<<

Separatunt PUBLICATION ES MATHEHATICAE

TOMUS 10. FASC.

DEBRECEN 1963

FUNDAVERUNT: A. O M T. SZELE ET O. VARGA

COMMI SSI O REDACTORUM: J. ACZÉL, B. GY1RES, A. KERTÉSZ, A. RAPCSAK, A. RÉNYI, ET O. VARGA

SECRETARIUS COMMI SSI ON'S: B. BARNA

L. G. Kovics Admissible direct decompositions of direct sums o f abelian groups o f rank one

INSTITUTUM M AT H EM AT IC U M U N IVER SITATIS DEBRECENIENSIS HUNGARIA 254

Admissible direct decompositions of direct sums of abelian groups of rank one

By L. G. KOVAC S (Manchester)

The starting point o f the theory o f ordinary representations is MASCHKE'S Theorem, which states that every representation of a finite over a field whose characteristic does not divide the o f the group is completely reducible (see e. g. VAN DER WAERDEN [6], p. 182). A partial generalization of this theorem has recently been given by O. GRÜN in [2], and the main step of the classical proof of the theorem has been generalized by M. F. NEWMAN and the author in [4]. Both of these results arose out of a shift in the point of view: they do not refer to repre- sentations, but to direct decompositions of abelian groups, admissible with respect to a finite group of operators (in the sense of KUROSH [5], § 15). The aim o f this paper is to present an extension of GRON's result, exploiting the start made in [4]. The terminology follows, apart from minor deviations, that o f FUCHS'S book [1]. From [4], only a special case of Theorem 2.2 is needed here: Lemma. Let X be an , and G a finite group of operators on X: sup- pose that (every element of) X is divisible (in X) by the order of G, and that X has no element (other than O) whose order is a divisor of the order of G. if Y is an admissible of X which is also a direct summand of X, then Y has an admissible (direct) complement in X. The result of this paper is the following. Theorem. Let A be a of abelian groups of rank one, and G a finite group of operators on A; suppose that A is divisible by the order of G, and that A has no element (other than 0) whose order is a divisor of the order of G. Then A can be written as a direct sum of admissible, G-indecomposable , each of which is a direct sum o f finitely many isomorphic groups o f rank one. The proof splits into several steps, and occupies the rest o f the paper. (A) A is a direct sum of countable admissible subgroups each of which is a direct sum o f groups o f rank one. PROOF. Let A = E ( C „ : ) a ) where the C' ordin)al, and 1 runs through all the ordinals which precede cr. Denote the correspond- ing ca, noanircael p rogjecrtionos uA -p- s makes simultaneously the following definitions. Let = s e t (p). I f i is a finite , o f r a n k -oCrdinal and A a countable set of ordinals preceding a, let CI = E ( C l)et Co n e , 2 ba y y , . F/:L) . Eo ) r , a n d i G i s e aa c h n ob r d i n a le pt h s u c he ts h a tm pa o -l l ,e os n et a d m i s s i b l e s u b g r o u p c o n t a i n i n g C . T h e n q t i s c o u n t a b l e ; L. G. Kovdcs: Decompositions of direct sums of abellan groups 2 5 5

