SYMMETRY and the MONSTER the Classification of Finite `Simple
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On Some Generation Methods of Finite Simple Groups
Introduction Preliminaries Special Kind of Generation of Finite Simple Groups The Bibliography On Some Generation Methods of Finite Simple Groups Ayoub B. M. Basheer Department of Mathematical Sciences, North-West University (Mafikeng), P Bag X2046, Mmabatho 2735, South Africa Groups St Andrews 2017 in Birmingham, School of Mathematics, University of Birmingham, United Kingdom 11th of August 2017 Ayoub Basheer, North-West University, South Africa Groups St Andrews 2017 Talk in Birmingham Introduction Preliminaries Special Kind of Generation of Finite Simple Groups The Bibliography Abstract In this talk we consider some methods of generating finite simple groups with the focus on ranks of classes, (p; q; r)-generation and spread (exact) of finite simple groups. We show some examples of results that were established by the author and his supervisor, Professor J. Moori on generations of some finite simple groups. Ayoub Basheer, North-West University, South Africa Groups St Andrews 2017 Talk in Birmingham Introduction Preliminaries Special Kind of Generation of Finite Simple Groups The Bibliography Introduction Generation of finite groups by suitable subsets is of great interest and has many applications to groups and their representations. For example, Di Martino and et al. [39] established a useful connection between generation of groups by conjugate elements and the existence of elements representable by almost cyclic matrices. Their motivation was to study irreducible projective representations of the sporadic simple groups. In view of applications, it is often important to exhibit generating pairs of some special kind, such as generators carrying a geometric meaning, generators of some prescribed order, generators that offer an economical presentation of the group. -
Math 412. Simple Groups
Math 412. Simple Groups DEFINITION: A group G is simple if its only normal subgroups are feg and G. Simple groups are rare among all groups in the same way that prime numbers are rare among all integers. The smallest non-abelian group is A5, which has order 60. THEOREM 8.25: A abelian group is simple if and only if it is finite of prime order. THEOREM: The Alternating Groups An where n ≥ 5 are simple. The simple groups are the building blocks of all groups, in a sense similar to how all integers are built from the prime numbers. One of the greatest mathematical achievements of the Twentieth Century was a classification of all the finite simple groups. These are recorded in the Atlas of Simple Groups. The mathematician who discovered the last-to-be-discovered finite simple group is right here in our own department: Professor Bob Greiss. This simple group is called the monster group because its order is so big—approximately 8 × 1053. Because we have classified all the finite simple groups, and we know how to put them together to form arbitrary groups, we essentially understand the structure of every finite group. It is difficult, in general, to tell whether a given group G is simple or not. Just like determining whether a given (large) integer is prime, there is an algorithm to check but it may take an unreasonable amount of time to run. A. WARM UP. Find proper non-trivial normal subgroups of the following groups: Z, Z35, GL5(Q), S17, D100. -
Janko's Sporadic Simple Groups
Janko’s Sporadic Simple Groups: a bit of history Algebra, Geometry and Computation CARMA, Workshop on Mathematics and Computation Terry Gagen and Don Taylor The University of Sydney 20 June 2015 Fifty years ago: the discovery In January 1965, a surprising announcement was communicated to the international mathematical community. Zvonimir Janko, working as a Research Fellow at the Institute of Advanced Study within the Australian National University had constructed a new sporadic simple group. Before 1965 only five sporadic simple groups were known. They had been discovered almost exactly one hundred years prior (1861 and 1873) by Émile Mathieu but the proof of their simplicity was only obtained in 1900 by G. A. Miller. Finite simple groups: earliest examples É The cyclic groups Zp of prime order and the alternating groups Alt(n) of even permutations of n 5 items were the earliest simple groups to be studied (Gauss,≥ Euler, Abel, etc.) É Evariste Galois knew about PSL(2,p) and wrote about them in his letter to Chevalier in 1832 on the night before the duel. É Camille Jordan (Traité des substitutions et des équations algébriques,1870) wrote about linear groups defined over finite fields of prime order and determined their composition factors. The ‘groupes abéliens’ of Jordan are now called symplectic groups and his ‘groupes hypoabéliens’ are orthogonal groups in characteristic 2. É Émile Mathieu introduced the five groups M11, M12, M22, M23 and M24 in 1861 and 1873. The classical groups, G2 and E6 É In his PhD thesis Leonard Eugene Dickson extended Jordan’s work to linear groups over all finite fields and included the unitary groups. -
