How Do Strigolactones Ameliorate Nutrient Deficiencies in Plants?

Total Page:16

File Type:pdf, Size:1020Kb

How Do Strigolactones Ameliorate Nutrient Deficiencies in Plants? Downloaded from http://cshperspectives.cshlp.org/ on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press How Do Strigolactones Ameliorate Nutrient Deficiencies in Plants? Kaori Yoneyama Graduate School of Agriculture, Ehime University, Matsuyama 790-8566, Japan Correspondence: [email protected] Strigolactones (SLs), a group of plant secondary metabolites, play an important role as a host recognition signal for symbiotic arbuscular mycorrhizal (AM) fungi in the rhizosphere. SLs promote symbioses with other beneficial microbes, including root nodule bacteria. Root parasitic weeds also take advantage of SLs as a clue to locate living host roots. In plants, SLs function as plant hormones regulating various growth and developmental processes includ- ing shoot and root architectures. Plants under nutrient deficiencies, especially that of phos- phate, promote SL production and exudation to attract symbionts and to optimize shoot and root architecture. lants produce various organic chemicals. turn, supply carbohydrates to them. Plants do PPrimary metabolites including nucleic acids, not need symbiotic microbes when satisfactory amino acids, sterols, etc., are present in all plant nutrient-rich conditions exist. Therefore, to reg- species and functioning in basic metabolisms. In ulate symbiotic relationships, plants produce contrast, some of secondary metabolites—often and release chemical signals. produced only in very small quantities and rap- The intimate relationship of leguminous idly disappear—had been hypothesized to be plants and nitrogen (N)-fixing rhizobacteria is inessential for plant growth and development. a well-known symbiosis for legumes to obtain N, However, highly sensitive analytical methods one of essential macronutrients. As shown in enabled us to realize the importance of such Figure 1, this symbiosis is initiated by the spe- secondary metabolites as chemical signals with cific chemical signals, flavonoids exuded from which plants, sessile organisms, can adapt their roots of N-limited legume plants. Only the com- sensitivity to everchanging and stressful envi- patible rhizobia partners sense the specific fla- ronments. vonoid molecules and induce the expression of Plants need inorganic nutrients for their nod genes, which stimulate production and survival but they are very often subjected to nu- exudation of the signals, specific lipochito-oli- trient-limited conditions. One of the strategies gosaccharides named nodulation (Nod) factors. for overcoming such a difficulty, plants have de- Then, Nod factors released from the rhizobia veloped several types of symbiotic relationships induce molecular and physiological changes in with microbes to acquire nutrients. Plants ob- the plants (Kouchi et al. 2010; Venkateshwaran tain nutrients from microorganisms and, in et al. 2013), which will be explained later in de- Editor: Pamela C. Ronald Additional Perspectives on Engineering Plants for Agriculture available at www.cshperspectives.org Copyright © 2019 Cold Spring Harbor Laboratory Press; all rights reserved Advanced Online Article. Cite this article as Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a034686 1 Downloaded from http://cshperspectives.cshlp.org/ on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press K. Yoneyama N limited Promote Rhizobia Flavonoids Nod gene Molecular change NF receptors Common symbiotic signaling pathway Nod factor (lipochito-oligosaccharides) Physiological change NSP1 NSP2 Root hair curling Ethylene Infection thread formation SLABA Cortical cell division JA N-fixation Figure 1. Nodule development in leguminous plants. The nodule development in leguminous plants commences by organic chemical signal flavonoids exuded from roots of plants subjected to nitrogen (N) deficiency. Then, nodulation (Nod) factor signals, lipochitooligosaccharides released from Rhizobia induce molecular and phys- iological changes of plants to form nodules. Strigolactones (SLs) seem to be related to nodule formation and transcription factors for nodule formation influence SL biosynthesis (see other beneficial functions of SLs in the rhizosphere). fi tail. Root nodules x atmospheric N2 into am- ability, and possible application of SLs for agri- monia, readily available form of N to plants. cultural production is explained. Arbuscular mycorrhizal (AM) fungus is an- other important symbiotic partner for plants. THE DAWN OF THE STRIGOLACTONE AM fungi form symbiotic relationships with STORY >80% of land plants and they supply nutrients especially phosphate to host plants. Strigolac- The history of SLs began with the isolation of tones (SLs) are key chemical signals for the strigol (Fig. 2), the first natural SL, as a germina- plant–AM fungi symbiotic relationship, and tion stimulant of witchweed (Striga lutea), a dev- the objective of this article is to understand astating root parasitic weed (Cook et al. 1966). how plants use SLs to ameliorate nutrient defi- Approximately 1% of angiosperms (3500 to ciencies. 