as C lisi also countable. Hence C ipthG.e set A Y ' defined by / 1 ' = set().: -< a, C G y , definition provides an increasing chain A Z A . . . c o u n t a b l e sets i'1 sG y >of- o0rd) inails.s In tucrno, ounen cotnsatrubcts laneot.he r increasing chain by defining its general tgierm Av as Av = U (A T h i s Iet,hL=e f0ol lowfing oproprerti es: i n d u c t i v e 'na v(lAl,) lA °i is- empty. isn a- em0a xi)ma.l ina depend ent subset of B, then B consists precisely n,tslof th uotse behlem sentse oi fa tA w hsich dAe pend on S; so, if O =b EB, then nb = n for some integrs n, n tmt(ei aB s , i l y C l ) (nb)y „= 0 and, as C, is torsion free, n(by„) — O and n = 0 imply that by, =0; so that s=(ts e e n one has A(B, Cl) s e t ( 2 : I E i0a,ti n h a t tAen,e ss Sofy A( B, C„ l). Thi0s sub)set is used to define 1(B, Cl), a set of types of torsion g=—kt+ + n h i s fwree hgroui psc o fh ra,nk one: p u t '.?1(1, Cl) --- set(T(C,): A ( B , Cl)); t his set o f +nb,k n = 0) , tsypes iis clnearlyc alsoe finite . +,gas nThen stadtem en t (C) will be proved by induction on the cardinal 191(B, Cl)1 o f S ka'iek.11(B,l Cl)e. I f m '.11(Be, Cl) is empty, then B = 0 and so (C) is trivially true. Hence one i s snscan pt rocsede to the inductive step: let a n d let (C) be assumed to be true for fi n i t e , kdesvery choic e of A, G, and B to which there is a decomposition like (Cl) which yields ap cardinral smaoller thavn 19I(B, C1)1. Let a be a max imal type i n C l ) , and get l pute A ,s --- s e t (: A E ke, m sAt=, s et( )L:T I(ECh , ) weunion nis A. Let A ' -= ( C „ : ).E A k>eA -, T a ) , itwhichs is get n erated by the elements whose types (in A) are greater than a; so A' is Afii( C , 2n i hsadmissible.o Moreov er, A ' i s a direc t s ummand o f A, f or A =- A' + A , wit h -)); t h=e n A ' sifA u sia e)s .t ( t h e igtSto rsiont free factor group AI B ; this has a direct decomposition AI B = (A' + B)1.13 )cT h. ha r a c t e r i s at;=+ A b :te i c l,i)Yi = (Ael + B)I B, implies t hat ( A ' + B)IB has a n admissible complement, s ay AEst * IB,h ui n 2A1b1B. Asg A ' rn A*(oA ' + B)( sfEl -an,ur adempiss ib le cTomplement o f A' i n A. Let a be t he canonical projection o f A kSAB )o(e ntAo A* C* cor=resp fondinBg to th e di rect decomposition gy2, a)As n d A ' k,U(C2)w A = A' H-A*. =fl)ie B oAIf a EA, and a a ' + a, wi t h a ' E A', a, EA, , t hen a l a ' a + , - - - - a 0-t , fthat3l A* = Acx = A t ,A-hs * Sa)lb,y. a,As soso th at in fact A* = A t ti-s s GA,fa(r om-, =( C1 l() Ct o, t7he. n: e w decomposition hiao n ;aEA v o i d ef)(dC3) e Aa = Ac' + A* -=t ( C , snA' 2 U n,tfi n tdA+ h3 e) . a:e A d kBIB e tr nta nii) e ls d)r + I ( C AscI o n v e n A)e lciB e n t 3ap : A ona o =2a fnwd Ui A attm 3r ,aoi )w ics h a =i tns g e (s D iei ie sdb :d ) mil a ,i E pne p As ) et. d j ihH s o o mie o r i psn h i n cc a l t loe y a mt n ph d le t eL h me e em i nm r ta A, tw Ci ot nh sX i= dA eI rB ta hn ed Decompositions of direct sums of abelian groups 257 where I )). = C Apr ojiefct ion) s. ( 5 E3= ( D ).A; ;LE A2U A3), B(52-= 0 whenever /I E A, O n the other hand, if 2 E then 5, y ;t l:A 2 AU— D A 3 , tohte:n af o= rg,ay IL EA); also, ,at 0 if y E A aA