Sporadic Sics and Exceptional Lie Algebras
Sporadic SICs and Exceptional Lie Algebras Blake C. Staceyy yQBism Group, Physics Department, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston MA 02125, USA November 13, 2019 Abstract Sometimes, mathematical oddities crowd in upon one another, and the exceptions to one classification scheme reveal themselves as fellow-travelers with the exceptions to a quite different taxonomy. 1 Preliminaries A set of equiangular lines is a set of unit vectors in a d-dimensional vector space such that the magnitude of the inner product of any pair is constant: 1; j = k; jhv ; v ij = (1) j k α; j 6= k: The maximum number of equiangular lines in a space of dimension d (the so-called Gerzon bound) is d(d+1)=2 for real vector spaces and d2 for complex. In the real case, the Gerzon bound is only known to be attained in dimensions 2, 3, 7 and 23, and we know it can't be attained in general. If you like peculiar alignments of mathematical topics, the appearance of 7 and 23 might make your ears prick up here. If you made the wild guess that the octonions and the Leech lattice are just around the corner. you'd be absolutely right. Meanwhile, the complex case is of interest for quantum information theory, because a set of d2 equiangular lines in Cd specifies a measurement that can be performed upon a quantum-mechanical system. These measurements are highly symmetric, in that the lines which specify them are equiangular, and they are \informationally complete" in a sense that quantum theory makes precise. -
Chapter 25 Finite Simple Groups
Chapter 25 Finite Simple Groups Chapter 25 Finite Simple Groups Historical Background Definition A group is simple if it has no nontrivial proper normal subgroup. The definition was proposed by Galois; he showed that An is simple for n ≥ 5 in 1831. It is an important step in showing that one cannot express the solutions of a quintic equation in radicals. If possible, one would factor a group G as G0 = G, find a normal subgroup G1 of maximum order to form G0/G1. Then find a maximal normal subgroup G2 of G1 and get G1/G2, and so on until we get the composition factors: G0/G1,G1/G2,...,Gn−1/Gn, with Gn = {e}. Jordan and Hölder proved that these factors are independent of the choices of the normal subgroups in the process. Jordan in 1870 found four infinite series including: Zp for a prime p, SL(n, Zp)/Z(SL(n, Zp)) except when (n, p) = (2, 2) or (2, 3). Between 1982-1905, Dickson found more infinite series; Miller and Cole showed that 5 (sporadic) groups constructed by Mathieu in 1861 are simple. Chapter 25 Finite Simple Groups In 1950s, more infinite families were found, and the classification project began. Brauer observed that the centralizer has an order 2 element is important; Feit-Thompson in 1960 confirmed the 1900 conjecture that non-Abelian simple group must have even order. From 1966-75, 19 new sporadic groups were found. Thompson developed many techniques in the N-group paper. Gorenstein presented an outline for the classification project in a lecture series at University of Chicago in 1972. -
A Natural Representation of the Fischer-Griess Monster
Proc. Nati. Acad. Sci. USA Vol. 81, pp. 3256-3260, May 1984 Mathematics A natural representation of the Fischer-Griess Monster with the modular function J as character (vertex operators/finite simple group Fl/Monstrous Moonshine/affine Lie algebras/basic modules) I. B. FRENKEL*t, J. LEPOWSKY*t, AND A. MEURMANt *Department of Mathematics, Rutgers University, New Brunswick, NJ 08903; and tMathematical Sciences Research Institute, Berkeley, CA 94720 Communicated by G. D. Mostow, February 3, 1984 ABSTRACT We announce the construction of an irreduc- strange discoveries could make sense. However, instead of ible graded module V for an "affine" commutative nonassocia- illuminating the mysteries, he added a new one, by con- tive algebra S. This algebra is an "affinization" of a slight structing a peculiar commutative nonassociative algebra B variant R of the conMnutative nonassociative algebra B de- and proving directly that its automorphism group contains fined by Griess in his construction of the Monster sporadic F1. group F1. The character of V is given by the modular function The present work started as an attempt to explain the ap- J(q) _ q' + 0 + 196884q + .... We obtain a natural action of pearance of J(q) as well as the structure of B. Our under- the Monster on V compatible with the action of R, thus con- standing of these phenomena has now led us to conceptual ceptually explaining a major part of the numerical observa- constructions of several objects: V; a variant a of B; an "af- tions known as Monstrous Moonshine. Our construction starts finization" 9a of@a; and F1, which appears as a group of oper- from ideas in the theory of the basic representations of affine ators on V and at the sajne time as a group of algebra auto- Lie algebras and develops further the cadculus of vertex opera- morphisms of R and of 9a. -
