General Disclaimer One Or More of the Following Statements May Affect

Total Page:16

File Type:pdf, Size:1020Kb

General Disclaimer One Or More of the Following Statements May Affect General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) 26 J76-26129 (NASA-!; ,0 -14}? 17 ti ) T»iT l't )ISCIPLIhAi>Y g S i1i COAPAkATIVF PLANETUL66Y Ir4VF^Ti t AT 141 ANNUAL :iTATUS kt.P ts'T, 1 JtPI. 1975 - 3J JtJL. 19 P Hf, g 3.^J CSl`.L J33 G3/91 UNC(.AS 1971 (C kRNELL 11NIV.) 42e37 CORNELL UNIVERSITY Center foa^ 1Zadiophysics and S'pace Research TT,, ITHACA, N. YY CRSR 636 ANNUAL STATUS REPORT to the NATIONAL AERONAUTICS AND SPACE ADMINISTRATION under NASA Grant NGR 33-010-220 INTERDISCIPLINARY INVESTIGATIONS ^O P COMPARATIVE PLANETOLOGY July 1, 1 ,975 through June 30, 1976 ^^212a2^-, JUN 1976 Principal Investigator: Prof. Carl Sagan RECE'Vca - i _1 a TABLE OF CONTENTS A. Martian Channels . 1 B. Variable Features on Mars . 2 C. The Surfaces and Origins of the Martian Satellites . 7 D. The Surface of Venus . 11 E. Miscellaneous . • . 14 k The following are abstracts q f paper., published within the last vear (or in press) on scientific results supported wholly or in part by the Planetolof,y Programs Office, NASA Headquarters and written by personnel of the Laboratory for Planetary Studies: A. MARTIAN CHANNELS (1) Distribution of Small Channels on the Martian Surface. Icarus 27, 25-50 (1976). The distribution of small channels on Mars has been mapped from Mariner 9 images, at thA 1:5 000 000 scale, by the author. The small channels referred to here are small valleys ranging in width from the resolution limit of the Mariner 9 wide-angle images (ti 1 km) to about 10 km. The greatest density of small channels occurs in dark cratered terrain. This dark zone forms a broad sub- equatorial band around the planet. The observed distribu- tion may be the result of decreased small-channel visibility in bright areas due to obscuration by a high-albedo dust or sediment mantle. Crater densities within two small- channel segments show crater size-frequency distributions consistent with those of the oldest of the heavily cratered plains units. Such crater densities coupled with the almost exclusive occurrence of small channels in old cratered terrain and the generally degraded appearance of small channels in the high-resolution images (ti 100 m) imply a major episode of small-channel formation early in Martian geologic history. 1 P (2) A Comment on the Paper by Florenski et al., Icaruo 26, 230 (1975). The nature of Nirgal Vallis may compromise the findings of Florenski et al.; comprehensive image references would enhance the analysis. B. VARIABLE FEATURES ON MARS (3) A Numerical Circulation Model with Topography for the Martian Southern Hemisphere. Journal of the Atmospheric Sciences, in press. A quasi-geostrophic numerical model, including friction, radiation, and the observed planetary topography, is applied to the general circulation of the Martian atmosphere in the southern hemisphere at latitudes south of about 35 0 . Near equilibrium weather systems developed after about 5 model days. To avoid violating the quasi-geostrophic approximation, only 0.8 of the already smoothed relief was employed. Weather systems and velocity fields are strikingly tied to topography. A 2mb middle latitude ,jet stream is found of remarkably terrestrial aspect. Highest surface velocities, both horizontal and vertical, are predicted in western Hellas Planitia and eastern Argyre Planitia, which are common sites of origin of major Martian dust storms. Mean horizontal velocities > 3 0 m/s and mean vertical velocities < 0.2 m/s are found ,just above the surface velocity boundary layer, apart from eddy velocity contributions. When consideration f 3 is taken of scaling to full topography and the probable gustiness of Martian winds, it seems very likely that the general circulation is adequate, at certain times and places, to transport dust from the surface of Mars, as observed. Certain sources and sinks of vertical dust streaming are suggested; the entire south circumpolar zone appears to be a dust F31nx in winter. (4) Fluid Transport on Earth and Aeolian Transport on Mars. Icarus 26, 209-218 (1975). Experimental data on cohesion-free particle transport in fluid beds are applied, via a universal scaling relation, to atmospheric transport of fine grains on Mars. It may be that cohesion due to impact vitrification, vacuum sinter- ing, and adsorbed thin films of water are absent on Mars-- in which case the curve of threshold velocity versus grain size may show no