n litn ath ins esdeco ndA cayse yc ,otk=e O if y= =,1 and y, dt,h at a (5 Atn D)oavoidns C Lo0c5 6 i f C,eaA=ti o ns yield the conclusion that A(B, C3) = A(B, Cl) and so %(B, C3) -= yaA5s wye ll. E cah wn 5da A= Nex2t, considUer the s ubgroup A tAscan obe descr ibed as the set consisting of O and the elements of type a in the admissible Ac6 c 2 di3e ffi n e, d y i=ts, ub gr oup A*; so that A sa) b n y od A f(o2is a iadirects summand in A* and so the Lemma, with X = A* and Y = A th,that 2Ae h n =ac ,e t 2yocn h a b r a c t e r i s ib2di rec(t decotmDposition Epst, i pcher o v i d e s fyh a Ao l l o w s Aori(C4)sc v n A -= A + A ds2 +e: Afi 2keAclet t:h2e cor*respoEndi ng can nonical projections A — Ai be denoted by a na3Cle airly; tA Uptai A n in32 o= i 4n AEhds, f 2o r i = 1 , 2 , 3 . ;a,3Putd E 3Aehdeco),mpeo s. i tionn fBim1,A 3i o .)c(C5)T e h A i - - fs=ti sE O-la(, , sld m i ai(hfLikb/e )in a sim ilar situation above, one checks that, for the canonical projections f=os5E ( Essw iu b b l g il3i;e e: taie3) rnP. ut B o u p sc;L) hygA=I, f: B2.A - )l . ao,s. eASsB3Henc=e BA (oB nmEu:a s T(E cai,yE3 , oo t nAapb,An o tC be5rlon) g to 1 (B r.At0herer2fo re the induction hypothesis applies to A ', G, B cabl3gIE) =_ i eA23A, as e>t)rUAl, ' C( r5 ) . pl,3tra nwkn oaintd chon taint s Bh e B-amoA.(DH BeFirnna, llyc, coensid er B nsch3 odd n c l u s i o n AOye3u2cCApure 2s3, u b gr,oup U of finite rank which contains B iotae, wnBhh i l ea t en;pao)25su bse t) o f A2 ; put U ' =E (E g,*itsnb)he n o 3. A tB hy ltainr=.iA T h e s e t A ( U , ci.s2aÀV-of fin=titehly meany groups of rank one which are all of the same type a; so that a theorem e,sdrTC: / 1 5E )A i s afeUn.a=of C'EBi Rn Nn IKOi Vdt, FiUCaH Sl, K ERTÉSZ, and SZELE (Theorem 46. 8 in Fucus [ li) implies ms.Ee(athaC1tU U is a direct , sfiu mmannd ofi U'; ht encee U is a direct summand of A n2q+aEWA os t e ea.3s2pCU isa a5dsrm i)sswib)ole, t lhel L. e mmaA (withs X = A oEuUdAa( zp r iny(p=B)ac2om Dpole nement, dsayrf U *,U i n" A nA"m2ein Fu3 cll s [1]) that both U and U* are direct sums of groups of rank one. tA,p1ofs,2, Y =u U ) i2vaid, ;tlti r emahrins to put these results together : A --= A' + A o31e)nob-.p -Ir-t o s fv oi ldl eo ws s cUanseC+ (Vbi2 +c W+ ) As=t (U + V) + (Al + U* 4- W); all these summands are admissible sub- f,:d3re-gft ro uprhs atnod ad irme ctt su ms of groups of rank one; U+ V is of finite rank; and B B aAldsl op 3 u r= o A ' + AiEiceoI2aU ( +E l3eUism) to( s fU , + U * ) + ,nAscvfthD 16h ae o s r ,nUbo, hA A3oge9:a m n tt'lBfs B2 *)mitrtAoa d mf 2 i s s i ht.e3go 2h r .aofy(—Bb l Ae eoNdsot a u TvrE(2BAE R nBoi,ph ns s hopACi,(( T h e tywr=oa da uih35nCUo r e m h,UeBft Bn sdi;)Al,4 eOicar9 3a d Asct,,)C6 5 ) k.st3a1 am i s htaB). ; eTadEn( rs i b ahlen6 rhpeAkB el e seln)d neucBo3 o tky(.a esrokn, f hebC-s leemoC f ery4=A ospt.5 i anc)0( fbuo3) n deciB csbsg i ml3af iegih% t iA,ne, trrto( e s'bEC voiwB r s+oeA5 -uos, a iAtr,) pntC n b2heaA oAhl k loafn3 f3a) , eftid, t=; a An(t h+am n 3exh eWlo d =d3e dsr B Etet iuoe B (o)y rcBo 2 Dt.p eh6v + Ah=e ctAe B ce-a th>r 3 cEd sa-, 32o utO :=e mV. E-s i A(U s 35' o )5 f .5 )f 4i 3n ii ft 2e E A 3 . 258 L. G. Kw/des

