Solubility of Nacl, Nabr, and Kcl in Water, Methanol, Ethanol, and Their Mixed Solvents
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Measurements and Modeling of Gas Hydrates Formation in Inhibited Systems: High Pressure, High Salinity and Mixture of Inhibitors
MEASUREMENTS AND MODELING OF GAS HYDRATES FORMATION IN INHIBITED SYSTEMS: HIGH PRESSURE, HIGH SALINITY AND MIXTURE OF INHIBITORS by Yue Hu © Copyright by Yue Hu, 2018 All Rights Reserved A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Chemical Engineering). Golden, Colorado Date Signed: Yue Hu Signed: Dr. Amadeu K. Sum Thesis Advisor Golden, Colorado Date Signed: Dr. Jennifer Wilcox Associate Professor and Interim Head Department of Chemical and Biological Engineering ii ABSTRACT As energy demands continuously increase, oil and gas fields delve into ultra-deep water, which leads to severe operating conditions in terms of pressure, temperature, and water salinity. These conditions pose significant flow assurance challenges, especially gas hydrate formation and scale deposition. Reliable prediction of hydrate phase equilibrium at extreme conditions, in terms of high salinity and high pressure, is necessary for development and operations in ultra-deep water oil and gas production. However, according to the literature review, no open literature studies exist for the hydrate phase equilibria in brine systems above 69 MPa (10,000 psia) due to the challenges associated with experimental designs, safety issues and pitting corrosion problems. As a result, current hydrate prediction tools commonly used are not fully benchmarked and become unreliable at the extreme conditions of very high pressure and high salinity. In this study, experimental data on methane hydrate phase equilibria containing electrolytes, sodium chlo- ride (NaCl), potassium chloride (KCl), and ammonium chloride (NH4Cl) were measured for concentrations up to about 10 wt% at pressure below 10.3 MPa through both isochoric and differential scanning calorimetry (DSC) method with stepwise heating. -
Sodium Chloride (Halite, Common Salt Or Table Salt, Rock Salt)
71376, 71386 Sodium chloride (Halite, Common Salt or Table Salt, Rock Salt) CAS number: 7647-14-5 Product Description: Molecular formula: NaCl Appearance: white powder (crystalline) Molecular weight: 58.44 g/mol Density of large crystals: 2.17 g/ml1 Melting Point: 804°C1 Density: 1.186 g/ml (5 M in water)2 2 Solubility: 1 M in H2O, 20°C, complete, clear, colorless 2 pH: 5.0-8.0 (1 M in H2O, 25°C) Store at room temperature Sodium chloride is geologically stable. If kept dry, it will remain a free-flowing solid for years. Traces of magnesium or calcium chloride in commercial sodium chloride adsorb moisture, making it cake. The trace moisture does not harm the material chemically in any way. 71378 BioUltra 71386 BioUltra for molecular biology, 5 M Solution The products are suitable for different applications like purification, precipitation, crystallisation and other applications which require tight control of elemental content. Trace elemental analyses have been performed for all qualities. The molecular biology quality is also tested for absence of nucleases. The Certificate of Analysis provides lot-specific results. Much of the sodium chloride is mined from salts deposited from evaporation of brine of ancient oceans, or recovered from sea water by solar evaporation. Due to the presence of trace hygroscopic minerals, food-grade salt has a small amount of silicate added to prevent caking; as a result, concentrated solutions of "table salt" are usually slightly cloudy in appearance. 71376 and 71386 do not contain any anti-caking agent. Applications: Sodium chloride is a commonly used chemical found in nature and in all body tissue, and is considered an essential nutrient. -
Nietzsche and Psychedelics – Peter Sjöstedt-H –