Quasi P Or Not Quasi P? That Is the Question
Rose-Hulman Undergraduate Mathematics Journal Volume 3 Issue 2 Article 2 Quasi p or not Quasi p? That is the Question Ben Harwood Northern Kentucky University, [email protected] Follow this and additional works at: https://scholar.rose-hulman.edu/rhumj Recommended Citation Harwood, Ben (2002) "Quasi p or not Quasi p? That is the Question," Rose-Hulman Undergraduate Mathematics Journal: Vol. 3 : Iss. 2 , Article 2. Available at: https://scholar.rose-hulman.edu/rhumj/vol3/iss2/2 Quasi p- or not quasi p-? That is the Question.* By Ben Harwood Department of Mathematics and Computer Science Northern Kentucky University Highland Heights, KY 41099 e-mail: [email protected] Section Zero: Introduction The question might not be as profound as Shakespeare’s, but nevertheless, it is interesting. Because few people seem to be aware of quasi p-groups, we will begin with a bit of history and a definition; and then we will determine for each group of order less than 24 (and a few others) whether the group is a quasi p-group for some prime p or not. This paper is a prequel to [Hwd]. In [Hwd] we prove that (Z3 £Z3)oZ2 and Z5 o Z4 are quasi 2-groups. Those proofs now form a portion of Proposition (12.1) It should also be noted that [Hwd] may also be found in this journal. Section One: Why should we be interested in quasi p-groups? In a 1957 paper titled Coverings of algebraic curves [Abh2], Abhyankar conjectured that the algebraic fundamental group of the affine line over an algebraically closed field k of prime characteristic p is the set of quasi p-groups, where by the algebraic fundamental group of the affine line he meant the family of all Galois groups Gal(L=k(X)) as L varies over all finite normal extensions of k(X) the function field of the affine line such that no point of the line is ramified in L, and where by a quasi p-group he meant a finite group that is generated by all of its p-Sylow subgroups. -
The Mathieu Groups (Simple Sporadic Symmetries)
The Mathieu Groups (Simple Sporadic Symmetries) Scott Harper (University of St Andrews) Tomorrow's Mathematicians Today 21st February 2015 Scott Harper The Mathieu Groups 21st February 2015 1 / 15 The Mathieu Groups (Simple Sporadic Symmetries) Scott Harper (University of St Andrews) Tomorrow's Mathematicians Today 21st February 2015 Scott Harper The Mathieu Groups 21st February 2015 2 / 15 1 2 A symmetry is a structure preserving permutation of the underlying set. A group acts faithfully on an object if it is isomorphic to a subgroup of the 4 3 symmetry group of the object. Symmetry group: D4 The stabiliser of a point in a group G is Group of rotations: the subgroup of G which fixes x. ∼ h(1 2 3 4)i = C4 Subgroup fixing 1: h(2 4)i Symmetry Scott Harper The Mathieu Groups 21st February 2015 3 / 15 A symmetry is a structure preserving permutation of the underlying set. A group acts faithfully on an object if it is isomorphic to a subgroup of the symmetry group of the object. The stabiliser of a point in a group G is Group of rotations: the subgroup of G which fixes x. ∼ h(1 2 3 4)i = C4 Subgroup fixing 1: h(2 4)i Symmetry 1 2 4 3 Symmetry group: D4 Scott Harper The Mathieu Groups 21st February 2015 3 / 15 A group acts faithfully on an object if it is isomorphic to a subgroup of the symmetry group of the object. The stabiliser of a point in a group G is Group of rotations: the subgroup of G which fixes x. -
Braids, 3-Manifolds, Elementary Particles: Number Theory and Symmetry in Particle Physics
S S symmetry Article Braids, 3-Manifolds, Elementary Particles: Number Theory and Symmetry in Particle Physics Torsten Asselmeyer-Maluga German Aeorspace Center, Rosa-Luxemburg-Str. 2, 10178 Berlin, Germany; [email protected]; Tel.: +49-30-67055-725 Received: 25 July 2019; Accepted: 2 October 2019; Published: 15 October 2019 Abstract: In this paper, we will describe a topological model for elementary particles based on 3-manifolds. Here, we will use Thurston’s geometrization theorem to get a simple picture: fermions as hyperbolic knot complements (a complement C(K) = S3 n (K × D2) of a knot K carrying a hyperbolic geometry) and bosons as torus bundles. In particular, hyperbolic 3-manifolds have a close connection to number theory (Bloch group, algebraic K-theory, quaternionic trace fields), which will be used in the description of fermions. Here, we choose the description of 3-manifolds by branched covers. Every 3-manifold can be described by a 3-fold branched cover of S3 branched along a knot. In case of knot complements, one will obtain a 3-fold branched cover of the 3-disk D3 branched along a 3-braid or 3-braids describing fermions. The whole approach will uncover new symmetries as induced by quantum and discrete groups. Using the Drinfeld–Turaev quantization, we will also construct a quantization so that quantum states correspond to knots. Particle properties like the electric charge must be expressed by topology, and we will obtain the right spectrum of possible values. Finally, we will get a connection to recent models of Furey, Stoica and Gresnigt using octonionic and quaternionic algebras with relations to 3-braids (Bilson–Thompson model). -