turnup to small particle size, and one micron diameter grains may be injected directly by saltation into the Martian atmosphere more readily than 100 micron diameter grains. Curves for threshold and terminal velocities are presented for the full range of Martian pressures and temperatures. Suspension of fine grains is significantly easier at low temperatures and high pressures; late after- noon brightenings of many areas of Mars, and the generation of dust storms in such deep basins as Hellas, may be due to this effect. I i ` I }f (5) Physical Properties of Suspended Aero:.olo from their Infrared Spectra: Application to the Martian Duct Storm of 1971. Icarus, submitted for publication. Infrared spectra of Mars obtained from the Mariner 9 spacecraft during the Martian dust storm of 1971 were analyzed to determine the chemical composition and size distribution of the suspended dust grains. The infrared optical constants of granite and mont-morillonite were measured for the analysis which employs a new, approximate, technique for calculating the emergent intensity from a scattering, emitting dust cloud. The results show that the dust was composed of an intermediate or acidic igneous rock or a weathering product such as a clay. The clay mineral montmorillonite was not the only component of the dust, but the results do not exclude (or require) mont- morillonite as a component of a possible mixture. The dust could not have been composed of a basic igneous rock like basalt, nor could basalt have played a dominant role as a component of a mixture. The mean dust particle radius was a few microns, the dust size distribution closely resembled terrestrial dust size distributions in regions remote from a dust source, and the Martian dust size dis- tribution did not change significantly during the dust storm dissipation. The composition and size distribution of Martian dust have a number of geological and meteorologic implications for Mars. We have also studied the way optical l _ properties of dust interact to create infrared spectra. The transmission spectrum maximum (Christiansen frequency) is not compositionally si gnificant for dust particle:, in the size distributions we studied. Many optical properties interact to create transmission spectra of dust powders and we show that powder transmission spectra cannot be used to obtain infrared optical constants. (6) Variable Features on Mars.V: Evidence for Crater Streaks Produced by Wind Erosion. Icarus 25, 595-601 (1975). Evidence is presented to show that the ragged dark streaks which appeared behind many Martian craters severa' months after the end of the 1971 g lobal duststorm were produced by wind erosion of a thin surface veneer of dust- storm fallout. (7) Variable Features on Mars. VI. An Unusual Crater Streak in Mesogaea. I carus 27, 241-253 (1976). An unusual, prominent dark streak located in Mesogaea (near 8 0 N, 191 °W) is described. Its appearance is unlike that of most dark streaks on Mars, many of which have ragged outlines, are variable on short time-scales, and are pre- sumed to be erosional. The Mesogaea streak has a tapered, smooth outline, and no changes within it were observed. We suggest that this streak is depositional and that the low-albedo material originated within the associated crater itself. The source area is identified with a compact, _ I ,. l 6 low-albedo region on the crater floor. Two possible origins for the dark material are suggested: (1) deflation from a recently exposed, relatively unconsolidated sub- surface deposit, and (2) production of ash by a volcanic vent. (8) Variable Features on Mars. VII. Dark Filamentary Mar:..ngs on Mars. Icarus, in press. Some Mariner 9 B-frames show networks of Criss-crossing rectilinear albedo markings typically 10 km long by 100 meters wide. This paper discusses the location, variability and possible nature of these dark filamentary markings. Although not common on Mars, the markings are concentrated in at least two areas: Depressio Hellespontica and Cerberus/ Trivium Charontis. For Depressio Hellesponviea their emergence coincided with a general darkening of the region which occurred 3 months after the end of the 1971 global duststorm. The very definite crass-cross pattern of many of these markings suggests that they may be controlled by ,joints. It is unlikely that the markings are linear dunes. (9) Variable Features on Mars. VIII. Pandorae Fretum. Icarus, to be submitted. During the Mariner 9 mission a region near (343°W, 24 0 S) was monitored for changes over a period of 5 months (25 Jan to 30 June, 1972).
