Dosinia Exoleta (Linnaeus, 1758)

Total Page:16

File Type:pdf, Size:1020Kb

Dosinia Exoleta (Linnaeus, 1758) Dosinia exoleta (Linnaeus, 1758) AphiaID: 141911 AMEIJOA-REDONDA Animalia (Reino) > Mollusca (Filo) > Bivalvia (Classe) > Autobranchia (Subclasse) > Heteroconchia (Infraclasse) > Imparidentia (Superordem) > Venerida (Ordem) > Veneroidea (Superfamilia) > Veneridae (Familia) © Vasco Ferreira © Vasco Ferreira - OMARE / Set. 09 2018 Rainer Borcherding - Schutzstation Wattenmeer, via beachexplorer.org © Vasco Ferreira - OMARE / Set. 09 2018 1 Katharina T., via beachexplorer.org Descrição Concha sólida achatada e circular, com valvas simétricas e estrias concêntricas. Bordas internas lisas. Seio paleal profundo e bem definido. Pode alcançar os 6 cm de comprimento. Coloração esbranquiçada ou creme rosado, com manchas ou riscas em ziguezague acastanhadas e branca no interior. Facilmente confundível com: Dosinia lupinus Ameijoa Sinónimos Ameijoa-relógio Arctoe fulva Risso, 1826 Artemis radiata Reeve, 1850 Arthemis complanata Locard, 1892 Arthemis pudica Poli, 1795 Cytherea exoleta Lamarck, 1818 Dosinia complanata Locard, 1891 Dosinia exoleta var. castanea Bucquoy, Dautzenberg & Dollfus, 1893 2 Dosinia exoleta var. interrupta Bucquoy, Dautzenberg & Dollfus, 1893 Dosinia exoleta var. major Bucquoy, Dautzenberg & Dollfus, 1893 Dosinia exoleta var. parcipicta Bucquoy, Dautzenberg & Dollfus, 1893 Dosinia exoleta var. ponderosa Bucquoy, Dautzenberg & Dollfus, 1893 Dosinia exoleta var. radians Bucquoy, Dautzenberg & Dollfus, 1893 Dosinia exoleta var. zonata Bucquoy, Dautzenberg & Dollfus, 1893 Dosinia radiata Exoleta orbiculata T. Brown, 1827 Exoleta radula T. Brown, 1827 Pectunculus capillaceus da Costa, 1778 Pectunculus exoleta [sic] Pectunculus exoletus (Linnaeus, 1758) Venus exoleta Linnaeus, 1758 Referências additional source Howson, C. M.; Picton, B. E. (1997). The species directory of the marine fauna and flora of the British Isles and surrounding seas. Ulster Museum Publication, 276. The Ulster Museum: Belfast, UK. ISBN 0-948150-06-8. vi, 508 (+ cd-rom) pp. [details] basis of record Gofas, S.; Le Renard, J.; Bouchet, P. (2001). Mollusca. in: Costello, M.J. et al. (eds), European Register of Marine Species: a check-list of the marine species in Europe and a bibliography of guides to their identification. Patrimoines Naturels. 50: 180-213. [details] additional source Ardovini, R.; Cossignani, T. (2004). West African seashells (including Azores, Madeira and Canary Is.) = Conchiglie dell’Africa Occidentale (incluse Azzorre, Madeira e Canarie). English- Italian edition. L’Informatore Piceno: Ancona, Italy. ISBN 88-86070-11-X. 319 pp. [details] additional source Muller, Y. (2004). Faune et flore du littoral du Nord, du Pas-de-Calais et de la Belgique: inventaire. [Coastal fauna and flora of the Nord, Pas-de-Calais and Belgium: inventory]. Commission Régionale de Biologie Région Nord Pas-de-Calais: France. 307 pp., available online at http://www.vliz.be/imisdocs/publications/145561.pdf [details] additional source Huber, M. (2010). Compendium of bivalves. A full-color guide to 3,300 of the world’s marine bivalves. A status on Bivalvia after 250 years of research. Hackenheim: ConchBooks. 