B 3sa tisfy the claims made in (C). U (D) I f A is torsion free, then A can be written as a direct sum of admissible sub- grroups of finite rank such that each of the summands is a direct sum of groups of rank one. + V PROOF. In view of (A), A can be assumed to be countable; moreover, only the case when A is of infinite rank needs investigation. Let A -= E (C ; idirect decomposition of A in which all the C s :ito a(IC r), eA( ca5gn br)e ow riuttenpb as C e' + D' in sucha a way that C, C ' , both C' and D' aore admissible subgroups and direct sums of groups of rank one, and the rank of C'o is fifnite. S upprose that,a fnor sokme p ositive n, ot n e . A(hDI ) c c oA r d i= Cnl + Cg 2 + + C " + isa an admissible direct decomposition of A in which all the summands are direct D " stu ms of groups of rank one, all but the last are of finite rank, and C, + A c l + + C. Let 5 be the canonical projection of A onto D", corresponding to ('D1 ). Then C , 5 is a subgroup of finite rank in D", and so (C) provides that D" haas a direct decomposition Dn = C subgroups which are again direct sums of groups of rank one, C nn + + D ' I + " stCi + u c h +d C t,n5 h a t for,A n+1 in place of n. This inductive process defines a subgroup O for each positive O,+ r + inc" te ger i. It is easily seen that the subgroup generated by the O is their direct sum, 1a- n- d iCt c ontains all the C lg aindec ompons1ition sa tdisfynag th en claimds made in (D). +i D.s T(E)h eI f rA eis ftoorsrione fr ee, then the Theorem is true. +v nAo ce PROOF. According to (D), it can be assumed that A is of finite rank. In this '=f a I r cnas e A is trivially a direct sum of G-indecomposable subgroups; it remains to prove te(fhe a0sse:rt io1n ab-ouit th-e structure of its G-indecomposable summands. Let B be an +b arbitraryaoi ) d) G,-imnd ecoimpossable summand o f A, and let B = O. First, a theorem o f Cy BianAER b(Theolnrem e46. 7 in Focus [1]) gives that B is a direct sum of groups of rank onAne. L et B -= + G with all the C di eit+' lem oefn t ofr thae snet okf t ypeos T(Cn ,), ei=1,,... ,n . Put B, —Z(C =t E ( C h iae1= n d aind the elesments of t ype a in B, so that B, is characteristic in B and hence admissible. :lr ,UT ( C e t T:ihTu(s Cthe Lemma, with X = B and Y=B, , gives that B, has an admissible complement ians+ B ; as B is G -indecomposable and B, 0 , this complement can only be O. Hence is )BbnoV B , = so teh at aall the) C, area o f thne sadme type a. )a Bakta In v2iew of ( B ), it is poss=ible to assume for the rest of the proof that A is a count- a=dnble p- grouip. I n (F) a special case will be discussed, and (G) will provide the key tm.oh the gaeneraxl case.i m a ar e lTad )c ;(F) I ft pA =0, then the Theorem is true. htA t ua" PR OOF. If A is finite as well, this statement is trivially true. Let A be countably inhfinite; then A = I (C 1 i -< co) where all the C. are of order p Fo r each positive sd= ineteger j, let Cl = ( C 1 i j ) , and let C AeA 1n Cc' GB b e t h e lo+ s= u b g r o u p +mW gB e n e r a t e d +p bi y Co a+ l l ns B +i 2 Ct . ni T +o h 1n e +l s Di u nk b 'e g ,( r aD o n1 u d) p nh B oa 1 ws c Cb o ,e n +e s Cn i „o s +b tt sa pi rn ee cd i s e l y o f O Decompositions of direct sums of Aai un groups 2 5 9 . the elements of the form cg with e E C, g E G. Then all the Ci and the ClG are finite; C' C ' ' and C i C J G C i s G hold for every j; and U (Cl: 1 - < (o) = A, so