4000 species) are parasitic plants that depend on The discovery of biological functions of SLs their host plants for the supply of part or all of is quite dramatic and SLs are now widely accept- their needs of water, minerals, and photosyn- ed as multifunctional molecules. In this review, a thates (Nickrent et al. 1998). Depending on brief history of SL research is introduced to un- the site of attachment, parasitic plants are divid- derstand various biological functions of SLs. ed into two groups: stem and root parasites. The Then, structural diversity, biosynthetic pathway, root parasites attach to the roots of host plants perception, and signal transduction, regulation and spend most of their lifecycle underground. of SL production/exudation by nutrient avail- There are two important root parasitic weeds, 2 Advanced Online Article. Cite this article as Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a034686 Downloaded from http://cshperspectives.cshlp.org/ on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press Strigolactone Nutrient Acquisition Strategy O O O OH O O O O Orobanchol O O O C O O A B O O O O O O O OH D O O O O Strigol O O Fabacyl acetate O O Orobanchyl acetate HO O O O O O O O O O O OH O O O Sorgomol 5-deoxystrigol Solanacol (5DS) Strigol-type Canonical SL Orobanchol-type O O Noncanonical SL O O H O O O O O O O O O O HO O O Heliolactone O Zealactone O O O O Avenaol O O GR24 O Figure 2. The structures of natural strigolactones (SLs) and synthetic analog GR24. witchweeds (Striga spp.) and broomrapes (Oro- Orobanche and Phelipanche spp. are holo- banche and Phelipanche spp.) of Orobancha- parasites, lacking chlorophylls and completely ceae, causing significant damages to agricultural depend on host plants. Their host and habitat production all over the world. ranges are quite wide and they parasitize dicot- Striga spp. are hemiparasites, having func- yledonous crops, including legumes, tomato, tional chloroplasts but obligate parasites, which sunflower, oilseed rape, etc. in temperate areas. cannot complete their lifecycle without parasit- The areas threatened by Orobanche and Pheli- izing their hosts. They parasitize mainly mo- panche, as estimated in 1991, are 16 million nocotyledonous crops, for example, maize, hectares in the Mediterranean and west Asia sorghum, millet, sugarcane, and upland rice in (Parker 2009). tropical areas. The United Nations estimates The problems caused by these root parasitic that Striga is the major constraint to crop pro- weeds are not only a significant reduction of duction in sub-Saharan Africa causing average crop production but also the limitation of crop yield losses of 40%, but total crop failure is com- transportation. Serious root parasites are classi- mon (Ejeta and Gressel 2007). fied as quarantine weeds in most countries, and Advanced Online Article. Cite this article as Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a034686 3 Downloaded from http://cshperspectives.cshlp.org/ on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press K. Yoneyama thus infested lands must be strictly isolated and which induces extensive hyphal branching, a the crops harvested there cannot be exported critical morphogenetical change in host recog- when even a single root parasite is found in nition by AM fungi (Akiyama et al. 2005). These the area. investigators also showed that other natural SLs, A single root parasite can produce up to half sorgolactone and strigol, and the synthetic SL a million tiny seeds that are half the size of Ara- analog GR24 (Fig. 2) induce extensive hyphal bidopsis (approximately 0.3 mm to 0.5 mm). branching in germinating spores of the AM fun- They can survive decades in soils, waiting for gus Gigaspora margarita at very low concentra- their preferable crop hosts. The tiny seeds of tions. Besserer et al. (2006) showed that GR24 root parasites with limited food stock will die also stimulates spore germination and hyphal unless they can parasitize suitable host roots branching of Glomus intraradices and Glomus within a few days after germination. An inge- claroideum through rapid increase of mitochon- nious survival strategy of the root parasites is drial density and respiration. that the seeds can germinate only when they Experiments with SL-deficient mutants perceive germination stimulants released from showed that SLs are essential signaling factors host roots. for plants to form symbiotic relationships with Strigol was isolated as a germination stimu- AM fungi.
