Nasal Cavity and Paranasal Sinuses

Total Page:16

File Type:pdf, Size:1020Kb

Nasal Cavity and Paranasal Sinuses NASAL CAVITY AND 1 PARANASAL SINUSES By Dr. Bruce M. Wenig EMBRYOLOGY, ANATOMY, AND the horizontal part and separates the nasal cav- HISTOLOGY OF THE NASAL CAVITY ity from the anterior cranial fossa (medial part of foor). This area represents the deepest part Embryology of the cavity. The body of the sphenoid bone The facial prominences (frontonasal, max- forms the posterior sloping part; 2) the inferior illary, and mandibular) appear around the 4th aspect (foor) is formed by the palatine processes week of gestation and give rise to the boundaries of the maxillary bone, which represents the and structures of the face (1). The nasal placodes, majority (75 percent) of the foor and, thereby, bilateral thickenings of the surface ectoderm intervenes between the oral and nasal cavities; along the frontonasal prominence, form the the remainder of the foor is formed by the hori- nasal pits, which, by growth of the surrounding zontal process of the palatine bone; 3) the lateral mesenchyme, become progressively depressed aspect is formed mostly by the nasal surface of along their length, giving rise to the primitive the maxilla below and in front, posteriorly by nasal sacs, the forerunners of the nasal cavities. the perpendicular plate of the palatine bone, The anterior portion of the nasal cavity is the ves- and above by the nasal surface of the ethmoidal tibule, the epithelium of which is ectodermally labyrinth separating the nasal cavity from the derived and represents the internal extension orbit. Along the lateral wall of each nasal cavity of the integument of the external nose (1). are three horizontal bony projections: the su- The epithelium lining the nasal cavities proper perior, middle, and inferior conchae; occasion- (Schneiderian membrane) is also ectodermally ally a small fourth concha is identifed above derived (1). The nasal septum develops from the the superior concha and is called the supreme merged medial nasal prominences. concha (3). The air spaces or meatuses (superior, The regions of continuity between the nasal middle, and inferior) lie beneath and lateral to and oral cavities following rupture of the oro- the conchae and are named according to the nasal membrane develop into the choanae. The concha immediately above it; and 4) the medial conchae (turbinates) develop as elevations along aspect is the bony nasal septum entirely formed the lateral wall of each nasal cavity. The olfactory by the vomer and the perpendicular plate of epithelia develop in the superiposterior portion the ethmoid; the anterior portion of the nasal of each nasal cavity and differentiate from cells in septum represents the septal cartilage (2). the ectodermally derived nasal cavity epithelium. Histology Anatomic Borders The nasal vestibule is a cutaneous structure The nasal cavity is divided into right and left composed of keratinizing squamous epitheli- halves by the septum; each half opens onto the um and underlying subcutaneous tissue, with face via the nares, or nostrils, and communi- cutaneous adnexal structures (hair follicles, cates behind with the nasopharynx through the sebaceous glands, and sweat glands) (4). The posterior nasal apertures, or the choanae (2,3). mucocutaneous junction (limen nasi) is ap- Each half of the nasal cavity has the following proximately 1 to 2 cm posterior to the nares borders (walls) (fgs. 1-1, 1-2): 1) the superior as- and represents the point at which the epithelial pect, or the roof, slopes downward in front and surface changes from keratinizing squamous back and is horizontal in its middle; the frontal epithelium to ciliated pseudostratifed columnar and nasal bones form the anterior sloping part; (respiratory) epithelium, the latter lining the the cribriform plate of the ethmoid bone forms entire nasal cavity (fg. 1-3) and, as previously 1 Non-Neoplastic Diseases of the Head and Neck Figure 1-1 ANATOMY OF THE SINONASAL TRACT A coronal section through the head at the level of the molar teeth displays the anatomy of the nasal cavity, as well as the pharynx, larynx, and some of the paranasal sinuses. detailed, ectodermally derived. The submucosa underlying the epithelium is thin, has seromu- cous (minor salivary) glands arranged in distinct lobules (fg. 1-3), normally contains a mixed infammatory cell infltrate including mature lymphocytes and scattered plasma cells but no lymphoid