901 pp., 1 CD-ROM. [details] additional source Dyntaxa. (2013). Swedish Taxonomic Database. Accessed at www.dyntaxa.se [15-01-2013]., available online at http://www.dyntaxa.se [details] additional source Zamouri-Langar, N.; Chouba, L.; Ajjabi Chebil, L.; Mrabet, R.; El Abed, A. (2011). Les coquillages bivalves des côtes tunisiennes. Institut National des Sciences et Technologies de la Mer: Salammbô. ISBN 978-9938-9512-0-2. 128 pp. [details] additional source Howson, C.M.; Picton, B.E. (1997). The species directory of the marine fauna and 3 flora of the British Isles and surrounding seas. Ulster Museum Publication, 276. The Ulster Museum: Belfast, UK. ISBN 0-948150-06-8. vi, 508 (+ cd-rom) pp. [details] additional source Huber, M. (2010). Compendium of bivalves. A full-color guide to 3,300 of the world’s marine bivalves. A status on Bivalvia after 250 years of research. Hackenheim: ConchBooks. 901 pp., 1 CD-ROM. [details] context source (BeRMS 2020) Bio-environmental research group; Institute of Agricultural and Fisheries research (ILVO), Belgium; (2015): Epibenthos and demersal fish monitoring data in function of wind energy development in the Belgian part of the North Sea. [details] identification resource Cosel R. von & Gofas S. (2019). Marine bivalves of tropical West Africa: from Rio de Oro to southern Angola. Faune et Flore Tropicales. 48: 1-1104. [details] Última atualização: 25 Mar. 2019 4.
Recommended publications
  • Physiological Effects and Biotransformation of Paralytic
    PHYSIOLOGICAL EFFECTS AND BIOTRANSFORMATION OF PARALYTIC SHELLFISH TOXINS IN NEW ZEALAND MARINE BIVALVES ______________________________________________________________ A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy in Environmental Sciences in the University of Canterbury by Andrea M. Contreras 2010 Abstract Although there are no authenticated records of human illness due to PSP in New Zealand, nationwide phytoplankton and shellfish toxicity monitoring programmes have revealed that the incidence of PSP contamination and the occurrence of the toxic Alexandrium species are more common than previously realised (Mackenzie et al., 2004). A full understanding of the mechanism of uptake, accumulation and toxin dynamics of bivalves feeding on toxic algae is fundamental for improving future regulations in the shellfish toxicity monitoring program across the country. This thesis examines the effects of toxic dinoflagellates and PSP toxins on the physiology and behaviour of bivalve molluscs. This focus arose because these aspects have not been widely studied before in New Zealand. The basic hypothesis tested was that bivalve molluscs differ in their ability to metabolise PSP toxins produced by Alexandrium tamarense and are able to transform toxins and may have special mechanisms to avoid toxin uptake. To test this hypothesis, different physiological/behavioural experiments and quantification of PSP toxins in bivalves tissues were carried out on mussels ( Perna canaliculus ), clams ( Paphies donacina and Dosinia anus ), scallops ( Pecten novaezelandiae ) and oysters ( Ostrea chilensis ) from the South Island of New Zealand. Measurements of clearance rate were used to test the sensitivity of the bivalves to PSP toxins. Other studies that involved intoxication and detoxification periods were carried out on three species of bivalves ( P.