Antichrist Psychonaut: Nietzsche and Psychedelics – Peter Sjöstedt-H – ‘… And close your eyes with holy dread, For he on honey-dew hath fed, And drunk the milk of Paradise.’ So ends the famous fragment of Kubla Khan by the Romantic poet, Samuel Taylor Coleridge. He tells us that the poem was an immediate transcription of an opium-induced dream he experienced in 1797. As is known, the Romantic poets and their kin were inspired by the use of psychoactive substances such as opium, the old world’s common pain reliever. Pain elimination is its negative advantage, but its positive attribute lies in the psychedelic (‘mind- revealing’)1 state it can engender – a state described no better than by the original English opium eater himself, Thomas De Quincey: O just and righteous opium! … thou bildest upon the bosom of darkness, out of the fantastic imagery of the brain, cities and temples, beyond the art of Phidias and Praxiteles – beyond the splendours of Babylon and Hekatómpylos; and, “from the anarchy of dreaming sleep,” callest into sunny light the faces of long-buried beauties … thou hast the keys of Paradise, O just, subtle, and mighty opium!2 Two decades following the publication of these words the First Opium War commences (1839) in which China is martially punished for trying to hinder the British trade of opium to the Chinese people. Though opium, derived from the innocent garden poppy Papavar somniferum, may cradle the keys to Paradise it also clutches the keys to Perdition: its addictive thus potentially ruinous nature is commonly known. Today, partly for these reasons, opiates are mostly illegal without license – stringently so in their most potent forms of morphine and heroin. -
Comparison of Intranasal Versus Intravenous Midazolam for Management of Status Epilepticus in Dogs: a Multi-Center Randomized Parallel Group Clinical Study
Received: 16 July 2019 Accepted: 9 September 2019 DOI: 10.1111/jvim.15627 STANDARD ARTICLE Comparison of intranasal versus intravenous midazolam for management of status epilepticus in dogs: A multi-center randomized parallel group clinical study Marios Charalambous1 | Holger A. Volk2 | Andrea Tipold2 | Johannes Erath2 | Enrice Huenerfauth2 | Antonella Gallucci3 | Gualtiero Gandini3 | Daisuke Hasegawa4 | Theresa Pancotto5 | John H. Rossmeisl5 | Simon Platt6 | Luisa De Risio7 | Joan R. Coates8 | Mihai Musteata9 | Federica Tirrito10 | Francesca Cozzi10 | Laura Porcarelli11 | Daniele Corlazzoli11 | Rodolfo Cappello12 | An Vanhaesebrouck13 | Bart J.G. Broeckx14 | Luc Van Ham1 | Sofie F.M. Bhatti1 1Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium 2Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany 3Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy 4Department of Clinical Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan 5Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia 6Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, Georgia 7Small Animal Referral Centre, Animal Health Trust, Newmarket, United Kingdom 8Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri 9Department of Clinical Veterinary -
Self-Diffusion of Sodium, Chloride and Iodide Ions in Methanol-Water Mixture
Self-Diffusion of Sodium, Chloride and Iodide Ions in Methanol-Water Mixture E. Hawlicka* Institute of Applied Radiation Chemistry, Technical University, Wroblewskiego 15, 93-590, Lodz, Poland Z. Naturforsch. 41 a, 939-943 (1986); received April 25, 1986 The self-diffusion coefficients of Na+, C l- and I- in methanol-water solutions at 35 ± 0.01 °C have been measured in their dependence on the salt molarity in the range 1 • 10-4— 1 • 10-2 mol dm -3. The ionic self-diffusion coefficients in infinitely diluted solutions have been computed. The influence of the solvent composition on the solvation of the ions is discussed. A preferential hydration of Na+, Cl - and I “ ions in water-methanol mixtures has been found. In spite of the great interest in the porperties of aqueous solution with a Nal(Tl) scintillation crystal water-organic solvent electrolyte solutions, data on of the well-type (2 x 2"). the ionic mobilities in such systems are scarce. For the self-diffusion measurements the open-end Usually the ionic mobility is calculated from the capillary method was used. The details of the equivalent conductance and the transference num experimental procedure have been described in [6], ber. Ionic transference numbers have been reported The labelling of the sodium ions with 22Na or for water and 17 organic solvents [1], but only for a 24Na and the iodide ions with i25I or 1311, respective few water-organic solvents mixtures. ly, did not make any difference in the results. Similar information can be obtained from the ionic self-diffusion coefficients, which have been reported for a few water-organic solvent systems Results [2-5], The aim of the present work was to determine the All self-diffusion experiments have been carried self-diffusion coefficients of sodium, chloride and out at 25.0 ± 0.05 °C. -