follicles/aggregates, and has a distinct vascular component consisting of large thick- walled blood vessels. The vascular structures are particularly prominent along the inferior and middle turbinates, resemble erectile tissue ow- ing to the prominent smooth muscle wall, and may be mistaken for a hemangioma (fg. 1-4) (4). The nasal septum separates the nasal cavities and contains elastic cartilage and lamellar bone. The nasal mucosa is closely apposed to the un- derlying structures of the nasal septum, with the periosteum and perichondrium attached so closely as to constitute a single membrane, referred to as mucoperiosteum (fg. 1-5). Along Figure 1-2 the anterior part of the nasal septum the sub- SAGITTAL VIEW OF THE UPPER RESPIRATORY TRACT mucosa is rich in thin-walled blood vessels. This location is referred to as Little, or Kiesselbach, A midline sagittal section shows the major structures of the nasal cavity, pharynx, and larynx. area and represents a frequent site of nose 2 Nasal Cavity and Paranasal Sinuses Figure 1-3 HISTOLOGY OF THE SINONASAL TRACT A: Ciliated respiratory epithelium lines the entire sinonasal tract, including the nasal cavity and paranasal sinuses. It overlies submucosal seromucous glands arranged in lobules with subjacent thick-walled blood vessels (arrows). B: At higher magnifcation, the serous and mucous cells are evident. C: The submucosa contains an admixture of infam- matory cells, including mature lymphocytes and scattered plasma cells. bleeds (fg. 1-6) (4). The nasal cartilage is of VNO between day 37 and 43 (1). The VNO ends the hyaline type and has a bluish, translucent, blindly posteriorly and reaches its greatest devel- homogeneous appearance. opment between 12 and 14 weeks (1). The VNO Melanocytes migrating from their origin in is consistently present in the form of a bilateral the neural crest are present in the normal muco- duct-like structure on the nasal septum, superior sa of the entire upper aerodigestive tract. In the to the paraseptal cartilage, at all ages (1). Grad- sinonasal tract, melanocytes are present in the ual replacement of the receptor cell population respiratory epithelium as well as in submucosal with patchy ciliated cells occurs. The human seromucous glands (5). VNO is a true homolog of the VNO in other The vomeronasal organ of Jacobson (VNO) is animals (e.g., mammals, reptiles, amphibians) a chemosensory structure that develops from and is lined by chemosensory epithelium similar the vomeronasal primordia, bilateral epithelial to the olfactory epithelium except that the VNO thickenings on the nasal septum (1). Invagina- chemoreceptors lack cilia, accounting for their tion of the primordia gives rise to the tubular highly developed sense of smell (1,4). 3 Non-Neoplastic Diseases of the Head and Neck Figure 1-4 HISTOLOGY OF THE SINONASAL TRACT Left: The nasal turbinates, particularly the inferior and middle turbinates, are normally characterized by the presence of thick-walled vascular structures. Right: The vascular structures resemble erectile tissue owing to a prominent smooth muscle wall and may be mistaken for a vascular neoplasm. Figure 1-5 HISTOLOGY OF THE SINONASAL TRACT The nasal mucosa is closely apposed to the underlying structures of the nasal septum, with the periosteum and peri- chon drium attached so closely as to constitute a single mem- brane, referred to as the muco- periosteum. 4 Nasal Cavity and Paranasal Sinuses The olfactory mucosa is located in the most Anatomic Borders superior portion of the nasal cavity, involving the superior portion of the superior turbinate Maxillary Sinus. The maxillary sinus rep- (cribriform plate) and approximately a third of resents the largest of the paranasal sinuses and the superior nasal septum (fg. 1-7). The olfacto- is located in the body of the maxilla (2,3). From ry epithelium consists of bipolar, spindle-shaped above, the maxillary sinus has a triangular olfactory neural (receptor) cells composed of myelinated axons that penetrate the basal lam- ina to protrude from the mucosal surface and nonmyelinated proximal processes that traverse the cribriform plate, columnar sustentacular or supporting cells, rounded basal cells that lie on basal lamina, and olfactory or Bowman glands in the lamina propria that represent purely se- rous type glands (fg. 1-8) (3,4). The olfactory epithelial cells are reactive for neuron-specifc enolase (NSE) (fg. 1-8). EMBRYOLOGY, ANATOMY, AND HISTOLOGY OF THE PARANASAL SINUSES Embryology The paranasal