    [Show full text]
  • Surf Clams 1. Introduction
    SURF CLAMS SURF CLAMS Surf clam is a generic term used here to cover the following seven species: Deepwater tuatua, Paphies donacina (PDO) Fine (silky) dosinia, Dosinia subrosea (DSU) Frilled venus shell, Bassina yatei (BYA) Large trough shell, Mactra murchisoni (MMI) Ringed dosinia, Dosinia anus (DAN) Triangle shell, Spisula aequilatera (SAE) Trough shell, Mactra discors (MDI) The same FMAs apply to all these species and this introduction will cover issues common to all of these species. All surf clams were introduced into the Quota Management System on 1 April 2004. The fishing year is from 1 April to 31 March and commercial catches are measured in greenweight. There is no minimum legal size (MLS) for surf clams. Surf clams are managed under Schedule 6 of the Fisheries Act 1996. This allows them to be returned to the sea soon after they are taken provided they are likely to survive. 1. INTRODUCTION Commercial surf clam harvesting before 1995–96 was managed using special permits. From 1995–96 to 2002–03 no special permits were issued because of uncertainty about how best to manage these fisheries. New Zealand operates a mandatory shellfish quality assurance programme for all bivalve shellfish grown and harvested in areas for human consumption. Shellfish caught outside this programme can only be sold for bait. This programme is based on international best practice and is managed by the New Zealand Food Safety Authority (NZFSA), in cooperation with the District Health Board Public Health Units and the shellfish industry1. This involves surveying the water catchment area for 1. For full details of this programme, refer to the Animal Products (Regulated Control Scheme-Bivalve molluscan Shellfish) Regulations 2006 and the Animal Products (Specifications for Bivalve Molluscan 1270 SURF CLAMS pollution, sampling water and shellfish microbiologically over at least 12 months, classifying and listing areas for harvest, regular monitoring of the water and shellfish, biotoxin testing, and closure after rainfall and when biotoxins are detected.
    [Show full text]
  • Caracterização E Mapeamento De Marcadores Moleculares Em Espécies Da Família Veneridae De Interesse Comercial Em Portugal E Espanha
    Caracterização e mapeamento de marcadores moleculares em espécies da família Veneridae de interesse comercial em Portugal e Espanha. Estudo da hibridação entre Ruditapes 2012 decussatus e Ruditapes philippinarum JOANA CARRILHO RODRIGUES DA SILVA Tese de Doutoramento em Ciências Biomédicas Junho de 2012 Caracterização e mapeamento de marcadores moleculares em espécies da família Veneridae de interesse comercial em Portugal e Espanha. Estudo da hibridação entre Ruditapes decussatus e Ruditapes philippinarum JOANA CARRILHO RODRIGUES DA SILVA Tese de Doutoramento em Ciências Biomédicas Junho de 2012 Joana Carrilho Rodrigues da Silva Caracterização e mapeamento de marcadores moleculares em espécies da família Veneridae de interesse comercial em Portugal e Espanha. Estudo da hibridação entre Ruditapes decussatus e Ruditapes philippinarum Tese de Candidatura ao grau de Doutor em Ciências Biomédicas submetida ao Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto. Orientadora – Prof. Doutora Maria Isabel da Silva Nogueira Bastos Malheiro Categoria – Professora Associada (com Nomeação Definitiva) Afiliação – Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto. Co-orientadores: Doutora Alexandra Maria Bessa Ferreira Leitão-Ben Hamadou Categoria – Investigadora Auxiliar Afiliação – Instituto Nacional de Recursos Biológicos (INRB/L-IPIMAR) Prof. Doutor Juan José Pasantes Ludeña Categoria – Professor Titular Universidade Afiliação – Dpto. de Bioquímica, Xenética e Inmunoloxía, Universidade de VIgo This thesis was funded by Fundação para a Ciência e Tecnologia (FCT) - Ministério da Ciência, Tecnologia e Ensino Superior, with a PhD. grant, ref: SFRH/BD/35872/2007. It was also partially supported by grants from Xunta de Galicia and Fondos FEDER (PGI- DIT03PXIC30102PN; 08MMA023310PR; Grupos de Referencia Competitiva, 2010/80) and Universidade de Vigo (64102C124), and also by PTDC/MAR/72163/2006: FCOMP- 01-0124-FEDER-007384 of the FCT.
