Rate of Concurrent Otitis Media in Upper Respiratory Tract Infections with Specific Viruses

Total Page:16

File Type:pdf, Size:1020Kb

Rate of Concurrent Otitis Media in Upper Respiratory Tract Infections with Specific Viruses ORIGINAL ARTICLE Rate of Concurrent Otitis Media in Upper Respiratory Tract Infections With Specific Viruses Cuneyt M. Alper, MD; Birgit Winther, MD, PhD; Ellen M. Mandel, MD; J. Owen Hendley, MD; William J. Doyle, PhD Objective: To estimate the coincidence of new otitis me- Results: A total of 176 children (81%) had isolated PCR dia (OM) for first nasopharyngeal detections of the more detection of at least 1 virus. The OM coincidence rates common viruses by polymerase chain reaction (PCR). were 62 of 144 (44%) for rhinovirus, 15 of 27 (56%) for New OM episodes are usually coincident with a viral up- respiratory syncytial virus, 8 of 11 (73%) and 1 of 5 (20%) per respiratory tract infection (vURTI), but there are con- for influenza A and B, respectively, 6 of 12 (50%) for ad- flicting data regarding the association between specific enovirus, 7 of 18 (39%) for coronavirus, and 4 of 11 (36%) viruses and OM. for parainfluenza virus detections (P=.37). For rhinovi- rus, new OM occurred in 50% of children with and 32% Design: Longitudinal (October-March), prospective fol- without a concurrent CLI (P=.15), and OM risk was pre- low-up of children for coldlike illness (CLI) by diary, middle dicted by OM and breastfeeding histories and by daily ear status by pneumatic otoscopy, and vURTI by PCR. environment outside the home. Setting: Academic medical centers. Conclusions: New OM was associated with nasopha- ryngeal detection of all assayed viruses irrespective of Participants: A total of 102 families with at least 2 chil- the presence or absence of a concurrent CLI. Differ- dren aged between 1 and 5 years (213 children; mean [SD] ences among viruses were noted, but statistical signifi- age, 3.7 [1.5] years; 110 male; and 176 white) were recruited cance was not achieved, possibly because of the low from the local communities at 2 study sites by advertisement. power associated with the small number of nonrhinovi- rus detections. Main Outcome Measures: New OM and CLI epi- sodes and nasopharyngeal virus detections. Arch Otolaryngol Head Neck Surg. 2009;135(1):17-21 T IS WELL ACCEPTED THAT MOST versely, that 20% to 40% of CLIs are as- new episodes of otitis media sociated with OM.8-11 Other studies (OM) are temporally coincident reported the recovery of virus, virus pro- with viral upper respiratory tract tein, and viral genomic sequences from the infections (vURTIs),1 and experi- middle ear in subjects with new-onset mental evidence supports causality for this symptomatic OM (acute OM [AOM]) or I 2-4 relationship. vURTIs may or may not persistent OM and related these findings present with a sign-symptom constella- to viral infection of the middle ear mu- tion recognized as a coldlike illness (CLI), cosa as the cause of those episodes.12-16 and the results of some studies show that However, this interpretation can be ques- Author Affiliations: a CLI is not a prerequisite for the devel- tioned based on the results of other stud- Department of Otolaryngology, opment of OM.5,6 Because vURTIs with- ies that reported recovery from the middle Children’s Hospital of out CLI expression do not present clini- ear of genomic sequences for viruses that Pittsburgh and the University of cally, most estimates of the frequency of do not infect the upper respiratory tract Pittsburgh School of Medicine, all OM episodes attributable to vURTIs are but rather establish a persistent infection Pittsburgh, Pennsylvania calculated as the number of OM episodes in other cell types (eg, human immuno- (Drs Alper, Mandel, and Doyle); and Departments of divided by the number of CLI episodes and deficiency virus, Epstein-Barr virus, cyto- Otolaryngology (Dr Winther) therefore are biased. megalovirus, varicella-zoster virus, and 17,18 and Pediatrics (Dr Hendley), Past studies report that more than 50% herpes virus). University of Virginia Health of all new OM episodes in children are tem- Perhaps as a consequence of the wide va- System, Charlottesville. porally associated with a CLI,6,7 and con- riety of study formats used to estimate (REPRINTED) ARCH OTOLARYNGOL HEAD NECK SURG/ VOL 135 (NO. 1), JAN 2009 WWW.ARCHOTO.COM 17 ©2009 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 10/01/2021 OM-vURTI coincidence in children, the literature is in- servation time, both ears were examined by a validated otoscopist consistent with respect to the relative importance of the and classified as to the presence or absence of OM based on different vURTI viruses.7,8,12,16,19-22 However, because most ratings of the tympanic membrane with respect to visibility, con- interventions that are potentially useful in preventing new dition, position, appearance, color, vascularity, light reflex, and OM during a vURTI are virus specific, unbiased esti- mobility. A positive diagnosis for OM