that also U ( C 1of A, and since the GIG are admissible, the Lemma (with X = 0 + G1giv:e s that1 each CiG has an admissible complement, say D 0 + 'G. In addition, let D -Gi , < Y = C i G ) holdsI = f orC every j, so that A = U (GIG: - < co) = [ ' (D - < co] = t, o ) 1=E(D E a c h D =fi1n ite,. T h eirenfore eatch hD e Gi i. s T h e n Aisc ubiogsro ru.prsa, eso s thatp theo dniredct idencogmposition of A obtained above can be refined ia d mt i s s i b l e Sdto oi nrei ien wc htich all the summands are finite, admissible, and G-indecomposable. Tiahis renfisnemden t s,atisfi es the Theorem. ns cu m eb ae is ny eo ( G) fLet T be an admissible, G-indecomposable subgroup in the socle S of A. tg o nfiTchenn oT isi finnitte, taend Aal has a direct summand B which is admissible, G-indecomposable, ands whose socle is precisely T; moreover, B is G-indecomposable. oy ei n e d wm PROOa F. It follows from (F) that T must be finite. If T=0, then B =0 will do; ti h a enhence suvyppose that T>-0. Let k be one of the ordinals 0, 1, w ; then pkA is a tn eficharactnreristic ai nd hence admissible subgroup of A. As every subgroup o f T is a dCtirecit suGmm=ahndE o f T, the Lemma can be applied to X = T , Y T A p k A , with yt e t(hee cDonclusion that T npkA has an admissible complement in T. Since T is G-inde- sG -u c1fiomposabnle, it followsi that either TrIpkA= 0 or T npkA = T. If T biIf Tn pgwdA =0e, thenc TrIpkA =0 for some finite ordinals k; but not for all, for -:t 1 e roT mo p o ,-C- p ' " A , il e t m = usi-n thea pforbm inl + I,e and then T w_G _S. incie e_ve,ryj sub) group of S is a direct summand of S, the Lemma can be applied o-_ -to- pX m= SA, ,Y -= T with the conclusion that S T + U for some admissible subgroup fU- . Let U T r I p m " A Ak = — O . imU= nLet it be agreed that w — i c o for every finite ordinal . sp kPut B aiA°ng ,coha in B T=p iB dofA = T . ,so deB of p " i gio. e neIratefd b y Bk and U, „_ k- , krgrHroump 14/IB , is an admissible subgroup in VIB ok f a n _ekis ,a a direct0insd s,ut mhmaend isofr V /Be v e r y a-W/Bd m d dcsk=n iu, r b e gc rt o u p islkoA scIhBosseni is Badmissible, contains Bk, and is contained in p m sto,0c t shue fm : V / b-kofh Blk+e1 c ontiain s T and is contained in S n p m WsBL,e Teu+ Um, , _m a sk.-a u h BukT(1t ' nkwpU , i t h b-Aks1 gs a itkmnX,h fo_llpows =that T' = T + 0 = T. Next, note that p B sAt-ae q.'u ehAnTce; o hf thshe ec h onicesc ofe oB, d e a s T ' km_Vrwe+ 1oo/ B p eS+ i 'UAA) impplie's tnhat b =pa for some a in p " '' I m -kufn+ 1 sp T -mak;= (Bk, U „ , _k_1)1Bk+B k s.a O o n A a ; t f ho re t h i s a , A -_tn,tih isT Bs ehko' wk s _t hati b1 s= pa. = p au +pbn' -= p b' E p B ockdk+ ti k h aes r + B k idkiYhr +m1t m e = d i a t e T-/ B1= E i h V I cB;Wahsm hhaeo/ n nc Ben d B ,- oAek T B =k ksiti a f t fn, + s a o = c -bos E Bs t+)St (h t ao t r e-kBfs s 1pna T, r o u v e,-kti p B o Wip+ ' f db e' s ntkib + n h c e =tkh o h ,tw. n e Ui ,T t h u s Badnel r tk riAh ns n keBo s , fTu _ a E c t fikerc c f ,+b ko ' E B ntdo s o sUk _m+ t eUim r o,, 1e dmnp i tfa ) o. i_al = hon Or nkle 0 ard nd s_m , tes t i u,e k Tvk hn cin . 'ef ea hnt L nro ol a0, e Uyr t k w,s t ,kw hw at V nwh ei yh / _i r t teB B ktc hh hsk k _h ak au„ b lT n - tb/ e Bn d< gB t kp , m rk h nk o, o, e UA na ui n= en pn ,0 kd WV _, ni / kc on B _a wc k ,n sr . 0b t e T ;e ha h hw as e er t - nis ctu etb eg nr o u p B k + 1 260 L. G. Kovdcs