Recommended publications
  • Martian Crater Morphology
    ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter.
    [Show full text]
  • Widespread Crater-Related Pitted Materials on Mars: Further Evidence for the Role of Target Volatiles During the Impact Process ⇑ Livio L
    Icarus 220 (2012) 348–368 Contents lists available at SciVerse ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Widespread crater-related pitted materials on Mars: Further evidence for the role of target volatiles during the impact process ⇑ Livio L. Tornabene a, , Gordon R. Osinski a, Alfred S. McEwen b, Joseph M. Boyce c, Veronica J. Bray b, Christy M. Caudill b, John A. Grant d, Christopher W. Hamilton e, Sarah Mattson b, Peter J. Mouginis-Mark c a University of Western Ontario, Centre for Planetary Science and Exploration, Earth Sciences, London, ON, Canada N6A 5B7 b University of Arizona, Lunar and Planetary Lab, Tucson, AZ 85721-0092, USA c University of Hawai’i, Hawai’i Institute of Geophysics and Planetology, Ma¯noa, HI 96822, USA d Smithsonian Institution, Center for Earth and Planetary Studies, Washington, DC 20013-7012, USA e NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA article info abstract Article history: Recently acquired high-resolution images of martian impact craters provide further evidence for the Received 28 August 2011 interaction between subsurface volatiles and the impact cratering process. A densely pitted crater-related Revised 29 April 2012 unit has been identified in images of 204 craters from the Mars Reconnaissance Orbiter. This sample of Accepted 9 May 2012 craters are nearly equally distributed between the two hemispheres, spanning from 53°Sto62°N latitude. Available online 24 May 2012 They range in diameter from 1 to 150 km, and are found at elevations between À5.5 to +5.2 km relative to the martian datum. The pits are polygonal to quasi-circular depressions that often occur in dense clus- Keywords: ters and range in size from 10 m to as large as 3 km.
    [Show full text]
  • Crater Geometry and Ejecta Thickness of the Martian Impact Crater Tooting
    Meteoritics & Planetary Science 42, Nr 9, 1615–1625 (2007) Abstract available online at http://meteoritics.org Crater geometry and ejecta thickness of the Martian impact crater Tooting Peter J. MOUGINIS-MARK and Harold GARBEIL Hawai‘i Institute of Geophysics and Planetology, University of Hawai‘i, Honolulu, Hawai‘i 96822, USA (Received 25 October 2006; revision accepted 04 March 2007) Abstract–We use Mars Orbiter Laser Altimeter (MOLA) topographic data and Thermal Emission Imaging System (THEMIS) visible (VIS) images to study the cavity and the ejecta blanket of a very fresh Martian impact crater ~29 km in diameter, with the provisional International Astronomical Union (IAU) name Tooting crater. This crater is very young, as demonstrated by the large depth/ diameter ratio (0.065), impact melt preserved on the walls and floor, an extensive secondary crater field, and only 13 superposed impact craters (all 54 to 234 meters in diameter) on the ~8120 km2 ejecta blanket. Because the pre-impact terrain was essentially flat, we can measure the volume of the crater cavity and ejecta deposits. Tooting crater has a rim height that has >500 m variation around the rim crest and a very large central peak (1052 m high and >9 km wide). Crater cavity volume (i.e., volume below the pre-impact terrain) is ~380 km3 and the volume of materials above the pre-impact terrain is ~425 km3. The ejecta thickness is often very thin (<20 m) throughout much of the ejecta blanket. There is a pronounced asymmetry in the ejecta blanket, suggestive of an oblique impact, which has resulted in up to ~100 m of additional ejecta thickness being deposited down-range compared to the up-range value at the same radial distance from the rim crest.