was made when middle ear effusion (with or without air-fluid level) was observed ir- mates of virus-specific OM risk are needed.1,8 This study respective of the presence or absence of concurrent signs of addresses that need using a longitudinal format with high- middle ear infection. Acute OM was diagnosed by the pres- density assessments for detection of OM, CLI, and naso- ence of OM with concurrent signs of middle ear infection in- pharyngeal virus in a large group of unselected children. cluding parental report of ear pulling, otalgia, irritability, and The null hypothesis tested is that the new OM coinci- fussiness and otoscopic signs of erythema and/or white opaci- dence rate of a vURTI is not virus specific. Acceptance or fication (other than from scarring) of the tympanic mem- rejection of this hypothesis is important for developing ra- brane, bulging or fullness of the tympanic membrane, or otor- tional strategies to prevent that complication. rhea from a perforation of a previously intact tympanic membrane. Otitis media with effusion (OME) was assigned to OM episodes without concurrent signs of infection. Episodes METHODS of AOM but not OME were treated empirically with antibiot- ics. Because otoscopy was not necessarily performed at a time The data for this report were abstracted from those available for when the child first presented with otologic symptoms (the chil- the first 4 years of an ongoing, 5-year study designed to charac- dren were seen and treated by their primary care physician for terize the causal relationships among vURTIs, CLIs, and OM in most illnesses), subclassification of OM for this report was bi- young children. The protocol was approved by the institutional ased to OME assignment. review boards at the University of Pittsburgh and the University Otoscopic data were coded for the left and right ears as OME of Virginia. Families at 2 study sites (Pittsburgh, Pennsylvania, present or absent (0=absent; 1=present), and AOM present or and Charlottesville, Virginia) with 2 children aged between 1 and absent (0=absent; 2=present). Between otoscopic assess- 5 years were recruited for participation by advertisement. Ex- ments, daily OM assignment for each ear was made based on clusion criteria included the presence in either child of a seri- that at the preceding visit, to yield a string of observations for ous medical condition, a medical condition that predisposes to each day of the study period. A new OME episode was defined persistent OM, a nonintact or structurally abnormal tympanic as a sequence of 1s preceded and followed by a sequence of 0s, membrane, a preexisting sensorineural hearing loss, or an in- and an episode of AOM was defined as a newly introduced string ability to cooperate sufficiently with the examination and test of 2s, irrespective of preceding and subsequent observations. procedures. After affirmation of willingness to participate and In the analysis, the child was considered to be the unit of mea- acquisition of written informed consent, families were entered sure, and either new unilateral or bilateral OM episodes were into the study in October with an anticipated follow-up through assigned as a new OM episode. April of that year and were reimbursed for participation. The study The technique for collecting nasal secretions from the chil- subjects included the 2 index children and any older siblings dren and the methods and protocols for storage and transport younger than 10 years who provided assent. of the specimens to the virology laboratory were previously de- The data for this report consist of demographic information scribed.24 Samples were assayed in batches for PCR detection of for each child (age, sex, and race), information on selected OM adenovirus, coronavirus, influenza virus A and B, parainflu- risk factors (history of OM, frequent colds, breastfeeding, and enza virus, rhinovirus (picornavirus), and respiratory syncytial exposure to tobacco smoke and the child’s daily environment virus (RSV) using a protocol adapted from the commercially avail- for a subset of children [those enrolled at the Pittsburgh site in able Hexaplex procedure (Prodesse Inc, Waukesha, Wiscon- years 1-4 and at the Charlottesville site in years 2-4]),23 the lon- sin) as described in previous publications.6 Each viral species was gitudinal daily assignments of the presence or absence of a CLI assigned a numeric code, and the temporal distribution for these day as recorded by a parent and weekly assignments of the pres- codes was overlaid onto the sequence strings for CLI and new ence or absence of OM as assessed by bilateral pneumatic otos- OM episodes. Detections of the same virus within a 20-day pe- copy performed by validated study personnel. These data were riod and without an intermittent observation of a different vi- supplemented with virus detections by polymerase chain reac- rus or “no detectable virus” were linked as a single virus detec- tion (PCR) assay of nasal secretions collected from the children tion.