Salt Effect on Vapor-Liquid Equilibria for Acetone-Water System'
SALT EFFECT ON VAPOR-LIQUID EQUILIBRIA FOR ACETONE-WATER SYSTEM' E1ZO SADA, TOSHIO OHNO** AND SHIGEHARU KITO Department of Chemical Engineering, Nagoya University, Nagoya, Japan Vapor-liquid equilibrium data of acetone-water system saturated with sodium chloride, potassium chloride, sodium nitrate, and calcium chloride dihydrate are determined under atmospheric pressure. These vapor-liquid equilibrium data are correlated by a method which gives approximately the behavior of salt in the liquid. The standard deviation of correlated results is 2.32%. To carry out this correlation, the vapor pressures of aqueous solutions saturated with salts are also determined. Investigations concerned with the effect of salt the portion between Cx and Hj is brought to the addition on the vapor-liquid equilibria of binary- vapor pressure of sample solution. Whenthe system systems are of theoretical and industrial importance, attains equilibrium (about one hour is needed), and not a little knowledge of vapor-liquid equilibrium the heights of Hl5 H2, and H3 aremeasured, and the data in this field is already available2}. However, vapor pressure is calculated from the following most investigations are limited to presentation of equation. P '---(Hi-H,W+(Hg-H,W experimental data with no attempt to develop a cor- LO -% r relation. Among these, only a few correlations />*" (1) are proposed, for example, by Johnson and Furter5), As the density of sample solution is usually an order and Hashitani and Hirata3). In this paper, the vapor-liquid equilibrium data of magnitude lower than for mercury, it does not decrease the accuracy of measurementto use the for the acetone-water system saturated with each density of pure water at measuring temperature in of four kinds of salt, i.e. -
Vaccine Excipient Table
Vaccine Excipient Summary Excipients Included in U.S. Vaccines, by Vaccine In addition to weakened or killed disease antigens (viruses or bacteria), vaccines contain very small amounts of other ingredients – excipients. Some excipients are added to a vaccine for a specific purpose. These include: Preservatives, to prevent contamination. For example, thimerosal. Adjuvants, to help stimulate a stronger immune response. For example, aluminum salts. Stabilizers, to keep the vaccine potent during transportation and storage. For example, sugars or gelatin. Others are residual trace amounts of materials that were used during the manufacturing process and removed. These can include: Cell culture materials, used to grow the vaccine antigens. For example, egg protein, various culture media. Inactivating ingredients, used to kill viruses or inactivate toxins. For example, formaldehyde. Antibiotics, used to prevent contamination by bacteria. For example, neomycin. The following table lists substances, other than active ingredients (i.e., antigens), shown in the manufacturers’ package insert (PI) as being contained in the final formulation of each vaccine. Note: Substances used in the manufacture of a vaccine but not listed as contained in the final product (e.g., culture media) can be found in each PI, but are not shown on this table. Each PI, which can be found on the FDA’s website (see below) contains a description of that vaccine’s manufacturing process, including the amount and purpose of each substance. In most PIs, this information is found -
Rectal Absorption in Childhood