    [Show full text]
  • Age and Growth in Three Populations of Dosinia Exoleta (Bivalvia: Veneridae) from the Portuguese Coast
    Helgol Mar Res (2013) 67:639–652 DOI 10.1007/s10152-013-0350-7 ORIGINAL ARTICLE Age and growth in three populations of Dosinia exoleta (Bivalvia: Veneridae) from the Portuguese coast Paula Moura • Paulo Vasconcelos • Miguel B. Gaspar Received: 31 October 2012 / Revised: 25 February 2013 / Accepted: 4 March 2013 / Published online: 20 March 2013 Ó Springer-Verlag Berlin Heidelberg and AWI 2013 Abstract The present study aimed at estimating the age Keywords Dosinia exoleta Á Age Á Growth Á and growth in three populations of Dosinia exoleta from Latitudinal variation Á Fishing effects Á Portugal the Portuguese coast (Aveiro in the north, Setu´bal in the southwest and Faro in the south). Two techniques were compared to ascertain the most suitable method for ageing Introduction D. exoleta. Growth marks on the shell surface and acetate peel replicas of sectioned shells were the techniques The rayed artemis or mature dosinia (Dosinia exoleta applied. Two hypotheses were tested: growth parameters Linnaeus, 1758) is distributed from the Norwegian and present latitudinal variation along the Portuguese coast; Baltic Seas, southwards to the Iberian Peninsula, into the growth parameters are influenced by the fishing exploita- Mediterranean, and along the western coast of Africa to tion. Shell surface rings proved inappropriate for ageing Senegal and Gabon (Tebble 1966). This species burrows this species, whereas acetate peels provided realistic esti- deeply in sand, mud and gravel bottoms, from the intertidal mates of the von Bertalanffy growth parameters (K, L? and zone to 70 m depth (Poppe and Goto 1993; Macedo et al. t0). A latitudinal gradient in growth rate was detected, with 1999), but can be found up to 150 m depth (Anon 2001).
    [Show full text]
  • <I>Dosinia Elegans</I>
    A CONTRIBUTION TO THE ECOLOGY OF THE LAMELLIBRANCH DOSINIA ELEGANS1 HILARY B. MOORE AND NELIA N. L6PEZ University of Miami, Rosenstiel School of Marine and Atmospheric Sciences ABSTRACT Dosinia elegans is a venerid which is a constituent of sublittoral soft- bottom communities in Biscayne Bay, Florida. There are two settlements of young in the course of the year. A length of about ] 5 mm is reached in a year, and an animal with the maximum size of 25 to 30 mm is 2 to 3 years old. A mortality rate of 80 per cent per annum has been estimated. On the grounds studied, the biomass of Dosinia averaged 102 mg per square meter, and this produced the very high spawn output of J 60 mg. The ratio of annual productivity to standing crop was 2.8, which is about midway in the range of comparable local species. The growth rate was lower than that of most of these species. This study is based on materials collected in shallow sublittoral areas in Biscayne Bay from November 1963 to the present time. These areas and the methods employed have already been sufficiently described by Moore & Lopez (1966), and in reports of earlier studies of McNulty et al. (1962a, 1962b), on which we have drawn for some information. This study was initiated under grant number WP-00573 from the Public Health Service, later from the Federal Water Quality Administration, and continued under grant number WP-01433 from the latter agency. We are grateful to the agencies for their support and encouragement and also to many members of the Rosenstiel School who have shared in the work.