Recommended publications
  • Acute Otitis Media, Acute Bacterial Sinusitis, and Acute Bacterial Rhinosinusitis
    Acute Otitis Media, Acute Bacterial Sinusitis, and Acute Bacterial Rhinosinusitis This guideline, developed by Larry Simmons, MD, in collaboration with the ANGELS team, on October 3, 2013, is a significantly revised version of the Recurrent Otitis Media guideline by Bryan Burke, MD, and includes the most recent information for acute otitis media, acute bacterial sinusitis, and acute bacterial rhinosinusitis. Last reviewed by Larry Simmons, MD on July 5, 2016. Preface As the risk factors for the development of acute otitis media (AOM) and acute bacterial sinusitis (ABS)/ acute bacterial rhinosinusitis (ABRS) are similar, the bacterial pathogens are essentially the same for both AOM and ABS/ABRS, and since the antimicrobial treatments are similar, the following guideline is based, unless otherwise referenced, on recently published evidenced-based guidelines by the American Academy of Pediatrics (AAP) for AOM,1,2 and by the Infectious Diseases Society of 3 America (IDSA) for ABRS. This guideline applies to children 6 months to 12 years of age and otherwise healthy children without pressure equalizer (PE) tubes, immune deficiencies, cochlear implants, or anatomic abnormalities including cleft palate, craniofacial anomalies, and Down syndrome. However, the IDSA ABRS guideline includes recommendations for children and adult patients. Key Points Acute otitis media (AOM) is characterized by a bulging tympanic membrane (TM) + middle-ear effusion. Antibiotic treatment is indicated in children ≥6 months of age with severe AOM, children 6-23 months of age with mild signs/symptoms of bilateral AOM. In children 6-23 months of age with non-severe unilateral AOM, and in children ≥24 months of age with bilateral or unilateral 1 AOM who have mild pain and low fever <39°C/102.2°F, either antibiotic treatment or observation is appropriate.
    [Show full text]
  • Effectiveness of Intranasal Live Attenuated Influenza Vaccine Against All-Cause Acute Otitis Media in Children Heikkinen Et Al Terho Heikkinen, MD, Phd,* Stan L
    Mary INF VACCINE REPORTS 203098 LAIV and Acute Otitis Media Effectiveness of Intranasal Live Attenuated Influenza Vaccine Against All-cause Acute Otitis Media in Children Heikkinen et al Terho Heikkinen, MD, PhD,* Stan L. Block, MD,† Seth L. Toback, MD,‡ Xionghua Wu, PhD,‡ and Christopher S. Ambrose, MD‡ cute otitis media (AOM) remains the most common bacterial Background: Acute otitis media (AOM) is a frequent complication of influ- infection and the most frequent reason for antibiotic treatment enza in children, and influenza vaccination helps protect against influenza- A Pediatr Infect Dis J in infants and young children. Although the incidence of AOM associated AOM. A live attenuated influenza vaccine (LAIV) approved for peaks around the age of 1 year, the rates of AOM are substantial eligible children aged ≥2 years for the prevention of influenza also effec- in older children.1,2 The high prevalence of antimicrobial resistance tively reduces influenza-associated AOM. However, the annual effective- among common bacteria causing AOM has substantially compli- Lippincott Williams & Wilkins ness of LAIV against all-cause AOM is unknown. cated the management of AOM, and efforts to reduce the use of Methods: AOM rates in children aged 6–83 months from 6 randomized, antibiotics for this disease are being assessed. As a consequence, placebo-controlled trials and 2 randomized, inactivated influenza vaccine- prevention of AOM through vaccination is an important area of controlled trials were pooled and analyzed. To enable comparison with Hagerstown, MD research.3,4 studies of AOM prevention by pneumococcal conjugate vaccines, 12-month Pneumococcal conjugate vaccines (PCVs) are currently effectiveness was calculated assuming that LAIV had no effect outside of used in most developed countries to prevent severe invasive pneu- influenza seasons.