B kall the relevant properties of B o= , If mB isk finite,, this inductive process provides in a finite number of steps a sub- wpgrouip Bt„ h B kBT ;kth ei snod e of B is precisely T. in the first case, every non-zero element of T has height i+kn in A (f1or T - tf h i -i+ p'nB); nhence [e. g. by J) on p. 78 of FUCHS [1]] B is a pure subgroup in A; moreover, s,o -pBp ism bAolu ndead, so thatc a etheore m of KULIKOV (Theorem 24. 5 in FUCHS [1]) implies tc,rh ata B is a direct summand of A. In the second case, every non-zero element of T bo u t f seais oef infinite height in B (as T = p k B Tl c . ,vkn[see e. g. (f) on p. 59 o f FUCHS [ I -]d(pT]ph keoBmre m f18o. 1 rin FUCeHSv [1e]), Br isy a direct summand of A. By construction, B is peadmissible; and the G-indecomposability of T implies that B is also G-indeco mpo- t+ surfi,a blaen. Tnhi ids tco mehpleet es nthec preoo,f o f (G). hA tyka c )o r , d i n g =e (H) I f A is a p-group, then A =E(C,: 2 E A) where each C Bfst oo rthe type) C (p l , Let C= Z(C ita0 h) a t e)=then ,D iiss p reecisietly hthee mra ximcal ydivicsible si ubcgro up of A, so that D is characteristic nBit,n A ahn d is teherefoo re alsor admeissible. Now the Lemma (with X = A, / ,fB: À E A , C i7mtahat oD has anrs adm issible coomplemfent C' in A. Of necessity, C' C , so that C' is o„i , an) direct sum of cyclic groups. Hence it suffices to prove the Theorem under the further .td-o- - D i) pv r of i v isd ei s b da,r ss umcptio yn thcat l A iis ceith) er divisible or a direct sum o f cyclic groups. IelB e A E ia n d fToR (I) I f A is a divisible p-group, the Theorem is true. tD mr= PROO F. In view of (F), the sode S of A can be written as a direct sum of finite, s= E =dapdmissible, G-indecomposable subgroups TA, with 2. running through some index h( eC , cikset A. According to (G), each T is the sode of some admissible, G-indecomposable i,:direct gsu mmand A., of A. Each B onB khA2B, isi s divisible; t o f E h efincen eai cht Be A is a direct sum of finitely many (isomorphic) divisible ,a ir=Agrouaps ofn raknk ,o,ne ( that is, of groups of the type C ( r ) ; by another theorem of BAER, tTl h eorem 19. 1 in FUCHS [1]). The subgroup generated by the BA is their direct nfpC o r hksum, and i t is divisible; moreover, i t contains the whole sode o f A; hence BikC t s e;A =E(B, : 2E A). is(+ or d ) e ni (.1) I f A is a direct sum o f cyclic p-groups, then A is a direct sum of bounded sT)i ; tnad missible subgroups. a)B hkt PROOF. Now all the direct summands of A which are o f rank one are cyclic l„ i eg+hroups. If A is of finite rank, then A itself is bounded, so there is nothing to prove. s pi1In view of (A), it can be assumed that A is countable, so that in the remaining case ofi n i t e rs.A = E(C - < co) where all the C, are cyclic. Let S be the