    [Show full text]
  • Bivalve ¢Shing and Maerl-Bed Conservation in France and the UK}Retrospect and Prospect
    AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS Aquatic Conserv: Mar. Freshw. Ecosyst. 13: S33–S41 (2003) Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/aqc.566 Bivalve ¢shing and maerl-bed conservation in France and the UK}retrospect and prospect J.M. HALL-SPENCERa,*, J. GRALLb, P.G. MOOREc and R.J.A. ATKINSONc a School of Biological Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK b Institut Universitaire Europeeen! de la Mer, LEMAR UMR-CNRS 6539, Place Copernic, Plouzane, France c University Marine Biological Station, Millport, Isle of Cumbrae, KA28 0EG, UK ABSTRACT 1. Maerl beds are carbonate sediments, built by a surface layer of slow-growing coralline algae, forming structurally fragile habitats. 2. They are of international conservation significance, often supporting a high biodiversity and abundant bivalve molluscs. 3. Experimental fishing for scallops (Pecten maximus) on French and UK grounds has shown that although large epifauna are often killed, many organisms escape harm as they burrow deeply or are small enough to pass through the dredges. 4. Bivalve dredging is currently one of the main threats to European maerl grounds as it reduces their biodiversity and structural complexity and can lead to long-term degradation of the habitat. 5. Protecting maerl grounds is of importance for fisheries since they provide structurally complex feeding areas for juvenile fish (e.g. Atlantic cod - Gadus morhua) and reserves of commercial brood stock (e.g. Ensis spp., P. maximus and Venus verrucosa). 6. We outline improved mechanisms to conserve these ancient and unique biogenic habitats. Copyright # 2003 John Wiley & Sons, Ltd.
    [Show full text]
  • Stratigraphical Notes on Macoma (Bivalvia) in the Southern Part of the North Sea Basin and Some Remarks on the Arrival of Pacific Species
    Stratigraphical notes on Macoma (Bivalvia) in the southern part of the North Sea Basin and some remarks on the arrival of Pacific species T. Meijer T. Meijer. Stratigraphical notes on Macoma (Bivalvia) in the southern part of the North Sea Basin and some remarks on the arrival of Pacific species. — Scripta Geol., Spec. Issue 2: 297-312, 2 Figs., Leiden, December 1993. T. Meijer, Rijks Geologische Dienst, Postbus 157, 2000 AD Haarlem, The Netherlands. Key words: Neogene, Quaternary, North Sea Basin, Pacific immigration, Bivalvia, Macoma. The stratigraphical occurrence in the southern North Sea Basin of the marine bivalve genus Macoma is reviewed. New data concerning first and last appearances are presented. Especially the first appearance of Macoma balthica and the last appearances of M. obliqua and M. praetenuis are discussed. M. balthica appears in the late Middle Tiglian (Early Pleistocene). M. obliqua has been found in offshore deposits dating from the climatic optimum of the last interglacial, the Eemian. M. praetenuis occurs in deposits just underlying the Eemian deposits. The age of these underlying deposits is uncertain but may be Late Saalian/Early Eemian. Both latter species were previously considered to be extinct after the late Middle Tiglian. The age of the arrival of 'Pacific' species in the North Sea Basin in the Pliocene is briefly dis• cussed. Contents Introduction 297 Discussion of the species 298 Conclusions 306 Remarks on the first appearance of Pacific species in the North Sea 309 References 309 Introduction In Neogene and Quaternary deposits of the southern North Sea Basin the marine bivalve genus Macoma (s.s.) is represented with the following four species: Macoma balthica (Linné, 1758) Macoma calcarea (Gmelin, 1791) Macoma obliqua (Sowerby, 1817) Macoma praetenuis (Leathes in Woodward, 1833).
    [Show full text]
  • Venerid Bibliography References for the "Generic Names" Database As Well As Other Selected Works on the Family Veneridae
    PEET Bivalvia Venerid Bibliography References for the "Generic Names" database as well as other selected works on the family Veneridae Accorsi Benini, C. (1974). I fossili di Case Soghe - M. Lungo (Colli Berici, Vicenza); II, Lamellibranchi. Memorie Geopaleontologiche dell'Universita de Ferrara 3(1): 61-80. Adachi, K. (1979). Seasonal changes of the protein level in the adductor muscle of the clam, Tapes philippinarum (Adams and Reeve) with reference to the reproductive seasons. Comparative Biochemistry and Physiology 64A(1): 85-89 Adams, A. (1864). On some new genera and species of Mollusca from the seas of China and Japan. Annals and Magazine of Natural History 13(3): 307-310. Adams, C. B. (1845). Specierum novarum conchyliorum, in Jamaica repertorum, synopsis. Pars I. Proceedings of the Boston Society of Natural History 12: 1-10. Ahn, I.-Y., G. Lopez, R. E. Malouf (1993). Effects of the gem clam Gemma gemma on early post-settlement emigration, growth and survival of the hard clam Mercenaria mercenaria. Marine Ecology -- Progress Series 99(1/2): 61-70 (2 Sept.) Ahn, I.-Y., R. E. Malouf, G. Lopez (1993). Enhanced larval settlement of the hard clam Mercenaria mercenaria by the gem clam Gemma gemma. Marine Ecology -- Progress Series 99(1/2): 51-59 Alemany, J. A. (1986). Estudio comparado de la microestructura de la concha y el enrollamiento espiral en V. decussata (L. 1758) y V. rhomboides (Pennant, 1777) (Bivalvia: Veneridae). Bollettino Malacologico 22(5-8): 139-152. Alemany, J. A. (1987). Estudio comparado de la microestructura de la concha y el enrollamiento espiral en Dosinia exoleta (L.