    [Show full text]
  • Otovent Nasal Balloon for Otitis Media with Effusion
    pat hways Otovent nasal balloon for otitis media with effusion Medtech innovation briefing Published: 15 March 2016 www.nice.org.uk/guidance/mib59 Summary Otovent is a balloon device designed to relieve the symptoms of otitis media with effusion, commonly known as glue ear. An Otovent kit consists of a nose piece and 5 latex balloons that are inflated yb blowing through the nose. Four randomised controlled trials, all in children, have shown that using the device causes significant improvements, compared with standard care, in middle ear function; 1 of the trials also reported a significant reduction in the need for entilationv tube (grommet) insertion surgery. Outcomes varied by compliance with (that is, adherence to) treatment, and standard care was not consistently described. The Otovent kit is available to buy or can be provided on a NHS prescription. The recommended retail price is £7.84 including VAT and the current Drug Tariff price is £4.90 excluding VAT. No additional consumables are needed. © NICE 2020. All rights reserved. Subject to Notice of rights (https://www.nice.org.uk/terms-and- Page 1 of conditions#notice-of-rights). 24 Otovent nasal balloon for otitis media with effusion (MIB59) Product summary and likely place in Effectiveness and safety therapy • No relevant evidence was found for the use of • Otovent is designed to help open the Otovent in adults. Eustachian tubes and equalise the air pressure in the middle ear. • Four randomised controlled trials involving a total of 565 children showed statistically significant • The device can be used in people improvements in middle ear function with with Eustachian tube dysfunction Otovent compared with standard care, as associated with glue ear (otitis determined by tympanometry and pneumatic media with effusion), or after flying, otometry.
    [Show full text]
  • Bacterial Sinusitis and Otitis Media Following Inffuenza Virus Infection In
    INFECTION AND IMMUNITY, May 2006, p. 2562–2567 Vol. 74, No. 5 0019-9567/06/$08.00ϩ0 doi:10.1128/IAI.74.5.2562–2567.2006 Copyright © 2006, American Society for Microbiology. All Rights Reserved. Bacterial Sinusitis and Otitis Media following Influenza Virus Infection in Ferrets Ville T. Peltola,1 Kelli L. Boyd,2 Julie L. McAuley,1 Jerold E. Rehg,3 and Jonathan A. McCullers1* Departments of Infectious Diseases1 and Pathology3 and Animal Resources Center,2 St. Jude Children’s Research Hospital, Memphis, Tennessee Received 17 August 2005/Returned for modification 27 September 2005/Accepted 1 February 2006 Streptococcus pneumoniae is the leading cause of otitis media, sinusitis, and pneumonia. Many of these infections result from antecedent influenza virus infections. In this study we sought to determine whether the frequency and character of secondary pneumococcal infections differed depending on the strain of influenza virus that preceded bacterial challenge. In young ferrets infected with influenza virus and then challenged with pneumococcus, influenza viruses of any subtype increased bacterial colonization of the nasopharynx. Nine out of 10 ferrets infected with H3N2 subtype influenza A viruses developed either sinusitis or otitis media, while only 1 out of 11 ferrets infected with either an H1N1 influenza A virus or an influenza B virus did so. These data may partially explain why bacterial complication rates are higher during seasons when H3N2 viruses predominate. This animal model will be useful for further study of the mechanisms that underlie viral-bacterial synergism. Influenza virus infection predisposes children to secondary was itself replaced in 1968 with a strain carrying a new H3 HA bacterial infections such as sinusitis, otitis media, and pneu- but the same N2 NA (subtype H3N2).