sode of A and S Ti,s otdeh oef C eocach subgroup V of A, the subgroup generated by all the elements of the form vg onai n withca v E V, gEG; VG is always admissible; and, if V is finite, then so is VG. Since s(d, f o r esA is a direct sum of cyclic groups, p''A =0, and so each finite subgroup of A must feu a c a sehave zero intersection with pkA for some positive integer lc ocmh Let k(1h) be the first positive integer for which S s, ruiis characteristicI; in A, it is also admissible. Let St = S 1 pl TpGt +hG( Sn pn kp ( re p:ke ( 11n)" BAot ) ; t h e n S l / 1S =) A = O . voSB , G 1I S 3 i n c e S i,= „( Sn , p k o ) A dUB =i e(k : sB, 1 akB ki s: +i u1 ,v b3 h) g. a. r- sA o- s uk b p- e i=- b - )wid)v Ai (st a h d i er e c t lxnBhOc5oe .Ht e n ce the un ion of the B is.e i ui m r m a n d isEitfleTBin c ohoni tulaiuinss thp e uunrioen o f the P , which is the whole sode o f A; so that in fact wMr ) s o c nmbBsCinp ( B , g r s, Ali n e sA 0eBsTok i I taoisT = d[ u e . ,sia(r( : S hlpflu, 0 og . suidAef 1 p awUpn b y omko) , s o tin=bsp( c F ) tiAvA s o BtdEgmoS o o a/ n h)e) o . haBrxsn ) ip . Br t aomsp A a irde h 7 i 7 tuli,k [ ;erCt a i apbS( e tse/h t n Lsml=1 . hpcBa i F t U efo+) g esit n C H mon,(A . rcu>B f S mrgaS) b etm-1= a [ 1 amnp y ftm0,- c ] ] oaldk K oa,B t ; fnlB( ) rbnai t a MitnD o edna h n .nhCA n Uidr e d Ece=) p =nse s RrsBf . Cgoa o Deuio 7 /aEl d Éab.r 8 BdFr e LsgT i imIe o Yirh n .iCa f Inoe F NsBd B (gus U osiy i Lcpo C wi: s ehsd H ib j maoe S flt u mifo [ Eef s anAf l iao t I,wB a snl P iahc P adl . nio u nho H [dcn t yaw e 3th B sv n ]hia 1 ui c ;eni = bn e ostn 1 g , roes 3 rf b ,drT 1 o y tes' , ur t hoe, a pi h efca n ot e metn d fs m ad a A a ic p x nh p i sB l m ti y a e- p l i t y 262 L. G. Kovdes the Lemma (with X = B ifor ,each / BT = B i= i( Bn co] -= ( B i : c o ) . Here a ll the B )t1 h e t o i anprkiei)A -a d m i s s i b l e owcfelol. br rt a i s u- B b g r o u p s , neo s p r ( Ka) I f i A is an direct sudm o f cyclic p-groups, the Theorem is true. ao n d i nn p k e PROOF. In view of (J), it may be assumed that A is bounded; say, p"A =O. Let an g d m( i s BTvhe sode of A be S. For i = l , n , let T sin Si n pbi i l e i e b e a n c-te1ristico in A) mand is ptherefore admissible, and each subgroup of S is a direct summand ,ar d ,m i s s i b l e lAin ;e very suAmbg roupe of S which contains it, so that the Lemma can be applied to .cXy —o S npim A p, Y l Sen pm e n t ns u tc = To1+j - n1 p f Bh 0 hSABi, ',. B T"n shuche thatp n i A ic o m s e(1(1)SAa ) A = B +p l e h n1=fn o+ . . . +T B " , mthe seocle oof _8' + + B is precisely T, + + T i1rd ni t s w t+(K2)es v Bi npi A =- 0, e, a n d s f+weohenrev er TI x i t o,yA O ne checks that the sode of Bi is precisely T s t h laTi=he ai s sertnion is trivial for i= 1 ; in fact, = T , a ldt.