    [Show full text]
  • The Manila Clam Ruditapes Philippinarum (Adams & Reeve, 1850) in the Tagus Estuary (Portugal)
    Aquatic Invasions (2017) Volume 12, Issue 2: 133–146 Open Access DOI: https://doi.org/10.3391/ai.2017.12.2.02 © 2017 The Author(s). Journal compilation © 2017 REABIC Research Article Age and growth of a highly successful invasive species: the Manila clam Ruditapes philippinarum (Adams & Reeve, 1850) in the Tagus Estuary (Portugal) Paula Moura1, Lucía L. Garaulet2, Paulo Vasconcelos1,3, Paula Chainho2, José Lino Costa2,4 and Miguel B. Gaspar1,5,* 1Instituto Português do Mar e da Atmosfera (IPMA, I.P.), Avenida 5 de Outubro s/n, 8700-305 Olhão, Portugal 2MARE – Centro de Ciências do Mar e do Ambiente, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal 3Centro de Estudos do Ambiente e do Mar (CESAM), Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal 4Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal 5Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal *Corresponding author E-mail: [email protected] Received: 3 November 2016 / Accepted: 4 May 2017 / Published online: 23 May 2017 Handling editor: Philippe Goulletquer Abstract The Manila clam Ruditapes philippinarum (Adams & Reeve, 1850) was introduced in several regions worldwide where it is permanently established. In Portuguese waters, the colonisation of the Tagus Estuary by this invasive species coincided with a significant decrease in abundance of the native Ruditapes decussatus (Linnaeus, 1758). This study aimed to estimate the age and growth of the Manila clam, to compare the growth performance between R.
    [Show full text]
  • Channel Island Marine Molluscs
    Channel Island Marine Molluscs An Illustrated Guide to the Seashells of Jersey, Guernsey, Alderney, Sark and Herm Paul Chambers Channel Island Marine Molluscs - An Illustrated Guide to the Seashells of Jersey, Guernsey, Alderney, Sark and Herm - First published in Great Britain in 2008 by Charonia Media www.charonia.co.uk [email protected] Dedicated to the memory of John Perry © Paul Chambers, 2008 The author asserts his moral right to be identified as the Author of this work in accordance with the Copyright, Designs and Patents Act, 1988. All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical including photocopying, recording or by any information storage and retrieval system, without permission from the Publisher. Typeset by the Author. Printed and bound by Lightning Source UK Ltd. ISBN 978 0 9560655 0 6 Contents Introduction 5 1 - The Channel Islands 7 Marine Ecology 8 2 - A Brief History of Channel Island Conchology 13 3 - Channel Island Seas Shells: Some Observations 19 Diversity 19 Channel Island Species 20 Chronological Observations 27 Channel Island First Records 33 Problematic Records 34 4 - Collection, Preservation and Identification Techniques 37 5 - A List of Species 41 Taxonomy 41 Scientific Name 42 Synonyms 42 Descriptions and Illustrations 43 Habitat 44 Distribution of Species 44 Reports of Individual Species 45 List of Abbreviations 47 PHYLUM MOLLUSCA 49 CLASS CAUDOFOVEATA 50 CLASS SOLENOGASTRES 50 ORDER NEOMENIAMORPHA 50 CLASS MONOPLACOPHORA
    [Show full text]
  • Nemertea: Hoplonemertea) Jose E F Alfaya1,2, Gregorio Bigatti1,2, Hiroshi Kajihara3, Malin Strand4, Per Sundberg5 and Annie Machordom6*