    [Show full text]
  • Pneumonia and Otitis Media
    put together by Alex Yartsev: Sorry if i used your images or data and forgot to reference you. Tell me who you are. [email protected] Pneumonia and Otitis Media Detailed History of Presenting Illness (HPI) PNEUMONIA - Fever - Rigors ( chills ) - Cough - Wheeze - Tachypnoea - Pleuritic chest pain OTITIS MEDIA - Pain in Ear - Exudate from ear (if tympanic membrane integrity is compromised) - Low-grade fever - Poor appetite - Irritablily - Usually v. young (<2 y.o) Differential Diagnoses (DDx) PNEUMONIA DD X Bacterial or Viral Pneumonia: !! SUDDEN ONSET = BACTERIAL!! !! GRADUAL ONSET = VIRAL!! - Recurrent Lower Respiratory Tract Infection due to immune suppression - Tuberculosis - Pertussis (whooping Cough , respective of age group) NON-INFECTIOUS CAUSES THAT CAN PRESENT AS PNEUMONIA: - Congestive Heart Failure, - Wegener's granulomatosis (diffuse connective - pulmonary infiltrates with eosinophilia, tissue disease, aetiology unknown) - pulmonary hemorrhage, - collagen-vascular disorders - Goodpasture's syndrome, (hypersensitivity, basement - (including rheumatoid lung disease, SLE, membrane antibodies) scleroderma), - pulmonary embolism, - amyloidosis, - neoplastic disease, - sarcoidosis, - radiation injury, - interstitial pneumonitis (e.g., farmers, bird - inhalation injury, breeders), - pulmonary contusion, - drug reactions (e.g., hydrochlorothiazide, - bronchiolitis obliterans with organizing pneumonia asbestos, silicosis, bleomycin etc.) (BOOP), OTITIS MEDIA DD X - pharyngitis, - dental disease, - temporal mandibular joint
    [Show full text]
  • Otitis Media: Diagnosis and Treatment KATHRYN M
    This is a corrected version of the article that appeared in print. Otitis Media: Diagnosis and Treatment KATHRYN M. HARMES, MD; R. ALEXANDER BLACKWOOD, MD, PhD; HEATHER L. BURROWS, MD, PhD; JAMES M. COOKE, MD; R. VAN HARRISON, PhD; and PETER P. PASSAMANI, MD University of Michigan Medical School, Ann Arbor, Michigan Acute otitis media is diagnosed in patients with acute onset, presence of middle ear effusion, physical evidence of middle ear inflammation, and symptoms such as pain, irritability, or fever. Acute otitis media is usually a complication of eustachian tube dysfunction that occurs dur- ing a viral upper respiratory tract infection. Streptococcus pneumoniae, Haemophilus influen- zae, and Moraxella catarrhalis are the most common organisms isolated from middle ear fluid. Management of acute otitis media should begin with adequate analgesia. Antibiotic therapy can be deferred in children two years or older with mild symptoms. High-dose amoxicillin (80 to 90 mg per kg per day) is the antibiotic of choice for treating acute otitis media in patients who are not allergic to penicillin. Children with persistent symptoms despite 48 to 72 hours of anti- biotic therapy should be reexamined, and a second-line agent, such as amoxicillin/clavulanate, should be used if appropriate. Otitis media with effusion is defined as middle ear effusion in the absence of acute symptoms. Antibiotics, decongestants, or nasal steroids do not hasten the clearance of middle ear fluid and are not recommended. Children with evidence of anatomic damage, hearing loss, or language delay should be referred to an otolaryngologist. (Am Fam Physician. 2013;88(7):435-440.
    [Show full text]
  • ENT Infections: Otitis Media and Sinusitis in Children
    3/25/2019 Disclosures ENT infections: Consultant/ CareFusion-Scientific Advisory Board Speakers bureaus Otitis media and sinusitis in Research funding MedImmune, Melinta children Kari Simonsen, MD Stock No Disclosures Professor of Pediatrics, ownership/Corporate Division of Pediatric Infectious Diseases boards-employment Off-label uses No Disclosures Objectives: Otitis Media-Diagnosis • Discuss the AAP Guidelines for Diagnosis and Management • Key Guideline: Diagnosis and Management of of Acute Otitis Media Acute Otitis Media; Pediatrics 2013;131;e964; • Discuss the AAP Guidelines for the Diagnosis and – http://pediatrics.aappublications.org/content/ Management of Acute Bacterial Sinusitis in Children 131/3/e964.full.pdf+html • Be aware of potential warning signs for complications in these conditions! – https://www.aappublications.org/news/2018/0 6/26/idsnapshot062618 Otitis Media-Diagnosis Otitis Media- Diagnosis Physical Exam findings • Clinical Manifestations – Erythema and bulging of tympanic membrane – Fever (may or may not be present) – Air‐fluid level behind the tympanic membrane – Otalgia – Decreased tympanic membrane mobility on – Irritability pneumatic otoscopy • Frequent associated with – Otorrhea antecedent/concurrent viral URI 1 3/25/2019 How well do we perform Otitis Media-Diagnosis and teach otoscopy? Key Action Statements from the 2013 AAP /AAFP • Training in physical examination begins in medical updated guidelines regarding making the school, pediatrics clerkship may provide the best diagnosis correctly: opportunity
    [Show full text]
  • Otitis Media