sinuses (maxillary, ethmoid, sphenoid, and frontal) develop as outgrowths of the walls of the nasal cavities and become air-flled extensions of the nasal cavities (fg. Figure 1-6 1-9). Some of the nasal sinuses (the maxillary and portions of the ethmoidal sinuses) develop HISTOLOGY OF THE SINONASAL TRACT during late fetal life and others (frontal and Along the anterior part of the nasal septum the submucosa is rich in thin-walled blood vessels. This location sphenoid sinuses) are not present at birth but is referred to as Little or Kiesselbach area and represents a develop during the early years of life. frequent site of nose bleeds. Figure 1-7 NASAL CAVITY The olfactory mucosa is confned to the most superior portion of the nasal cavity (blue shading). It involves the superior portion of the superior turbinate, the cribriform plate, and the superior approximately one third of the nasal septum. In adults, the distribution becomes patchy, due to multifocal replacement by nonolfactory mucosa. The ol- factory cells send processes through the cribriform plate to connect with the olfactory bulb. 5 Non-Neoplastic Diseases of the Head and Neck Figure 1-8 NASAL CAVITY A: Specialized olfactory mucosa is composed of a mixture of olfactory cells (OC) with neuronal processes penetrating the cribriform plate, susten- tacular epithelial cells (SC), and regenerative basal cells (BC).
Recommended publications
  • MR Imaging of the Orbital Apex
    J Korean Radiol Soc 2000;4 :26 9-0 6 1 6 MR Imaging of the Orbital Apex: An a to m y and Pat h o l o g y 1 Ho Kyu Lee, M.D., Chang Jin Kim, M.D.2, Hyosook Ahn, M.D.3, Ji Hoon Shin, M.D., Choong Gon Choi, M.D., Dae Chul Suh, M.D. The apex of the orbit is basically formed by the optic canal, the superior orbital fis- su r e , and their contents. Space-occupying lesions in this area can result in clinical d- eficits caused by compression of the optic nerve or extraocular muscles. Even vas c u l a r changes in the cavernous sinus can produce a direct mass effect and affect the orbit ap e x. When pathologic changes in this region is suspected, contrast-enhanced MR imaging with fat saturation is very useful. According to the anatomic regions from which the lesions arise, they can be classi- fied as belonging to one of five groups; lesions of the optic nerve-sheath complex, of the conal and intraconal spaces, of the extraconal space and bony orbit, of the cav- ernous sinus or diffuse. The characteristic MR findings of various orbital lesions will be described in this paper. Index words : Orbit, diseases Orbit, MR The apex of the orbit is a complex region which con- tains many nerves, vessels, soft tissues, and bony struc- Anatomy of the orbital apex tures such as the superior orbital fissure and the optic canal (1-3), and is likely to be involved in various dis- The orbital apex region consists of the optic nerve- eases (3).
    [Show full text]
  • Septoplasty, Rhinoplasty, Septorhinoplasty, Turbinoplasty Or
    Septoplasty, Rhinoplasty, Septorhinoplasty, 4 Turbinoplasty or Turbinectomy CPAP • If you have obstructive sleep apnea and use CPAP, please speak with your surgeon about how to use it after surgery. Follow-up • Your follow-up visit with the surgeon is about 1 to 2 weeks after Septoplasty, Rhinoplasty, Septorhinoplasty, surgery. You will need to call for an appointment. Turbinoplasty or Turbinectomy • During this visit any nasal packing or stents will be removed. Who can I call if I have questions? For a healthy recovery after surgery, please follow these instructions. • If you have any questions, please contact your surgeon’s office. Septoplasty is a repair of the nasal septum. You may have • For urgent questions after hours, please call the Otolaryngologist some packing up your nose or splints which stay in for – Head & Neck (ENT) surgeon on call at 905-521-5030. 7 to 14 days. They will be removed at your follow up visit. When do I need medical help? Rhinoplasty is a repair of the nasal bones. You will have a small splint or plaster on your nose. • If you have a fever 38.5°C (101.3°F) or higher. • If you have pain not relieved by medication. Septorhinoplasty is a repair of the nasal septum and the nasal bone. You will have a small splint or plaster cast on • If you have a hot or inflamed nose, or pus draining from your nose, your nose. or an odour from your nose. • If you have an increase in bleeding from your nose or on Turbinoplasty surgery reduces the size of the turbinates in your dressing.