    [Show full text]
  • 16. Ice in the Martian Regolith
    16. ICE IN THE MARTIAN REGOLITH S. W. SQUYRES Cornell University S. M. CLIFFORD Lunar and Planetary Institute R. O. KUZMIN V.I. Vernadsky Institute J. R. ZIMBELMAN Smithsonian Institution and F. M. COSTARD Laboratoire de Geographie Physique Geologic evidence indicates that the Martian surface has been substantially modified by the action of liquid water, and that much of that water still resides beneath the surface as ground ice. The pore volume of the Martian regolith is substantial, and a large amount of this volume can be expected to be at tem- peratures cold enough for ice to be present. Calculations of the thermodynamic stability of ground ice on Mars suggest that it can exist very close to the surface at high latitudes, but can persist only at substantial depths near the equator. Impact craters with distinctive lobale ejecta deposits are common on Mars. These rampart craters apparently owe their morphology to fluidhation of sub- surface materials, perhaps by the melting of ground ice, during impact events. If this interpretation is correct, then the size frequency distribution of rampart 523 524 S. W. SQUYRES ET AL. craters is broadly consistent with the depth distribution of ice inferred from stability calculations. A variety of observed Martian landforms can be attrib- uted to creep of the Martian regolith abetted by deformation of ground ice. Global mapping of creep features also supports the idea that ice is present in near-surface materials at latitudes higher than ± 30°, and suggests that ice is largely absent from such materials at lower latitudes. Other morphologic fea- tures on Mars that may result from the present or former existence of ground ice include chaotic terrain, thermokarst and patterned ground.
    [Show full text]
  • Early Devonian Suprasubduction Ophiolites of the Southern Urals A
    ISSN 00168521, Geotectonics, 2010, Vol. 44, No. 4, pp. 321–343. © Pleiades Publishing, Inc., 2010. Original Russian Text © A.A. Belova, A.V. Ryazantsev, A.A. Razumovsky, K.E. Degtyarev, 2010, published in Geotektonika, 2010, Vol. 44, No. 4, pp. 39–64. Early Devonian Suprasubduction Ophiolites of the Southern Urals A. A. Belovaa, b, A. V. Ryazantseva, A. A. Razumovskya, and K. E. Degtyareva a Geological Institute, Russian Academy of Sciences, Pyzhevskii per. 7, Moscow, 119017 Russia b Faculty of Geology, Moscow State University, Moscow, 119991 Russia email: [email protected] Received January 25, 2010 Abstract—The composition of ophiolites widespread in the southern Urals shows that they were formed in a suprasubduction setting. LowTi and highMg sheeted dikes and volcanic rocks vary from basalt to andesite, and many varieties belong to boninite series. The rocks of this type extend as a 600km tract. The volcanic rocks contain chert interbeds with Emsian conodonts. Plagiogranites localized at the level of the sheeted dike complex and related to this complex genetically are dated at 400 Ma. The ophiolites make up a base of thick island arc volcanic sequence. The composition of the igneous rocks and the parameters of their metamorphism indicate that subduction and ascent of a mantle plume participated in their formation. The nonstationary subduction at the intraoceanic convergent plate boundary developed, at least, from the Middle Ordovician. DOI: 10.1134/S0016852110040035 INTRODUCTION differ from the Devonian counterpart in geochemistry. Subductionrelated ophiolites are widesperad in In some places, ophiolites differing in age and compo the Paleozoides of the southern Urals. Sheeted dikes sition converge and intercalate.