(t E p, a n d t h a t f t _ p oS.AB1 - 1La e t s 1 o t i - w+(K3)asc. 4 ; f n o dlt l o pw st . r hl b s+ieios- l T eOn the otheri h and, (K3) is a decomposition of t corresponding to (K1), and t E B rTain)a , a1 ++ Bi, soy that1 on e must have t = p i ei+n.t=yow, t h e sode T o pf Bi hcmtainse T n c - a_ a+iiTh[t a - n d1 0 i s h l - b r dbcieI=ando so n t het s,oac lei onf Bie is dprec isely T ) 0, so that S i e the con verse inclusion has already been seen, so that np+Ci i . s ii . Tn ha i s nrB-.[ AItl fsollo wo,s that ( eKvery2 non) -ze ro element in the sode of Bi is of height i— 1 in lT pso trhaot,l Biv is ae d iresct sum of isomorphic cyclic groups of order pi. This and (K1) p'liB am p lt i e s y+implyo t thh at it aca n bet ass umed without loss of generality that A is a direct sum of i:,ti h l ha t t+iosoSmorphic ci yclic g ronups;T eacch of order pm, say. The proof will be completed under An ba hitfaphis additional hypothesis. a( e ot a,oA( , I n viewp of (F), the sode S of A is a direct sum of finite, admissible, G-inde- nT u tif.-compo s able sutbgroups T,. A ccording to (G), each T is the sode of some admissible, dG1 - indecom nposable direct summand B, of A. The B, are then also direct sums of Bi(Wt s Sc+y clic groudps of order pm, as is every direct summand of A; the subgroup generated iiJr1 B n i ʻ nb+y the B, ise their direct sum, and it contains the whole sode S of A: it is also a direct fTs)i um of cyclica groups ocf order pm, so that it must be the whole of A. Finally, each p d ti,Bt i s _o2e u -n.1a b leia) g Acs] r iofb; o snib u csn+u t p hti+ B s artb i a rue„ a( s Tc, c 1tfa - +soc ar+c dioT mtri isd_ si1 son) B idg i bet n o (lT Be,( 1siK +us1 bf+) gi.= rnB0 oiy, ut( peK s.2 ) , Decompositions o f direct sums of abelian groups 2 6 3

The steps (B), (E), (H), (I), ( K ) together prove the Theorem. Remark Af t er the preparation o f the paper had been completed, PROFESSOR REINHOLD BAER kindly called the attention of the author to the fact that a combi- nation of results of KULIKOV and KAPLANSKY implies that every direct summand of A is a direct s um of groups of rank one; this would allow some minor cuts in the present proof.

References

[1] L. FUCHS, Abelian groups, Budapest, 1958. [2] a GRÜN, Einige Si.tze über Automorphismen abelscher p-Gruppen, Abb. M ath. Sent. UlliV- Ham5urg 24 (1960), 54- 58. 't3] L. Kov,kcs, On subgroups of the basic subgroup, Pub!. M ath. Debrecen 5 (1958), 261- 264. [4] L. G. Kovikcs and M . F. NEWMAN, Direct complementation i n groups with opeiatos, Arrch• Math. 13 (1962), 427- 433. [5] A. G. KuRos0. Theory of groups, Volume 1., New York, 1955. , [6] 13. L. VAN DER WAERDEN, Algebra 11, Dr itte Auflage, B e r l i n — G ö t t i n g e n — H e i d e l b e r g , 1 9 5 5 . (Received March 15, 1963.)