    [Show full text]
  • Gross Anatomy Assignment Name: Olorunfemi Peace Toluwalase Matric No: 17/Mhs01/257 Dept: Mbbs Course: Gross Anatomy of Head and Neck
    GROSS ANATOMY ASSIGNMENT NAME: OLORUNFEMI PEACE TOLUWALASE MATRIC NO: 17/MHS01/257 DEPT: MBBS COURSE: GROSS ANATOMY OF HEAD AND NECK QUESTION 1 Write an essay on the carvernous sinus. The cavernous sinuses are one of several drainage pathways for the brain that sits in the middle. In addition to receiving venous drainage from the brain, it also receives tributaries from parts of the face. STRUCTURE ➢ The cavernous sinuses are 1 cm wide cavities that extend a distance of 2 cm from the most posterior aspect of the orbit to the petrous part of the temporal bone. ➢ They are bilaterally paired collections of venous plexuses that sit on either side of the sphenoid bone. ➢ Although they are not truly trabeculated cavities like the corpora cavernosa of the penis, the numerous plexuses, however, give the cavities their characteristic sponge-like appearance. ➢ The cavernous sinus is roofed by an inner layer of dura matter that continues with the diaphragma sellae that covers the superior part of the pituitary gland. The roof of the sinus also has several other attachments. ➢ Anteriorly, it attaches to the anterior and middle clinoid processes, posteriorly it attaches to the tentorium (at its attachment to the posterior clinoid process). Part of the periosteum of the greater wing of the sphenoid bone forms the floor of the sinus. ➢ The body of the sphenoid acts as the medial wall of the sinus while the lateral wall is formed from the visceral part of the dura mater. CONTENTS The cavernous sinus contains the internal carotid artery and several cranial nerves. Abducens nerve (CN VI) traverses the sinus lateral to the internal carotid artery.
    [Show full text]
  • Rhinoplasty and Septorhinoplasty These Services May Or May Not Be Covered by Your Healthpartners Plan
    Rhinoplasty and septorhinoplasty These services may or may not be covered by your HealthPartners plan. Please see your plan documents for your specific coverage information. If there is a difference between this general information and your plan documents, your plan documents will be used to determine your coverage. Administrative Process Prior authorization is not required for: • Septoplasty • Surgical repair of vestibular stenosis • Rhinoplasty, when it is done to repair a nasal deformity caused by cleft lip/ cleft palate Prior authorization is required for: • Rhinoplasty for any indication other than cleft lip/ cleft palate • Septorhinoplasty Coverage Rhinoplasty is not covered for cosmetic reasons to improve the appearance of the member, but may be covered subject to the criteria listed below and per your plan documents. The service and all related charges for cosmetic services are member responsibility. Indications that are covered 1. Primary rhinoplasty (30400, 30410) may be considered medically necessary when all of the following are met: A. There is anatomical displacement of the nasal bone(s), septum, or other structural abnormality resulting in mechanical nasal airway obstruction, and B. Documentation shows that the obstructive symptoms have not responded to at least 3 months of conservative medical management, including but not limited to nasal steroids or immunotherapy, and C. Photos clearly document the structural abnormality as the primary cause of the nasal airway obstruction, and D. Documentation includes a physician statement regarding why a septoplasty would not resolve the airway obstruction. 2. Secondary rhinoplasty (30430, 30435, 30450) may be considered medically necessary when: A. The secondary rhinoplasty is needed to treat a complication/defect that was caused by a previous surgery (when the previous surgery was not cosmetic), and B.