Recommended publications
  • Special Feature
    Ecology, 84(4), 2003, pp. 858±868 q 2003 by the Ecological Society of America MOLECULAR SIGNALS AND RECEPTORS: CONTROLLING RHIZOSPHERE INTERACTIONS BETWEEN PLANTS AND OTHER ORGANISMS ANN M. HIRSCH,1,7 W. D IETZ BAUER,2 DAVID M. BIRD,3 JULIE CULLIMORE,4 BRETT TYLER,5 AND JOHN I. YODER6 1Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California 90095 USA 2Department of Horticulture and Crop Science, Ohio State University, Columbus, Ohio 43210 USA 3Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695 USA 4Laboratoire de Biologie MoleÂculaire des Relations Plantes-Microorganismes, CNRS-INRA BP27, 31326 Castanet-Tolosan Cedex, France 5Virginia Bioinformatics Institute, 1880 Pratt Drive, Blacksburg, Virginia 24061 USA 6Department of Vegetable Crops, University of California, Davis, California 95616 USA Abstract. Rhizosphere interactions are affected by many different regulatory signals. As yet, however, only a few have been identi®ed. Signals, by de®nition, contain information, react with a receptor, and elicit a response. Signals may thus represent the highest level of evolved response in rhizosphere communities and, in that sense, occupy a supreme control point. At the same time, some signals may function as modulators of downstream responses, rather than on/off switches. To assess these possibilities, several interactions between plants and soil organisms are described, starting with the molecular interactions between legu- minous plants and symbiotic bacteria of the family Rhizobiaceae, one of the best-charac- terized plant±microbe associations in the rhizosphere. We then examine other interactions between plants and soil organisms for overlap and/or connections with the rhizosphere signals utilized in the legume±Rhizobium symbiosis.
    [Show full text]
  • Lifestyle Adaptations of Rhizobium from Rhizosphere to Symbiosis
    Lifestyle adaptations of Rhizobium from rhizosphere to symbiosis Rachel M. Wheatleya,1, Brandon L. Forda,1,LiLib,1, Samuel T. N. Aroneya, Hayley E. Knightsa, Raphael Ledermanna, Alison K. Easta, Vinoy K. Ramachandrana,2, and Philip S. Poolea,2 aDepartment of Plant Sciences, University of Oxford, OX1 3RB Oxford, United Kingdom; and bChinese Academy of Sciences Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, 430074 Wuhan, People’s Republic of China Edited by Éva Kondorosi, Hungarian Academy of Sciences, Biological Research Centre, Szeged, Hungary, and approved August 4, 2020 (received for review May 7, 2020) By analyzing successive lifestyle stages of a model Rhizobium– nodule cells and undergo terminal differentiation into N2-fixing legume symbiosis using mariner-based transposon insertion se- bacteroids (10). Nodules provide a protective microaerobic envi- quencing (INSeq), we have defined the genes required for rhizo- ronment to maintain oxygen-labile nitrogenase (6). In exchange + sphere growth, root colonization, bacterial infection, N2-fixing for NH4 and alanine, the legume host provides carbon sources to bacteroids, and release from legume (pea) nodules. While only 27 fuel this process, primarily as dicarboxylic acids (13, 14). genes are annotated as nif and fix in Rhizobium leguminosarum,we However, nodule infection is only one stage of the lifestyle of show 603 genetic regions (593 genes, 5 transfer RNAs, and 5 RNA rhizobia, and they spend much of their time surviving in the rhi- features) are required for the competitive ability to nodulate pea and zosphere, the zone of soil immediately surrounding roots (15).
