 7.0 is alkaline, Recent soil test summaries indicate that about 10 percent The amount or concentration of active acidity in the soil of Michigan’s 7.8 million acres of agricultural land need at solution depends on the number of hydrogen ions held by least 2.5 tons/acre of lime, for a total of 1.95 million tons the negatively charged soil particles of clay and organic mat- of lime needed statewide to neutralize soil acidity.
    [Show full text]
  • Pelletized Lime for Short-Term Treatment of Soil Acidity Gene Stevens and David Dunn University of Missouri-Delta Research Center
    Pelletized Lime for Short-Term Treatment of Soil Acidity Gene Stevens and David Dunn University of Missouri-Delta Research Center Correct soil pH is the cornerstone of a successful crop nutrient management program. Annual applications of nitrogen fertilizers on crops slowly produce acid conditions in fields. If low pH is not corrected by agricultural lime applications, soil acidity will reduce nutrient availability to plants (especially P), produce toxic levels of aluminum and manganese, and diminish the weed control activity of some herbicides. In recent years, agricultural fertilizer dealers have reported 2 to 3 fold increases in sales of pelletized lime. Pelletized lime is finely ground limestone, which is made into small pellets for broadcasting with conventional fertilizer equipment. Because pelletized lime is relatively expensive per ton, it is applied at lower rates (<300 lbs/acre) as compared to recommended rates of agricultural lime. A “1:10 ratio” rule of thumb has been promoted for comparing the short-term neutralizing effectiveness of pelletized lime to agricultural lime. (Example: if a soil test recommends the ENM equivalent of 2000 lbs of agricultural lime per acre apply 200 lbs of pelletized lime/acre). Most farmers realize that pelletized lime is not a long-term “fix”, but expect it to reduce soil acidity to tolerable levels for one year. Typically, farmers apply this material on fields that a landlord is unwilling to share part of the cost of applying agricultural lime or will not provide a lease agreement for more than one year. A study was initiated to evaluate the general philosophy of using finely ground lime to provide a short-term, “quick fix” of soil acidity and compare corn and cotton yield response of pelletized lime to agricultural lime.
    [Show full text]
  • Lime for Acid Soils
    Prepared for the Northern and Yorke NRM Board Lime for Acid Soils Sustainable Agriculture in the Northern and Yorke NRM Region. Lime is the most effective method for the treatment of acid soils. Within the Northern and Yorke Region there are more than 270,000 hectares of land susceptible to soil acidification that degrades the soil and reduces crop and pasture growth. Soil acidification tends to occur on the sands and sandy loams in the high rainfall areas, north of Kapunda through to Jamestown and from Crystal Brook through to Melrose with a smaller area around Redhill (Figure 1). Soil acidification is caused by an accumulation of hydrogen ions in the soil through the build-up of organic matter; addition and leaching of nitrogen from fertilisers and legumes and the removal of alkaline nutrients in plant and animal products. As the amount of hydrogen ions increases then soil acidity increases. When the soil falls below a soil pH of 5.0 (CaCl2) the productivity of even tolerant crops and pastures starts to fall, toxic amounts of aluminium can be released into the soil, microbial activity starts to decline and nutrients such as phosphorus, magnesium, calcium and molybdenum become less available. Table 1 shows the tolerance of plant species to soil acidity. Table 1: Tolerance of plants of soil acidity Species Tolerance Canola, faba beans, lucerne, annual medic Very Sensitive Barley, wheat, peas, phalaris Sensitive Lupins, wheat, sub-clover, cocksfoot, vetch, Tolerant fescue, perennial rye-grass Triticale, oats, seradella Very tolerant Lime for acid soils The use of lime will raise the soil pH and increase the productivity of crops and pastures.
    [Show full text]
  • Liming Acid Soils in Tennessee
    PB 1096 (Available online only) Liming Acid Soils in Tennessee Hubert Savoy Jr., Associate Professor, Biosystems Engineering and Soil Science and Debbie Joines, Manager, UT Soil, Plant and Pest Center What is Soil Acidity? Soil acidity refers to the level of acids present in soils. As acid levels increase, the pH of the soil decreases. While the pH scale ranges from 0-14, most Tennessee soils range in value from 4.5 to 7.5. Soils with pH values greater than 7.0 are alkaline or sweet, and those with values of less than 7.0 are acid or sour (Figure 1). As the soil pH decreases below 7.0, the amount of acidity rapidly increases. For example, a pH of 5.0 is 10 times more acidic than 6.0 and 100 times more acidic than a pH of 7.0. Soil test results indicate that approximately 40 to 60 percent of the cropland in Tennessee is too acidic for optimum crop production. Because of this, determining the need for lime by soil testing should be the first step in developing a sound crop fertilization program. Figure 1. The pH Scale (Source: NCSA). Lime neutralizes excess soil acids and increases soil pH which is a measure of soil acidity. Levels of Causes of Soil Acidity extractable aluminum (Al) and manganese (Mn) are Several factors contribute to soil acidity. Acid levels reduced to a nontoxic range as soil pH increases. If increase as basic nutrients (calcium, magnesium and not limed as needed, soils continue to become more potassium) are replaced by hydrogen through soil acidic, reducing the potential for production of healthy erosion, leaching and crop removal.