    Otitis media What is otitis media? What are the signs of otitis media? Otitis media (oh-tite -iss mee -dee-ah, or • earache, especially at night middle ear infection) is one of the most • pulling hard or poking at the ear common childhood illnesses. It is caused by • shaking the head a virus or bacteria that travels from the nose • runny nose, cough, or sore throat or throat along the eustachian tube to the • crabby, more crying than usual middle ear. Ear infections do not spread to • not eating or drinking as usual: baby others. may pull away from the breast or bottle when drinking ear canal • not hearing well, or ear feels “plugged” • fluid draining from the ear What is the treatment? eustachian tube eardrum Acetaminophen (Tylenol ® or another brand) middle ear or ibuprofen (such as Advil ®) can be given for comfort. Sometimes a warm (not hot) washcloth or heating pad over the ear helps it feel better. Otitis media can also occur if the eardrum gets a hole in it—from injury or repeated Your health care provider may prescribe an infections. antibiotic to kill the bacteria causing the infections. Give the medicine for the A baby who lies down while drinking from a prescribed amount of time, even if your bottle may get more ear infections: The child feels better, to be sure all the infection formula, milk, or juice can go up through the is gone. ( Note: If the infection is caused by eustachian tubes, irritating or swelling them. a virus, antibiotics may not help.) The sugar in these liquids causes germs to grow.
    [Show full text]
  • Bronchiolitis – Medical Management
    Evidence Based Clinical Practice Guideline For Infants with Bronchiolitis Guideline 1 Health Policy & Clinical Effectiveness Program Introduction References in parentheses ( ). Evidence strengths in [ ]. (See last page for definitions.) Evidence Based Clinical Practice Guideline Bronchiolitis is an acute inflammatory disease of the lower respiratory tract, resulting from obstruction of For medical management of small airways. It is initiated by infection of the upper Bronchiolitis respiratory tract by any one of a number of seasonal in infants less than 1 year of age viruses , the most common of which is respiratory presenting with a first time episodea syncytial virus (RSV) (Williams 2004 [C], Andreoletti 2000 [C], Original Publication Date: December 6, 1996 Hall 2001 [S], Stark 1991 [S]). Revision Publication Dates: November 28, 2001 There is considerable confusion and variability with August 15, 2005 respect to the clinical management of infants with New search May, 2006 (see Development Process section) bronchiolitis. Typical bronchiolitis in infants is a self- limited disease, usually due to an acute viral infection that is little modified by aggressive evaluations, use of Target Population antibiotics or other therapies. The median duration of illness for children < 24 months with bronchiolitis is 12 Inclusion: Intended primarily for use in children: days; after 21 days approximately 18% will remain ill, • age less than 12 completed months and presenting for and after 28 days 9% will remain ill (Swingler 2000 [C]). the first time with bronchiolitis typical in presentation Most infants who contract bronchiolitis recover without and clinical course sequelae; however, up to 40% may have subsequent wheezing episodes through five years of age and Exclusion: Not intended for use in children: approximately ten percent will have wheezing episodes with a history of cystic fibrosis (CF) • after age five (van Woensel 2000 [B]).
    [Show full text]
  • Pneumococcus: Questions and Answers Information About the Disease and Vaccines
    Pneumococcus: Questions and Answers information about the disease and vaccines What causes pneumococcal disease? Pneumococci cause 50% of all cases of bacterial men- Pneumococcal disease is caused by the bacterium ingitis (infection of the covering of the brain or spinal Streptococcus pneumoniae, also called pneumococcus. cord) in the United States. There are an estimated There are more than 90 subtypes. Most subtypes can 2,000 cases of pneumococcal meningitis each year. cause disease, but only a few produce the majority of Symptoms may include headache, tiredness, vomiting, invasive pneumococcal infections. The 10 most common irritability, fever, seizures, and coma. The case-fatality subtypes cause 62% of invasive disease worldwide. rate of pneumococcal meningitis is 8% among chil- dren and 22% among adults. From 5% to 90% of nor- How does pneumococcal disease spread? mal healthy adults, depending on the population and setting, may have pneumococci in their nose or throat The disease is spread from person to person by drop- (i.e., they might be carriers.) Permanent neurologic lets in the air. The pneumococci bacteria are common damage is common among survivors. People with a inhabitants of the human respiratory tract. cochlear implant appear to be at increased risk of What diseases can pneumococci bacteria cause? pneumococcal meningitis. With the decline of invasive Hib disease, pneumococci has become the leading There are three major conditions caused by pneumo- cause of bacterial meningitis among children younger cocci: pneumonia, bacteremia, and meningitis. They than 5 years of age in the United States. are all caused by infection with the same bacteria, but have different symptoms.