RECTAL ABSORPTION IN CHILDHOOD by JOHN WILLIAM ALEXANDER MACKENZIE, M.B., Ch. THESIS SUBMITTED FOR DEGREE OF M.D. UNIVERSITY OF GLASGOW ProQuest Number: 13849818 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 13849818 Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 (i) CONTENTS Page Preface, ..« «». ••• ••• (ii) Introduction, ... ... ... 1. The Origins of Rectal Therapy, ... 1. The Present Position, ... ... 6. Investigation: A. The Absorption of Glucose, ... 11. Blood Sugar Studies, ... ... 15. The Glucose Content of the Rectal Washout. 18. The Effect of the Glucose Enema on Nitrogen Metabolism, ... ... 19. B. The Absorption of Sodium Chloride, ... 35. C. The Absorption of Predigested Protein, 41. D. The Absorption of Drugs, ... ... 53. 1. Potassium Bromide, ... ... 55. 2. Sodium Salicylate, ... ... 58. 3. Sulphanilamide, ... ... 65. Discussion. The Range of Substances Absorbed, ... 73. The Path of Absorption, ... ... 76. The Quantity Given, ... ... 80. General Conclusion, ... ... ... 84. General Summary, ... ... ... 86. APPENDIX. 1. Solutions used for Rectal Infusion, 87. 2. Biochemical Methods, ... 89. 3. Bibliography, ... ... 94. (ii) PREFACE The work for this thesis was carried out in the wards and biochemical laboratory of the Royal Hospital for Sick Children, Glasgow. -
Action of Ammonium Chloride Upon Silicates
Bulletin No. 207 Series E, Chemistry and Physics, 36 DEPARTMENT OF TEiE INTERIOR UNITED STATES GEOLOGICAL SURVEY CHARLES D. WALCOTT, DIRECTOR THE ACTION OF AMMONIUM CHLORIDE UPON SILICATES BY AND GKKOKG-IE Srj::ir, WASHINGTON GOVERNMEN.T PllINTING OFFICE 1902 CONTENTS. Page. Introductory statement......--..-..---.--.------.--.-..--.-.-----------. 7 Analcite-.....-.-.-.--.-.....-.--.'--------....--.-.--..._.-.---.-...---.--. 8 Leucite .....................'.................-....................^-..... 16 The constitution of analcite and leucite.........-..--.-..--...--.---------. 17 Pollucite---. ............................................................ 21 Natrolite--------------------------..-..-----------------.------ --------- 22 Scolecite ................,.:............-.....-.................--.--.... 24 Prehnite .....--.-............--.------------------------------ --------- 25 The trisilicic acids-.--.-.--..---..........-._-----...-.........-...----.- 26 Stilbite.............-..................-....-.-.-----...--.---.......... 29 Henlandite .......... .......................---.-..-.-..-...-----.--..--.. 81 Chabazite............................................................... 32 Thoinsonite...-.-.-..-...._.................---...-.-.-.----..-----..--.. 34 Lanmontite -.-.------.-..-------------.-..-.-..-.-------.-.-----........ 35 Pectolite ......:......... ......................................'.......;.., 36 Wollastonite ....'............................ ................:........... 39 Apophyllite. _.--._..._-....__.....:......___-------------....----..-...._ -
Canine Status Epilepticus Care
Vet Times The website for the veterinary profession https://www.vettimes.co.uk CANINE STATUS EPILEPTICUS CARE Author : Stefano Cortellini, Luisa de Risio Categories : Vets Date : August 2, 2010 Stefano Cortellini and Luisa de Risio discuss emergency management techniques for a condition that can claim the lives of 25 per cent of afflicted dogs – as the quicker the start of treatment, the better the chances of control STATUS epilepticus (SE) is a neurological emergency with a mortality of up to 25 per cent in dogs (Bateman, 1999). SE can be defined as continuous epileptic seizure (ES) activity lasting longer than five minutes, or as two or more ES with incomplete recovery of consciousness interictally. SE has also been defined as continuous seizure activity lasting for 30 minutes or longer. However, emergency treatment to stop the ES should be administered well before the defined 30-minute time. The most common type of SE is generalised tonic-clonic status. When this is prolonged, the tonic- clonic clinical manifestations can become subtle, with only small muscle twitching and altered mentation. This status is called electromechanical dissociation, as continued abnormal electrical activity in the brain persists while the motor manifestations are minimal to absent. In these cases, emergency anti-epileptic treatment is necessary as for tonic-clonic status. SE can be divided into two stages. The first stage is characterised by generalised tonicclonic seizures and an increase in autonomic activity that causes tachycardia, hypertension, 1 / 7 hyperglycaemia, hyperthermia and increased cerebral blood flow. The second stage of SE starts after about 30 minutes and is characterised by hypotension, hypoglycaemia, hyperthermia, hypoxia, decreased cerebral blood flow, cerebral oedema and increased intracranial pressure. -