    [Show full text]
  • Global Spectral Classification of Martian Low-Albedo Regions with Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES) Data A
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112, E02004, doi:10.1029/2006JE002726, 2007 Global spectral classification of Martian low-albedo regions with Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES) data A. Deanne Rogers,1 Joshua L. Bandfield,2 and Philip R. Christensen2 Received 4 April 2006; revised 12 August 2006; accepted 13 September 2006; published 14 February 2007. [1] Martian low-albedo surfaces (defined here as surfaces with Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES) albedo values 0.15) were reexamined for regional variations in spectral response. Low-albedo regions exhibit spatially coherent variations in spectral character, which in this work are grouped into 11 representative spectral shapes. The use of these spectral shapes in modeling global surface emissivity results in refined distributions of previously determined global spectral unit types (Surface Types 1 and 2). Pure Type 2 surfaces are less extensive than previously thought, and are mostly confined to the northern lowlands. Regional-scale spectral variations are present within areas previously mapped as Surface Type 1 or as a mixture of the two surface types, suggesting variations in mineral abundance among basaltic units. For example, Syrtis Major, which was the Surface Type 1 type locality, is spectrally distinct from terrains that were also previously mapped as Type 1. A spectral difference also exists between southern and northern Acidalia Planitia, which may be due in part to a small amount of dust cover in southern Acidalia. Groups of these spectral shapes can be averaged to produce spectra that are similar to Surface Types 1 and 2, indicating that the originally derived surface types are representative of the average of all low-albedo regions.
    [Show full text]
  • The Very Forward CASTOR Calorimeter of the CMS Experiment
    EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN) CERN-EP-2020-180 2021/02/11 CMS-PRF-18-002 The very forward CASTOR calorimeter of the CMS experiment The CMS Collaboration* Abstract The physics motivation, detector design, triggers, calibration, alignment, simulation, and overall performance of the very forward CASTOR calorimeter of the CMS exper- iment are reviewed. The CASTOR Cherenkov sampling calorimeter is located very close to the LHC beam line, at a radial distance of about 1 cm from the beam pipe, and at 14.4 m from the CMS interaction point, covering the pseudorapidity range of −6.6 < h < −5.2. It was designed to withstand high ambient radiation and strong magnetic fields. The performance of the detector in measurements of forward energy density, jets, and processes characterized by rapidity gaps, is reviewed using data collected in proton and nuclear collisions at the LHC. ”Published in the Journal of Instrumentation as doi:10.1088/1748-0221/16/02/P02010.” arXiv:2011.01185v2 [physics.ins-det] 10 Feb 2021 © 2021 CERN for the benefit of the CMS Collaboration. CC-BY-4.0 license *See Appendix A for the list of collaboration members Contents 1 Contents 1 Introduction . .1 2 Physics motivation . .3 2.1 Forward physics in proton-proton collisions . .3 2.2 Ultrahigh-energy cosmic ray air showers . .5 2.3 Proton-nucleus and nucleus-nucleus collisions . .5 3 Detector design . .6 4 Triggers and operation . .9 5 Event reconstruction and calibration . 12 5.1 Noise and baseline . 13 5.2 Gain correction factors . 15 5.3 Channel-by-channel intercalibration .
    [Show full text]
  • Geologic Studies in Support of Manned Martian Exploration
    Geologic Studies in Support of Manned Martian Exploration Perry Frix, Katherine McCloskey, and Lynn D. V. Neakrase Department of Geology, Arizona State University, Tempe Ronald Greeley Faculty Advisor, Department of Geology, Arizona State University, Tempe Abstract With the advent of the space exploration of the middle part of this century, Mars has become a tangible target for manned space flight missions in the upcoming decades. The goals of Mars exploration focus mainly on the presence of water and the geologic features associated with it. To explore the feasibility of a manned mission, a field analog project was conducted. The project began by examining a series of aerial photographs representing “descent” space craft images. From the photographs, local and regional geology of the two “landing” sites was determined and several “targets of interest” were chosen. The targets were prioritized based on relevance to achieving the goals of the project and Mars exploration. Traverses to each target, as well as measurements and sample collections were planned, and a timeline for the exercise was created. From this it was found that for any mission to be successful, a balance must be discovered between keeping to the planned timeline schedule, and impromptu revision of the mission to allow for conflicts, problems and other adjustments necessary due to greater information gathered upon arrival at the landing site. At the conclusion of the field exercise, it was determined that a valuable resource for mission planning is high resolution remote sensing of the landing area. This led us to conduct a study to determine what ranges of resolution are necessary to observe geology features important to achieving the goals of Mars exploration.