    [Show full text]
  • Transgenic Approaches to Study Nodulation in the Model Legume, Lotus Japonicus
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2003 Transgenic Approaches to Study Nodulation in the Model Legume, Lotus japonicus Crystal Bickley McAlvin University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Microbiology Commons Recommended Citation McAlvin, Crystal Bickley, "Transgenic Approaches to Study Nodulation in the Model Legume, Lotus japonicus. " PhD diss., University of Tennessee, 2003. https://trace.tennessee.edu/utk_graddiss/2151 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Crystal Bickley McAlvin entitled "Transgenic Approaches to Study Nodulation in the Model Legume, Lotus japonicus." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Microbiology. Dr. Gary Stacey, Major Professor We have read this dissertation and recommend its acceptance: Dr. Beth Mullin, Dr. Jeff Becker, Dr. Albrecht VonArnim, Dr. Pam Small Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: I am submitting herewith a dissertation written by Crystal Bickley McAlvin entitled “Transgenic approaches to study nodulation in the model legume, Lotus japonicus”.
    [Show full text]
  • (Ensifer) Meliloti Psyma Required for Efficient Symbiosis with Medicago
    Minimal gene set from Sinorhizobium (Ensifer) meliloti pSymA required for efficient symbiosis with Medicago Barney A. Geddesa,1, Jason V. S. Kearsleya, Jiarui Huanga, Maryam Zamania, Zahed Muhammeda, Leah Sathera, Aakanx K. Panchala, George C. diCenzoa,2, and Turlough M. Finana,3 aDepartment of Biology, McMaster University, Hamilton, ON, Canada L8S 4K1 Edited by Éva Kondorosi, Hungarian Academy of Sciences, Biological Research Centre, Szeged, Hungary, and approved December 2, 2020 (received for review August 25, 2020) Reduction of N2 gas to ammonia in legume root nodules is a key to the oxygen-limited environment of the nodule that includes component of sustainable agricultural systems. Root nodules are producing a high O2-affinity cytochrome oxidase (encoded by fix the result of a symbiosis between leguminous plants and bacteria genes) (7). Symbiosis genes are encoded on extrachromosomal called rhizobia. Both symbiotic partners play active roles in estab- replicons or integrative conjugative elements that allow the ex- lishing successful symbiosis and nitrogen fixation: while root nod- change of symbiotic genes by horizontal gene transfer (8). ule development is mostly controlled by the plant, the rhizobia However, horizontal transfer of essential symbiotic genes (nod, induce nodule formation, invade, and perform N2 fixation once nif, fix) alone is often not sufficient to convert a naive bacterium inside the plant cells. Many bacterial genes involved in the into a compatible symbiont for a legume (9). Therefore, eluci- rhizobia–legume symbiosis are known, and there is much interest dating the complete complement of genes required for the es- in engineering the symbiosis to include major nonlegume crops tablishment of a productive symbiosis between rhizobia and such as corn, wheat, and rice.
    [Show full text]
  • The Regulation of Nodule Number in Legumes Is a Balance of Three Signal Transduction Pathways
    International Journal of Molecular Sciences Review The Regulation of Nodule Number in Legumes Is a Balance of Three Signal Transduction Pathways Diptee Chaulagain and Julia Frugoli * Department of Genetics & Biochemistry, Clemson University, Clemson, SC 29634, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-864-656-1859 Abstract: Nitrogen is a major determinant of plant growth and productivity and the ability of legumes to form a symbiotic relationship with nitrogen-fixing rhizobia bacteria allows legumes to exploit nitrogen-poor niches in the biosphere. But hosting nitrogen-fixing bacteria comes with a metabolic cost, and the process requires regulation. The symbiosis is regulated through three signal transduction pathways: in response to available nitrogen, at the initiation of contact between the organisms, and during the development of the nodules that will host the rhizobia. Here we provide an overview of our knowledge of how the three signaling pathways operate in space and time, and what we know about the cross-talk between symbiotic signaling for nodule initiation and organogenesis, nitrate dependent signaling, and autoregulation of nodulation. Identification of common components and points of intersection suggest directions for research on the fine-tuning of the plant’s response to rhizobia. Keywords: autoregulation of nodulation; nodulation; nitrogen response in nodulation; Medicago truncatula Citation: Chaulagain, D.; Frugoli, J. 1. Introduction The Regulation of Nodule Number in Nitrogen (N) is a major determinant of plant growth and productivity. In addition, N Legumes Is a Balance of Three Signal is required as a constituent of nitric oxide (NO) and polyamines that influence constitutive Transduction Pathways.