Determination of Bromine Number According ASTM D 1159
SI Analytics-Application report Titration Determination of bromine number according ASTM D 1159 Description This application note describes the determination of the bromine number of petroleum distillates, olefins and similar samples with a bromine number > 1. For bromine numbers < 1 please use the test method for ASTM D 2710 or for aromatic hydrocarbons the coulometric test method ASTM D1492. Instruments Titrator TL 7000 or higher with 10 or 20 ml burette. Electrode Pt 1200, Pt 1400 or KF 1100 and temperature sensor (e.g. W W 5790 NN) Cable L 1 NN (only for Pt 1200 and Pt 1400) Stirrer Magnetic stirrer TM 235 Lab accessory Glass beaker 150 ml or larger with an ice bath or double jacketed titration vessel TZ 1756 with a cryostat. The sample have to be maintained at a temperature between 0 – 5 °C. 50 ml volumetric flask with stopper, 250 ml graduated measuring cylinder 5 ml volumetric pipette or variable one Magnetic stirrer bar 30 mm Reagents 1 Bromide-Bromate, Standard Solution(0.2500 M as Br2) 2 Glacial acetic acid 3 Dichloromethane (as replacement of 1,1,1-trichloroethane) 4 Methanol 5 Sodium thiosulfate solution 0.1 M for standardization of the titrant (optional) 7 Sulfuric acid 1/5 diluted (1 part H2SO4 conc. + 5 parts water) 6 Potassium Iodide solution (150 g/L) for standardization of the titrant (optional) 8 Starch indicator solution of redox electrode Pt 62 (+ WA 50 exchangeable unit) All reagents should be of analytical grade or better. Bromine number ASTM D 1159.docx 1/4 Titration procedure Titration solvent Prepare 1 L of titration solvent by mixing the following volumes of materials: 714 mL of glacial acetic acid, 134 mL of 1,1,1-trichloroethane (or better dichloromethane), 134 mL of methanol, and 18 mL of H2SO4(1 + 5). -
' -I {\~ 'Lr:R, ~', C, T...J5.--Ia. Rl V{. Rici-...L... FRENCH
WORLD HEALTH ORGANIZATION MNH/83.7 ORGANISATION MONDIALE D! LA SANTE ..' ,I ORIGINAL: ENGLISH/ t) I'(.AA ... ) ' -I r:r, t......J5.--iA. rl V{. rICI-..... l... FRENCH {\~ ' l ~' , C, .. {.;'.; (,( 0 ' . \"'''-C:.. ~\ ~ ~v '- ' / '~ v- J C; SEVENTH REVIEW OF PSYCHOACTIVE SUBSTANCES FOR INTERNATIONAL CONTROL ) Geneva, 7-11 March 1983 " : CONTENTS INDEXED _, INTRODUCTION 1 SCOPE OF THE MEETING • 2 SOURCES AND NATURE OF DATA REVIEWED 2 REVIEW OF DRUGS FOR INTERNATIONAL CONTROL 2 i 4.1 Alfentanil 2 . 4.2 Chloral hydrate • 3 :4.3 Paraldehyde • • • 3 4.4 Potassium bromide 3 ' 4.5 Buprenorphine 3 ,4.6 Butorphanol • 4 4.7 Cyclazocine 4 4.8 Nalbuphine 4 4.9 Pentazocine • • • • 4 WHO'S CANCER PAIN RELIEF PROGRAMME 5 .; CONSIDERATIONS OF FUTURE PROGRAMMES • • • • 5 LIST OF PARTICIPANTS 6 ~~ EX I ...... 8 INTRODUCTION Dr Halfdan Mahler, Director-General of WHO, Dr Lu Rushan, Assistant tor-General of WHO, welcomed the participants in this meeting and expressed the concern of Tegarding the process of reviewing substances for international control. Dr Norman Sartorius, Director, Division of Mental Health WHO, discussed with the ipants the conditions in the developing nations which must be considered in reaching regarding the recommendation of substances for international control. He referred ifically to a gradual change in the attitude of people towards pain. No longer is pain as a natural accompaniment of disease. The effective analgesics, widely available the developed countries of the world, must become available for legitimate medical needs P~ tients in the developing countries. This availability of analgesic drugs must however into account the fact that many such substances are capable of producing dependence and • consequence significant public health and social problems.