    Alfaya et al. Zoological Studies (2015) 54:10 DOI 10.1186/s40555-014-0086-3 RESEARCH Open Access DNA barcoding supports identification of Malacobdella species (Nemertea: Hoplonemertea) Jose E F Alfaya1,2, Gregorio Bigatti1,2, Hiroshi Kajihara3, Malin Strand4, Per Sundberg5 and Annie Machordom6* Abstract Background: Nemerteans of the genus Malacobdella live inside of the mantle cavity of marine bivalves. The genus currently contains only six species, five of which are host-specific and usually found in a single host species, while the sixth species, M. grossa, has a wide host range and has been found in 27 different bivalve species to date. The main challenge of Malacobdella species identification resides in the similarity of the external morphology between species (terminal sucker, gut undulations number, anus position and gonad colouration), and thus, the illustrations provided in the original descriptions do not allow reliable identification. In this article, we analyse the relationships among three species of Malacobdella: M. arrokeana, M. japonica and M. grossa, adding new data for the M. grossa and reporting the first for M. japonica, analysing 658 base pairs of the mitochondrial cytochrome c oxidase subunit I gene (COI). Based on these analyses, we present and discuss the potential of DNA barcoding for Malacobdella species identification. Results: Sixty-four DNA barcoding fragments of the mitochondrial COI gene from three different Malacobdella species (M. arrokeana, M. japonica and M. grossa) are analysed (24 of them newly sequenced for this study, along with four outgroup specimens) and used to delineate species. Divergences, measured as uncorrected differences, between the three species were M.
    [Show full text]
  • Composite Prismatic Structure in Bivalve Shell
    Acta Palaeontologica Polonica Vol. 31, No. 1-2 pp. S26; pls. 1-14 Warszawa, 1986 SERGE1 V. POPOV COMPOSITE PRISMATIC STRUCTURE IN BIVALVE SHELL POPOV, S. V. Composite prismatic structure in bivalve shell. Acta Palaeont. Polonica, 31, 1-2, 3-28, 1986. Composite prismatic stru&ure has been examined in Nuculidae, Lucinidae, Cardi- idae, Tellinidae, Psammobiidae, Donacidae and Veneridae. This microstructure is divided into three basic structural varieties: typical composite prismatic, charac- teristic of Nuculidae (Nucula); fibrous composite prismatic, observed in Cardiidae. Tellinidae, Psammobiidae; and compound composite prismatic mainly characteristic of Donacidae and Veneridae. The observed differences within the structure, the orientation of prisms and the growth pattern are genetically determined. They may considerably supplement the criteria on which the taxonomy of the group is based. At the same time there exist phenotypic, environmentally controlled structural differences. K e. y w o r d s: Bivalves, shell microstructure, prismatic layer. Serget V. Popov. Paleontologtcal Instttute of the USSR Academy of Sciences. Pzofsoycznaya 113, 117868 Moskva. USSR. V-321. Received: March 1985. INTRODUCTION Cmposite prismatic structure forms the outer carbonate shell layer of some bivalve molluscs. This type of microstructure is one of the most complicated. This term is not interpreted synonymously by different scien- tists. Boggild (1930) first suggested it to be a variety of prismatic structure and defined it as the structure which "consists of larger prisms (prisms of the first order) each of them being composed of fine prisms (of the second order)... The prisms of the first order are placed horizontally, in the radial direction, and only form one layer; the prisms of the second order diverge towards the margin.
    [Show full text]