    [Show full text]
  • AAP-Bronchiolitis-Guidelines.Pdf
    Guidance for the Clinician in Rendering Pediatric Care CLINICAL PRACTICE GUIDELINE Clinical Practice Guideline: The Diagnosis, Management, and Prevention of Bronchiolitis Shawn L. Ralston, MD, FAAP, Allan S. Lieberthal, MD, FAAP, abstract H. Cody Meissner, MD, FAAP, Brian K. Alverson, MD, FAAP, Jill E. This guideline is a revision of the clinical practice guideline, “Diagnosis Baley, MD, FAAP, Anne M. Gadomski, MD, MPH, FAAP, ” David W. Johnson, MD, FAAP, Michael J. Light, MD, FAAP, and Management of Bronchiolitis, published by the American Academy Nizar F. Maraqa, MD, FAAP, Eneida A. Mendonca, MD, PhD, of Pediatrics in 2006. The guideline applies to children from 1 through FAAP, FACMI, Kieran J. Phelan, MD, MSc, Joseph J. Zorc, MD, 23 months of age. Other exclusions are noted. Each key action state- MSCE, FAAP, Danette Stanko-Lopp, MA, MPH, Mark A. ment indicates level of evidence, benefit-harm relationship, and level Brown, MD, Ian Nathanson, MD, FAAP, Elizabeth of recommendation. Key action statements are as follows: Pediatrics Rosenblum, MD, Stephen Sayles III, MD, FACEP, and Sinsi Hernandez-Cancio, JD 2014;134:e1474–e1502 KEY WORDS bronchiolitis, infants, children, respiratory syncytial virus, evidence-based, guideline DIAGNOSIS ABBREVIATIONS AAP—American Academy of Pediatrics 1a. Clinicians should diagnose bronchiolitis and assess disease se- AOM—acute otitis media verity on the basis of history and physical examination (Evidence CI—confidence interval Quality: B; Recommendation Strength: Strong Recommendation). ED—emergency department
    [Show full text]
  • The Clinical Course of Bronchiolitis Associated with Acute Otitis Media
    Arch Dis Child 2000;83:317–319 317 The clinical course of bronchiolitis associated with Arch Dis Child: first published as 10.1136/adc.83.4.317 on 1 October 2000. Downloaded from acute otitis media Gila Shazberg, Shoshana Revel-Vilk, David Shoseyov, Anat Ben-Ami, Aharon Klar, Haggit Hurvitz Abstract has not, to the best of our knowledge, been Background—Acute otitis media (AOM) systematically studied. The aim of the present is the most common bacterial co-infection study was to investigate whether AOM, bacte- of viral bronchiolitis. rial or viral, influences the clinical course of Aims—To evaluate the influence of AOM bronchiolitis. on the clinical course of bronchiolitis. Subjects—150 children younger than 24 months old, diagnosed with bronchiolitis, hospitalised between December 1997 and Methods May 1999. We enrolled children younger than 24 months Methods—Body temperature, respiratory old, hospitalised with bronchiolitis, in the rate, oxygen saturation, and the need for period between December 1997 and May oxygen supplementation were recorded on 1999. Bronchiolitis was defined as an admission and daily throughout hospitali- acute viral respiratory syndrome, charac- sation. Complete blood count, erythrocyte terised by cough, tachypnoea (respiratory rate > 40/min), dyspnoea, and prolonged sedimentation rate, and assay for respira- 5 tory syncytial virus were performed on expirium with wheezing and/or crackles. admission. All children were examined Children with underlying bronchopulomonary daily for the appearance of AOM. The dysplasia and congenital heart disease were clinical course of children with bronchio- excluded. litis and AOM was compared to those Demographic information obtained on ad- without AOM. mission included gender, age, birth weight, and Results—AOM was diagnosed in 79/150 gestational age.
    [Show full text]