    [Show full text]
  • Nodulation and Expression of the Early Nodulation Gene, ENOD2, in Temperate Woody Legumes of the Papilionoideae Carol Marie Foster Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1998 Nodulation and expression of the early nodulation gene, ENOD2, in temperate woody legumes of the Papilionoideae Carol Marie Foster Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Botany Commons, and the Genetics Commons Recommended Citation Foster, Carol Marie, "Nodulation and expression of the early nodulation gene, ENOD2, in temperate woody legumes of the Papilionoideae " (1998). Retrospective Theses and Dissertations. 11919. https://lib.dr.iastate.edu/rtd/11919 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the t»ct directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper aligmnent can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
    [Show full text]
  • Multifarious Roles of GRAS Transcription Factors in Plants
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 March 2021 doi:10.20944/preprints202103.0066.v1 1 Multifarious Roles of GRAS Transcription Factors in Plants 2 Priya Kumari1,2,a, Mrinalini Kakkar3a, Vijay Gahlaut1,3*, Vandana Jaiswal1,2* Sanjay Kumar1,2 3 4 1CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India 5 2Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India 6 3Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India 7 8 aEqual contribution 9 *Corresponding authors 10 Email id: [email protected]; [email protected] 11 12 13 Abstract 14 15 The GAI‐RGA ‐ and ‐SCR (GRAS) proteins belong to the plant-specific transcription factor gene 16 family and involved in several developmental processes, phytohormone and phytochrome 17 signaling, symbiosis, stress responses etc. GRAS proteins have a conserved GRAS domain at C- 18 terminal and hypervariable N-terminal. The C-terminal conserved domain directly affects the 19 function of the GRAS proteins. For instance, in Arabidopsis, mutations in this domain in Slender 20 rice 1 (SLR1) and Repressor of GA (RGA) proteins cause significant phenotypic changes. GRAS 21 proteins have been reported in more than 30 plant species and till now it has been divided into 17 22 subfamilies. This review highlighted GRAS protein's importance during several biological 23 processes in plants, structural features of GRAS proteins, their expansion and diversification in 24 the plants, GRAS-interacting proteins complexes and their role in biological processes. We also 25 summarized available recent research that utilized CRISPR-Cas9 technology to manipulate GRAS 26 genes in a plant for different traits.
    [Show full text]
  • Hijacking of Leguminous Nodulation Signaling by the Rhizobial Type III Secretion System
    Hijacking of leguminous nodulation signaling by the rhizobial type III secretion system Shin Okazakia,1, Takakazu Kanekob, Shusei Satoc, and Kazuhiko Saekid,e aDepartment of International Environmental and Agricultural Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan; bFaculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan; cKazusa DNA Research Institute, Chiba 292-0818, Japan; and dDepartment of Biological Sciences, Faculty of Science and eKyousei Science Center for Life and Nature, Nara Women’s University, Nara 630-8506, Japan Edited by Eva Kondorosi, Hungarian Academy of Sciences, Szeged, Hungary, and approved September 5, 2013 (received for review February 5, 2013) Root–nodule symbiosis between leguminous plants and nitrogen- Previous studies have shown both positive and negative effects fixing bacteria (rhizobia) involves molecular communication be- of rhizobial T3SSs on symbiosis. In the case of Mesorhizobium tween the two partners. Key components for the establishment loti, a microsymbiont of Lotus spp., deletion of its tts genes of symbiosis are rhizobium-derived lipochitooligosaccharides (Nod results in a reduction of the number of nodules formed on the factors; NFs) and their leguminous receptors (NFRs) that initiate roots of Lotus corniculatus subsp. frondosus, whereas the number nodule development and bacterial entry. Here we demonstrate of nodules on the roots of Lotus halophilus significantly increases that the soybean microsymbiont Bradyrhizobium elkanii uses the when inoculated with a T3SS-null mutant (8). Meanwhile, the type III secretion system (T3SS), which is known for its delivery of T3Es NopL and NopP of NGR234 have positive effects on virulence factors by pathogenic bacteria, to promote symbiosis.
