View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server hep-th/9711162 IHES/P/97/82 RU-97-94 Noncommutative Geometry and Matrix Theory: Compactification on Tori Alain Connes1, Michael R. Douglas1,2 and Albert Schwarz1,2,3 1 Institut des Hautes Etudes´ Scientifiques Le Bois-Marie, Bures-sur-Yvette, 91440 France 2 Department of Physics and Astronomy Rutgers University Piscataway, NJ 08855–0849 USA 3 Department of Mathematics University of California Davis, CA 95616 USA
[email protected],
[email protected],
[email protected] We study toroidal compactification of Matrix theory, using ideas and results of non-commutative geometry. We generalize this to compactifi- cation on the noncommutative torus, explain the classification of these backgrounds, and argue that they correspond in supergravity to tori with constant background three-form tensor field. The paper includes an intro- duction for mathematicians to the IKKT formulation of Matrix theory and its relation to the BFSS Matrix theory. November 1997 1. Introduction The recent development of superstring theory has shown that these theories are the perturbative expansions of a more general theory where strings are on equal footing with their multidimensional analogs (branes). This theory is called M theory, where M stands for “mysterious” or “membrane.” It was conjectured in [1] that M theory can be defined as a matrix quantum mechanics, obtained from ten-dimensional supersymmetric Yang-Mills (SYM) theory by means of reduction to 0+1 dimensional theory, where the size of the matrix tends to infinity. Another matrix model was suggested in [2]; it can be obtained by reduction of 10-dimensional SYM theory to a point.