    [Show full text]
  • Abstracts of the Annual Meeting of Planetary Geologic Mappers, Flagstaff, AZ 2014
    Abstracts of the Annual Meeting of Planetary Geologic Mappers, Flagstaff, AZ 2014 Edited by: James A. Skinner, Jr. U. S. Geological Survey, Flagstaff, AZ David Williams Arizona State University, Tempe, AZ NOTE: Abstracts in this volume can be cited using the following format: Graupner, M. and Hansen, V.L., 2014, Structural and Geologic Mapping of Tellus Region, Venus, in Skinner, J. A., Jr. and Williams, D. A., eds., Abstracts of the Annual Meeting of Planetary Geologic Mappers, Flagstaff, AZ, June 23-25, 2014. SCHEDULE OF EVENTS Monday, June 23– Planetary Geologic Mappers Meeting Time Planet/Body Topic 8:30 am Arrive/Set-up – 2255 N. Gemini Drive (USGS) 9:00 Welcome/Logistics 9:10 NASA HQ and Program Remarks (M. Kelley) 9:30 USGS Map Coordinator Remarks (J. Skinner) 9:45 GIS and Web Updates (C. Fortezzo) 10:00 RPIF Updates (J. Hagerty) 10:15 BREAK / POSTERS 10:40 Venus Irnini Mons (D. Buczkowski) 11:00 Moon Lunar South Pole (S. Mest) 11:20 Moon Copernicus Quad (J. Hagerty) 11:40 Vesta Iterative Geologic Mapping (A. Yingst) 12:00 pm LUNCH / POSTERS 1:30 Vesta Proposed Time-Stratigraphy (D. Williams) 1:50 Mars Global Geology (J. Skinner) 2:10 Mars Terra Sirenum (R. Anderson) 2:30 Mars Arsia/Pavonis Montes (B. Garry) 2:50 Mars Valles Marineris (C. Fortezzo) 3:10 BREAK / POSTERS 3:30 Mars Candor Chasma (C. Okubo) 3:50 Mars Hrad Vallis (P. Mouginis-Mark) 4:10 Mars S. Margaritifer Terra (J. Grant) 4:30 Mars Ladon basin (C. Weitz) 4:50 DISCUSSION / POSTERS ~5:15 ADJOURN Tuesday, June 24 - Planetary Geologic Mappers Meeting Time Planet/Body Topic 8:30 am Arrive/Set-up/Logistics 9:00 Mars Upper Dao and Niger Valles (S.
    [Show full text]
  • 19. New Evidence for Interplanetary Boulders?
    19. New Evidence for Interplanetary Boulders? ZDENEK SEKANINA Smithsonian Astrophysical Observatory Cambridge, Massachusetts The present paper critically discusses the method of detection, the magnitude and the rate of occurrence of sudden disturbances in the motions of some short-period comets. The disturbances have recently been suggested as potential indicators of collisions be­ tween the comets and interplanetary boulders—minor objects whose existence was pre­ dicted by M. Harwit in 1967. The character of explosive phenomena, caused by an impact of such a boulder on a comet's nuclear surface, depends significantly on the surface texture of the target body. To advance our understanding of the impact mecha­ nism, a method is suggested which would supply a good deal of the missing information about the structure and optical properties of nuclear surfaces from precise photometric observations of cometary nuclei at large solar distances. THE IMPACT HYPOTHESIS suggests that the observed disturbances can be generated by collisions of the boulders with low ECENT EXTENSIVE DYNAMICAL STUDIES of a density comet nuclei, if the comet-to-boulder R number of short-period comets by Marsden mass ratio is about 106. As a result of such an (1969, 1970), by Yeomans (1972), and by impact the comet would lose as much as 10 Marsden and Sekanina (1971) resulted in a percent of its mass. Repeated impacts can easily discovery of easily detectable disturbances in the result in a splitting of the nucleus, or its complete motions of the comets we call 'erratic': P/Biela, disintegration in a relatively short period of time. P/Brorsen, P/Giacobini-Zinner, P/Perrine-Mrkos, With Harwit's space mass density of boulders the P/Schaumasse, possibly also P/Forbes and proposed hypothesis predicts an average rate of P/Honda-Mrkos-Pajdu§akova.