    [Show full text]
  • Hijacking of Leguminous Nodulation Signaling by the Rhizobial Type III Secretion System
    Hijacking of leguminous nodulation signaling by the rhizobial type III secretion system Shin Okazakia,1, Takakazu Kanekob, Shusei Satoc, and Kazuhiko Saekid,e aDepartment of International Environmental and Agricultural Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan; bFaculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan; cKazusa DNA Research Institute, Chiba 292-0818, Japan; and dDepartment of Biological Sciences, Faculty of Science and eKyousei Science Center for Life and Nature, Nara Women’s University, Nara 630-8506, Japan Edited by Eva Kondorosi, Hungarian Academy of Sciences, Szeged, Hungary, and approved September 5, 2013 (received for review February 5, 2013) Root–nodule symbiosis between leguminous plants and nitrogen- Previous studies have shown both positive and negative effects fixing bacteria (rhizobia) involves molecular communication be- of rhizobial T3SSs on symbiosis. In the case of Mesorhizobium tween the two partners. Key components for the establishment loti, a microsymbiont of Lotus spp., deletion of its tts genes of symbiosis are rhizobium-derived lipochitooligosaccharides (Nod results in a reduction of the number of nodules formed on the factors; NFs) and their leguminous receptors (NFRs) that initiate roots of Lotus corniculatus subsp. frondosus, whereas the number nodule development and bacterial entry. Here we demonstrate of nodules on the roots of Lotus halophilus significantly increases that the soybean microsymbiont Bradyrhizobium elkanii uses the when inoculated with a T3SS-null mutant (8). Meanwhile, the type III secretion system (T3SS), which is known for its delivery of T3Es NopL and NopP of NGR234 have positive effects on virulence factors by pathogenic bacteria, to promote symbiosis.
    [Show full text]
  • Enod40encodes a Peptide Growth Factor
    ENOD40 encodes apeptid e growth factor Karin van de Sande Promotor: dr. A.va n Kammen, hoogleraar in demoleculair e biologie Co-promotor: dr. T.Bisseling ,universitai r hoofddocent, vakgroep moleculaire biologie Karinva nd eSand e ENOD40 encodesa peptid e growth factor Proefschrift terverkrijgin g van degraa d van doctor opgeza g van derecto r magnificus van deLandbouwuniversitei t Wageningen, dr. C.M. Karssen, inhe t openbaar teverdedige n op 3Septembe r 1997 des namiddags te 13.30uu r in deAul a V:M C 1UU.SC;M ISBN 90-5485-750-1 van de Sande,K . ENOD40encode s apeptid e growth factor , .-i-filTETf LAN:; >••"•- The investigations described in this thesis were carried out at the Department of Molecular Biology, Agricultural University Wageningen, The Netherlands, and the Max-Planck Institut für Züchtungsforschung, Köln, Germany and were financed by the Netherlands Organization for Scientific Research (NWO),Th eHague . yk>/^6?2o1f 25oy Stellingen 1. ZonderENOD4 0i snormal eontwikkelin gva nee nplan tnie t mogelijk. 2. Detoleranti evoo rhog eauxin ee ncytokinin econcentratie s in tabaksprotoplasten, veroorzaakt doorlipo-chitooligosacchariden ,i sto et eschrijve n aaninducti eva nENOD4 0expressie . 3. Hetphenotyp eva nd esoj a autoregulatie mutant NOD1-3 kanverklaar d worden metproducti e vanee ncomponen tdi eknolvormin g stimuleert. Francisco andHarpe r (1995)Plan t Science 107,167-176. 4. Heti svoorbari go mt econcludere n datee nster k allelhe tphenotyp eva nd eArdbidopsis Landsberg erecta mutantveroorzaakt . Torri etal. (1996) Plant Cell8,735-746 . 5. Nietongevoelighei d voorethylee nmaa rongevoelighei d voorander e groeifactoren isd e oorzaakva nhypemodulati eva nd emutan tsickle va nMedicago truncatula.