    [Show full text]
  • Anatomic Variations of the Nose and Paranasal Sinuses in Saudi Population
    234 Original article Anatomic variations of the nose and paranasal sinuses in saudi population: computed tomography scan analysis Nada Alshaikha, Amirah Aldhuraisb aDepartment of Otolaryngology Head & Neck Background Surgery, Rhinology Unit, Dammam Medical Knowledge of the anatomy constitutes an integral part in the total management of Complex (DMC), bDepartment of ENT, King Fahad Specialist Hospital (KFSH), Dammam, patients with sinonasal diseases. The aim of this study was to obtain the prevalence Saudi Arabia of sinonasal anatomic variations in Saudi population and to understand their importance and impact on the disease process, as well as their influence on Correspondence to Nada Alshaikh, MD, Department of Otorhinolaryngology Head and surgical management and outcome. Neck Surgery, Dammam Medical Complex, Materials and methods Dammam - 31414, Saudi Arabia This study is prospective review of retrospectively performed normal computed e-mail: [email protected] tomography (CT) scans of the nose and paranasal sinuses in adult Saudi Received 13 November 2016 population at Dammam Medical Complex. The scans were reviewed by two Accepted 23 December 2016 independent observers. The Egyptian Journal of Otolaryngology Results 2018, 34:234–241 Of all CT scans that were reviewed, 48.4% were of female patients and 51.6% were of male patients. The mean age of the study sample was 38.5±26.5 years. The most common anatomic variation after excluding agger nasi cell was pneumatized crista galli, which was seen in 73% of the scans. However, the least common variation seen in this series was hypoplasia of the maxillary sinus, which was encountered in 5% of the cases. We did not detect a single pneumatized inferior turbinate among the studied scans.
    [Show full text]
  • Rhinoplasty and Septoplasty
    Rhinoplasty and Septoplasty Surgically altering the nose is a common plastic surgery procedure that often has a profound impact on a patient’s life. In some cases this procedure is required to alter the internal anatomy of the nose in order to address functional breathing problems. In others a patient may desire to change the appearance of their nose. Rhinoplasty alters the external appearance of the nose, improving its shape and balance with the face. Frequently a combination of internal and external alterations are performed simultaneously. Functional Problems Airway obstruction is the most common functional nasal problem. It may be caused by either congenital or post- traumatic deformity of the nasal septum. Enlargement of the turbinates may also occur, creating an airway obstruction. All of these changes can exacerbate existing sinus problems. Cosmetic Deformity Some cosmetic deformities of the nose are post traumatic, while others are congenital. Both can be addressed similarly by surgically altering the underlying bony and cartilaginous framework of the nose. The Procedure Septoplasty and rhinoplasty are generally done on an outpatient basis and require either general anesthesia or sedation with a local. Airway problems are treated by removing or reshaping the septal cartilage. Some cases require a reduction in the size of the turbinates. Changes to the shape of the nose are accomplished by reshaping the bone and cartilage framework of the nose. In most cases the incisions can be located inside the nose resulting in no visible scars. Frequently used post-operative measures include splinting, taping and nasal packing. The Results Rhinoplasty can have a substantial effect on a person’s appearance and, ultimately, their general sense of well-being.
    [Show full text]
  • Rhinoplasty ARTICLE by PHILIP WILKES, CST/CFA
    Rhinoplasty ARTICLE BY PHILIP WILKES, CST/CFA hinoplasty is plastic become lodged in children's noses.3 glabella, laterally with the maxilla, surgery of the nose Fortunately, the art and science of inferiorly with the upper lateral car- for reconstructive, rhinoplasty in the hands of a skilled tilages, and posteriorly with the eth- restorative, or cos- surgical team offers positive alter- moid bone? metic purposes. The natives. The nasal septum is formed by procedure of rhmo- Three general types of rhino- the ethmoid (perpendicular plate) plasty had its beginnings in India plasty will be discussed in this arti- and vomer bones (see Figure 5). The around 800 B.c.,as an ancient art cle. They include partial, complete, cartilaginous part is formed by sep- performed by Koomas Potters.' and finesse rhinoplasties. tal and vomeronasal cartilages. The Crimes were often punished by the anterior portion consists of the amputation of the offender's nose, Anatomy and Physiology of the medial crus of the greater alar carti- creating a market for prosthetic sub- Nose lages, called the columella nasi? stitutes. The skill of the Koomas The nose is the olfactory organ that The vestibule is the cave-like area enabled them to supply this need. In projects from the center of the face modem times, rhinoplasty has and warms, filters, and moistens air developed into a high-technology on the way to the respiratory tract. procedure that combines art with Someone breathing only through the latest scientific advancements.' the mouth delivers a bolus of air During rhinoplastic procedures, with each breath. The components surgeons can change the shape and of the nose allow a thin flow of air size of the nose to improve physical to reach the lungs, which is a more appearance or breathing.