    [Show full text]
  • Features Named After 07/15/2015) and the 2018 IAU GA (Features Named Before 01/24/2018)
    The following is a list of names of features that were approved between the 2015 Report to the IAU GA (features named after 07/15/2015) and the 2018 IAU GA (features named before 01/24/2018). Mercury (31) Craters (20) Akutagawa Ryunosuke; Japanese writer (1892-1927). Anguissola SofonisBa; Italian painter (1532-1625) Anyte Anyte of Tegea, Greek poet (early 3rd centrury BC). Bagryana Elisaveta; Bulgarian poet (1893-1991). Baranauskas Antanas; Lithuanian poet (1835-1902). Boznańska Olga; Polish painter (1865-1940). Brooks Gwendolyn; American poet and novelist (1917-2000). Burke Mary William EthelBert Appleton “Billieâ€; American performing artist (1884- 1970). Castiglione Giuseppe; Italian painter in the court of the Emperor of China (1688-1766). Driscoll Clara; American stained glass artist (1861-1944). Du Fu Tu Fu; Chinese poet (712-770). Heaney Seamus Justin; Irish poet and playwright (1939 - 2013). JoBim Antonio Carlos; Brazilian composer and musician (1927-1994). Kerouac Jack, American poet and author (1922-1969). Namatjira Albert; Australian Aboriginal artist, pioneer of contemporary Indigenous Australian art (1902-1959). Plath Sylvia; American poet (1932-1963). Sapkota Mahananda; Nepalese poet (1896-1977). Villa-LoBos Heitor; Brazilian composer (1887-1959). Vonnegut Kurt; American writer (1922-2007). Yamada Kosaku; Japanese composer and conductor (1886-1965). Planitiae (9) Apārangi Planitia Māori word for the planet Mercury. Lugus Planitia Gaulish equivalent of the Roman god Mercury. Mearcair Planitia Irish word for the planet Mercury. Otaared Planitia Arabic word for the planet Mercury. Papsukkal Planitia Akkadian messenger god. Sihtu Planitia Babylonian word for the planet Mercury. StilBon Planitia Ancient Greek word for the planet Mercury.
    [Show full text]
  • Planets Solar System Paper Contents
    Planets Solar system paper Contents 1 Jupiter 1 1.1 Structure ............................................... 1 1.1.1 Composition ......................................... 1 1.1.2 Mass and size ......................................... 2 1.1.3 Internal structure ....................................... 2 1.2 Atmosphere .............................................. 3 1.2.1 Cloud layers ......................................... 3 1.2.2 Great Red Spot and other vortices .............................. 4 1.3 Planetary rings ............................................ 4 1.4 Magnetosphere ............................................ 5 1.5 Orbit and rotation ........................................... 5 1.6 Observation .............................................. 6 1.7 Research and exploration ....................................... 6 1.7.1 Pre-telescopic research .................................... 6 1.7.2 Ground-based telescope research ............................... 7 1.7.3 Radiotelescope research ................................... 8 1.7.4 Exploration with space probes ................................ 8 1.8 Moons ................................................. 9 1.8.1 Galilean moons ........................................ 10 1.8.2 Classification of moons .................................... 10 1.9 Interaction with the Solar System ................................... 10 1.9.1 Impacts ............................................ 11 1.10 Possibility of life ........................................... 12 1.11 Mythology .............................................
    [Show full text]