Arxiv:1305.5974V1 [Math-Ph]
INTRODUCTION TO SPORADIC GROUPS for physicists Luis J. Boya∗ Departamento de F´ısica Te´orica Universidad de Zaragoza E-50009 Zaragoza, SPAIN MSC: 20D08, 20D05, 11F22 PACS numbers: 02.20.a, 02.20.Bb, 11.24.Yb Key words: Finite simple groups, sporadic groups, the Monster group. Juan SANCHO GUIMERA´ In Memoriam Abstract We describe the collection of finite simple groups, with a view on physical applications. We recall first the prime cyclic groups Zp, and the alternating groups Altn>4. After a quick revision of finite fields Fq, q = pf , with p prime, we consider the 16 families of finite simple groups of Lie type. There are also 26 extra “sporadic” groups, which gather in three interconnected “generations” (with 5+7+8 groups) plus the Pariah groups (6). We point out a couple of physical applications, in- cluding constructing the biggest sporadic group, the “Monster” group, with close to 1054 elements from arguments of physics, and also the relation of some Mathieu groups with compactification in string and M-theory. ∗[email protected] arXiv:1305.5974v1 [math-ph] 25 May 2013 1 Contents 1 Introduction 3 1.1 Generaldescriptionofthework . 3 1.2 Initialmathematics............................ 7 2 Generalities about groups 14 2.1 Elementarynotions............................ 14 2.2 Theframeworkorbox .......................... 16 2.3 Subgroups................................. 18 2.4 Morphisms ................................ 22 2.5 Extensions................................. 23 2.6 Familiesoffinitegroups ......................... 24 2.7 Abeliangroups .............................. 27 2.8 Symmetricgroup ............................. 28 3 More advanced group theory 30 3.1 Groupsoperationginspaces. 30 3.2 Representations.............................. 32 3.3 Characters.Fourierseries . 35 3.4 Homological algebra and extension theory . 37 3.5 Groupsuptoorder16.......................... -
Finite Groups Whose Element Orders Are Consecutive Integers
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF ALGEBRA 143, 388X)0 (1991) Finite Groups Whose Element Orders Are Consecutive Integers ROLF BRANDL Mathematisches Institui, Am Hubland 12, D-W-8700 Wiirzberg, Germany AND SHI WUJIE Mathematics Department, Southwest-China Teachers University, Chongqing, China Communicated by G. Glauberman Received February 28, 1986 DEDICATED TO PROFESSORB. H. NEUMANN ON HIS 80~~ BIRTHDAY There are various characterizations of groups by conditions on the orders of its elements. For example, in [ 8, 1] the finite groups all of whose elements have prime power order have been classified. In [2, 16-181 some simple groups have been characterized by conditions on the orders of its elements and B. H. Neumann [12] has determined all groups whose elements have orders 1, 2, and 3. The latter groups are OC3 groups in the sense of the following. DEFINITION. Let n be a positive integer. Then a group G is an OC, group if every element of G has order <n and for each m <n there exists an element of G having order m. In this paper we give a complete classification of finite OC, groups. The notation is standard; see [S, 111. In addition, for a prime q, a Sylow q-sub- group of the group G is denoted by P,. Moreover Z{ stands for the direct product of j copies of Zj and G = [N] Q denotes the split extension of a normal subgroup N of G by a complement Q. -
A FRIENDLY INTRODUCTION to GROUP THEORY 1. Who Cares?
A FRIENDLY INTRODUCTION TO GROUP THEORY JAKE WELLENS 1. who cares? You do, prefrosh. If you're a math major, then you probably want to pass Math 5. If you're a chemistry major, then you probably want to take that one chem class I heard involves representation theory. If you're a physics major, then at some point you might want to know what the Standard Model is. And I'll bet at least a few of you CS majors care at least a little bit about cryptography. Anyway, Wikipedia thinks it's useful to know some basic group theory, and I think I agree. It's also fun and I promise it isn't very difficult. 2. what is a group? I'm about to tell you what a group is, so brace yourself for disappointment. It's bound to be a somewhat anticlimactic experience for both of us: I type out a bunch of unimpressive-looking properties, and a bunch of you sit there looking unimpressed. I hope I can convince you, however, that it is the simplicity and ordinariness of this definition that makes group theory so deep and fundamentally interesting. Definition 1: A group (G; ∗) is a set G together with a binary operation ∗ : G×G ! G satisfying the following three conditions: 1. Associativity - that is, for any x; y; z 2 G, we have (x ∗ y) ∗ z = x ∗ (y ∗ z). 2. There is an identity element e 2 G such that 8g 2 G, we have e ∗ g = g ∗ e = g. 3. Each element has an inverse - that is, for each g 2 G, there is some h 2 G such that g ∗ h = h ∗ g = e.