    [Show full text]
  • Septation of the Sphenoid Sinus and Its Clinical Significance
    1793 International Journal of Collaborative Research on Internal Medicine & Public Health Septation of the Sphenoid Sinus and its Clinical Significance Eldan Kapur 1* , Adnan Kapidžić 2, Amela Kulenović 1, Lana Sarajlić 2, Adis Šahinović 2, Maida Šahinović 3 1 Department of anatomy, Medical faculty, University of Sarajevo, Čekaluša 90, 71000 Sarajevo, Bosnia and Herzegovina 2 Clinic for otorhinolaryngology, Clinical centre University of Sarajevo, Bolnička 25, 71000 Sarajevo, Bosnia and Herzegovina 3 Department of histology and embriology, Medical faculty, University of Sarajevo, Čekaluša 90, 71000 Sarajevo, Bosnia and Herzegovina * Corresponding Author: Eldan Kapur, MD, PhD Department of anatomy, Medical faculty, University of Sarajevo, Bosnia and Herzegovina Email: [email protected] Phone: 033 66 55 49; 033 22 64 78 (ext. 136) Abstract Introduction: Sphenoid sinus is located in the body of sphenoid, closed with a thin plate of bone tissue that separates it from the important structures such as the optic nerve, optic chiasm, cavernous sinus, pituitary gland, and internal carotid artery. It is divided by one or more vertical septa that are often asymmetric. Because of its location and the relationships with important neurovascular and glandular structures, sphenoid sinus represents a great diagnostic and therapeutic challenge. Aim: The aim of this study was to assess the septation of the sphenoid sinus and relationship between the number and position of septa and internal carotid artery in the adult BH population. Participants and Methods: A retrospective study of the CT analysis of the paranasal sinuses in 200 patients (104 male, 96 female) were performed using Siemens Somatom Art with the following parameters: 130 mAs: 120 kV, Slice: 3 mm.
    [Show full text]
  • Neurocranial Histomorphometrics
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2012 Neurocranial Histomorphometrics Lindsay Hines Trammell University of Tennessee-Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Biological and Physical Anthropology Commons Recommended Citation Trammell, Lindsay Hines, "Neurocranial Histomorphometrics. " PhD diss., University of Tennessee, 2012. https://trace.tennessee.edu/utk_graddiss/1359 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Lindsay Hines Trammell entitled "Neurocranial Histomorphometrics." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Anthropology. Murray K. Marks, Major Professor We have read this dissertation and recommend its acceptance: Joanne L. Devlin, David A. Gerard, Walter E. Klippel, David G. Anderson (courtesy member) Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2012 Neurocranial Histomorphometrics Lindsay Hines Trammell University of Tennessee-Knoxville, [email protected] This Dissertation is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange.
    [Show full text]
  • A Forensic Case Report
    Skeletonized body identified by analysis of frontal sinus morphology and characteristics of osteosynthesis material: a forensic case report Rhonan Ferreira-Silva1, Andréa Pinheiro de- Abreu Meirelles2, Isabela Machado3, Lívia Graziele Rodrigues4, Roberta Gomes-Resende5, Alicia Picapedra6, Carlos Sassi7 DOI: 10.22592/ode2018n31a10 Abstract Forensic dentistry is essential for the identification of highly decomposed and charred bodies, as well as skeletal remains. This study reports a case of human identification by analyzing the morphology of the frontal sinuses and osteosynthesis material. In the anthropological assess- ment of skeletal remains a surgical plate used for osteosynthesis was detected in the periorbital regions. Relatives of the potential victim provided ante-mortem (AM) radiographs which re- vealed the presence of an osteosynthesis plate. Post-mortem (PM) imaging exams were per- formed to reproduce the AM data. Similarities were observed between the AM and PM radio- graphs, especially regarding the morphology of the frontal sinuses and the position and outline of the surgical plate used for osteosynthesis. The comparison of AM and PM images made it possible to identify the victim and to aid the criminal investigation. It also highlighted the role of radiographs and anatomical characteristics in the process of human identification. Keywords: forensic dentistry, forensic anthropology, frontal sinus, radiography. 1 Professor of Forensic Dentistry, School of Dentistry, Universidad Federal de Goiás. Criminal Expert at the Scientific Police of Goiás (Goiânia, Goiás, Brazil). ORCID: 0000-0002-3680-7020 2 Undergraduate Student, School of Dentistry, Universidad Federal de Goiás (Goiânia, Goiás, Brazil). ORCID: 0000-0002-1290-3755 3 Undergraduate Student, School of Dentistry, Universidad Federal de Goiás (Goiânia, Goiás, Brazil).