    [Show full text]
  • Compatibility Between Legumes and Rhizobia for the Establishment of a Successful Nitrogen-Fixing Symbiosis
    G C A T T A C G G C A T genes Review Compatibility between Legumes and Rhizobia for the Establishment of a Successful Nitrogen-Fixing Symbiosis Joaquín Clúa, Carla Roda, María Eugenia Zanetti ID and Flavio A. Blanco * ID Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900-La Plata, Argentina; [email protected] (J.C.); [email protected] (C.R.); [email protected] (M.E.Z.) * Correspondence: [email protected]; Tel.: +54-0221-4229-777 (ext. 33); Fax: +54-0221-4229-777 Received: 30 October 2017; Accepted: 8 February 2018; Published: 27 February 2018 Abstract: The root nodule symbiosis established between legumes and rhizobia is an exquisite biological interaction responsible for fixing a significant amount of nitrogen in terrestrial ecosystems. The success of this interaction depends on the recognition of the right partner by the plant within the richest microbial ecosystems on Earth, the soil. Recent metagenomic studies of the soil biome have revealed its complexity, which includes microorganisms that affect plant fitness and growth in a beneficial, harmful, or neutral manner. In this complex scenario, understanding the molecular mechanisms by which legumes recognize and discriminate rhizobia from pathogens, but also between distinct rhizobia species and strains that differ in their symbiotic performance, is a considerable challenge. In this work, we will review how plants are able to recognize and select symbiotic partners from a vast diversity of surrounding bacteria.
    [Show full text]
  • Riboregulation in Nitrogen-Fixing Endosymbiotic Bacteria
    microorganisms Review Riboregulation in Nitrogen-Fixing Endosymbiotic Bacteria Marta Robledo 1 , Natalia I. García-Tomsig 2 and José I. Jiménez-Zurdo 2,* 1 Intergenomics Group, Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, CSIC-Universidad de Cantabria-Sodercan, 39011 Santander, Spain; [email protected] 2 Structure, Dynamics and Function of Rhizobacterial Genomes (Grupo de Ecología Genética de la Rizosfera), Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), 18008 Granada, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-958-181-600 Received: 22 January 2020; Accepted: 5 March 2020; Published: 10 March 2020 Abstract: Small non-coding RNAs (sRNAs) are ubiquitous components of bacterial adaptive regulatory networks underlying stress responses and chronic intracellular infection of eukaryotic hosts. Thus, sRNA-mediated regulation of gene expression is expected to play a major role in the establishment of mutualistic root nodule endosymbiosis between nitrogen-fixing rhizobia and legume plants. However, knowledge about this level of genetic regulation in this group of plant-interacting bacteria is still rather scarce. Here, we review insights into the rhizobial non-coding transcriptome and sRNA-mediated post-transcriptional regulation of symbiotic relevant traits such as nutrient uptake, cell cycle, quorum sensing, or nodule development. We provide details about the transcriptional control and protein-assisted activity mechanisms of the functionally characterized sRNAs involved in these processes. Finally, we discuss the forthcoming research on riboregulation in legume symbionts. Keywords: rhizobia; Sinorhizobium (Ensifer) meliloti; α-proteobacteria; legumes; sRNA; non-coding RNA; dRNA-Seq; RNA-binding proteins; RNases 1. Introduction Some soil-dwelling species of the large classes of α- and β-proteobacteria, collectively referred to as rhizobia, establish mutualistic symbioses with legumes.
    [Show full text]