    [Show full text]
  • Biosolids Management Plan
    FINAL BIOSOLIDS MANAGEMENT PLAN Prepared by February 2008 WB022008001GNV Contents Section Page Executive Summary ...................................................................................................................... ES-1 Background ....................................................................................................................... ES-1 Biosolids Management Program .................................................................................... ES-1 Detailed Evaluation and Ranking of Biosolids Management Alternatives .............. ES-2 1. Introduction ......................................................................................................................... 1-1 1.1 Background ............................................................................................................. 1-1 1.2 Project Scope ........................................................................................................... 1-1 1.3 Evaluation Approach ............................................................................................. 1-1 1.3.1 Task 1 – Workshop No. 1: Project Kickoff.............................................. 1-1 1.3.2 Task 2 – Workshop No. 2: Framing the Issue ........................................ 1-2 1.3.3 Task 3 – Workshop No. 3: Preliminary Screening of Alternatives ..... 1-2 1.3.4 Task 4 – Workshop No. 4: Evaluation and Ranking of Screened Biosolids Alternatives ............................................................................... 1-2 1.3.5 Task 5
    [Show full text]
  • Calcium Carbonate
    Right to Know Hazardous Substance Fact Sheet Common Name: CALCIUM CARBONATE Synonyms: Calcium Salt of Carbonic Acid, Chalk CAS Number: 1317-65-3 Chemical Name: Limestone RTK Substance Number: 4001 Date: July 2015 DOT Number: NA Description and Use EMERGENCY RESPONDERS >>>> SEE LAST PAGE Calcium Carbonate is a white to tan odorless powder or Hazard Summary odorless crystals. It is used in human medicine as an antacid, Hazard Rating NJDOH NFPA calcium supplement and food additive. Other uses are HEALTH 1 - agricultural lime and as additive in cement, paints, cosmetics, FLAMMABILITY 0 - dentifrices, linoleum, welding rods, and to remove acidity in REACTIVITY 0 - wine. REACTIVE Hazard Rating Key: 0=minimal; 1=slight; 2=moderate; 3=serious; 4=severe Reasons for Citation When Calcium Carbonate is heated to decomposition, it Calcium Carbonate is on the Right to Know Hazardous emits acrid smoke and irritating vapors. Substance List because it is cited by OSHA, NIOSH, and Calcium Carbonate is incompatible with ACIDS, EPA. ALUMINUM, AMMONIUM SALTS, MAGNESIUM, HYDROGEN, FLUORINE and MAGNESIUM. Calcium Carbonate mixed with magnesium and heated in a current of hydrogen causes a violent explosion. Calcium Carbonate ignites on contact with FLUORINE. Calcium Carbonate contact causes irritation to eyes and skin. SEE GLOSSARY ON PAGE 5. Inhaling Calcium Carbonate causes irritation to nose, throat and respiratory system and can cause coughing. FIRST AID Eye Contact Immediately flush with large amounts of water for at least 15 Workplace Exposure Limits minutes, lifting upper and lower lids. Remove contact OSHA: The legal airborne permissible exposure limit (PEL) is lenses, if worn, while flushing.
    [Show full text]
  • Liming to Improve Soil Quality in Acid Soils
    SOIL QUALITY – AGRONOMY TECHNICAL NOTE No. 8 Liming To Improve Soil Quality in Acid Soils Soil pH is an excellent chemical indicator of soil quality. Farmers can improve the soil quality of acid soils by liming to adjust pH to the levels needed by the crop to be grown. Benefits of liming include increased nutrient availability, improved soil structure, and increased rates of infiltration. United States Department of This technical note addresses the following topics: (1) soil pH, (2) liming Agriculture benefits, (3) liming materials, and (4) practical applications. Natural Resources Soil pH Conservation Service Understanding soil pH is essential for the proper management and optimum soil and crop productivity. In aqueous (liquid) solutions, an acid is a substance that donates hydrogen ions (H+) to some other substance (Tisdale et al., 1993). Soil Quality Institute 411 S. Donahue Dr. Auburn, AL 36832 Soil pH is a measure of the number of hydrogen ions in the soil solution. 334-844-4741 However, the actual concentration of hydrogen ions in the soil solution is actually X-177 quite small. For example, a soil with a pH of 4.0 has a hydrogen ion concentration in Technical the soil water of just 0.0001 moles per liter. (One mole is equal to the number of Note No. 8 hydrogen atoms in 1 gram of hydrogen). Since it is difficult to work with numbers like this, pH is expressed as the negative logarithm of the hydrogen ion concentration, May 1999 which results in the familiar scale of pH ranging from 0-14. Therefore, pH = 4.0 = - log (0.0001).
    [Show full text]