    [Show full text]
  • Study Guide Medical Terminology by Thea Liza Batan About the Author
    Study Guide Medical Terminology By Thea Liza Batan About the Author Thea Liza Batan earned a Master of Science in Nursing Administration in 2007 from Xavier University in Cincinnati, Ohio. She has worked as a staff nurse, nurse instructor, and level department head. She currently works as a simulation coordinator and a free- lance writer specializing in nursing and healthcare. All terms mentioned in this text that are known to be trademarks or service marks have been appropriately capitalized. Use of a term in this text shouldn’t be regarded as affecting the validity of any trademark or service mark. Copyright © 2017 by Penn Foster, Inc. All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the copyright owner. Requests for permission to make copies of any part of the work should be mailed to Copyright Permissions, Penn Foster, 925 Oak Street, Scranton, Pennsylvania 18515. Printed in the United States of America CONTENTS INSTRUCTIONS 1 READING ASSIGNMENTS 3 LESSON 1: THE FUNDAMENTALS OF MEDICAL TERMINOLOGY 5 LESSON 2: DIAGNOSIS, INTERVENTION, AND HUMAN BODY TERMS 28 LESSON 3: MUSCULOSKELETAL, CIRCULATORY, AND RESPIRATORY SYSTEM TERMS 44 LESSON 4: DIGESTIVE, URINARY, AND REPRODUCTIVE SYSTEM TERMS 69 LESSON 5: INTEGUMENTARY, NERVOUS, AND ENDOCRINE S YSTEM TERMS 96 SELF-CHECK ANSWERS 134 © PENN FOSTER, INC. 2017 MEDICAL TERMINOLOGY PAGE III Contents INSTRUCTIONS INTRODUCTION Welcome to your course on medical terminology. You’re taking this course because you’re most likely interested in pursuing a health and science career, which entails ­proficiency­in­communicating­with­healthcare­professionals­such­as­physicians,­nurses,­ or dentists.
    [Show full text]
  • Surgical Management of Nasal Airway Obstruction
    Surgical Management of Nasal Airway Obstruction John F. Teichgraeber, MDa, Ronald P. Gruber, MDb, Neil Tanna, MD, MBAc,* KEYWORDS Nasal obstruction Nasal breathing Septal deviation Nasal valve narrowing Turbinate hypertrophy KEY POINTS The management and diagnosis of nasal airway obstruction requires an understanding of the form and function of the nose. Nasal airway obstruction can be structural, physiologic, or a combination of both. Anatomic causes of airway obstruction include septal deviation, internal nasal valve narrowing, external nasal valve collapse, and inferior turbinate hypertrophy. Thus, the management of nasal air obstruction must be selective and carefully considered. The goal of surgery is to address the deformity and not just enlarge the nasal cavity. INTRODUCTION vomer, and maxillary crest. The narrowest portion of the nose is the internal nasal valve (10–15), The management and diagnosis of nasal airway which is formed by the septum, the inferior turbi- obstruction requires an understanding of the nate, and the upper lateral cartilage. Short nasal form and function of the nose. Nasal airway bones, a narrow midnasal fold, and malposition obstruction can be structural, physiologic, or a of the alar cartilages all predispose patients to in- combination of both. Thus, the management of ternal valve incompetence. nasal airway obstruction must be selective and The lateral wall of the nose contains 3 to 4 turbi- often involves medical management. The goal of nates (inferior, middle, superior, supreme) and the surgery is to address the deformity and not just corresponding meatuses that drain the paranasal enlarge the nasal cavity. This article reviews airway sinuses. The nasolacrimal duct drains through obstruction and its treatment.
    [Show full text]