BABASAHEB BHIMRAO AMBEDKAR UNIVERSITY Department of Zoology Lecture Outline /Summary Notes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
BIO 475 - Parasitology Spring 2009 Stephen M
BIO 475 - Parasitology Spring 2009 Stephen M. Shuster Northern Arizona University http://www4.nau.edu/isopod Lecture 12 Platyhelminth Systematics-New Euplatyhelminthes Superclass Acoelomorpha a. Simple pharynx, no gut. b. Usually free-living in marine sands. 3. Also parasitic/commensal on echinoderms. 1 Euplatyhelminthes 2. Superclass Rhabditophora - with rhabdites Euplatyhelminthes 2. Superclass Rhabditophora - with rhabdites a. Class Rhabdocoela 1. Rod shaped gut (hence the name) 2. Often endosymbiotic with Crustacea or other invertebrates. Euplatyhelminthes 3. Example: Syndesmis a. Lives in gut of sea urchins, entirely on protozoa. 2 Euplatyhelminthes Class Temnocephalida a. Temnocephala 1. Ectoparasitic on crayfish 5. Class Tricladida a. like planarians b. Bdelloura 1. live in gills of Limulus Class Temnocephalida 4. Life cycles are poorly known. a. Seem to have slightly increased reproductive capacity. b. Retain many morphological characters that permit free-living existence. Euplatyhelminth Systematics 3 Parasitic Platyhelminthes Old Scheme Characters: 1. Tegumental cell extensions 2. Prohaptor 3. Opisthaptor Superclass Neodermata a. Loss of characters associated with free-living existence. 1. Ciliated larval epidermis, adult epidermis is syncitial. Superclass Neodermata b. Major Classes - will consider each in detail: 1. Class Trematoda a. Subclass Aspidobothrea b. Subclass Digenea 2. Class Monogenea 3. Class Cestoidea 4 Euplatyhelminth Systematics Euplatyhelminth Systematics Class Cestoidea Two Subclasses: a. Subclass Cestodaria 1. Order Gyrocotylidea 2. Order Amphilinidea b. Subclass Eucestoda 5 Euplatyhelminth Systematics Parasitic Flatworms a. Relative abundance related to variety of parasitic habitats. b. Evidence that such characters lead to great speciation c. isolated populations, unique selective environments. Parasitic Flatworms d. Also, very good organisms for examination of: 1. Complex life cycles; selection favoring them 2. -
Platyhelminthes: Amphilinidea)
Ahead of print online version FOLIA PARASITOLOGICA 60 [1]: 43–50, 2013 © Institute of Parasitology, Biology Centre ASCR ISSN 0015-5683 (print), ISSN 1803-6465 (online) http://folia.paru.cas.cz/ A reinvestigation of spermiogenesis in Amphilina foliacea (Platyhelminthes: Amphilinidea) Magdaléna Bruňanská1, Larisa G. Poddubnaya2 and Willi E. R. Xylander3 1 Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01 Košice, Slovak Republic; 2 I.D. Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Yaroslavl Province, Russia; 3 Senckenberg Museum für Naturkunde Görlitz, Postfach 300 154, 02806 Görlitz, Germany Abstract: Spermiogenesis in the amphilinidean cestode Amphilina foliacea (Rudolphi, 1819) was examined using transmission electron microscopy. The orthogonal development of the two flagella is followed by a flagellar rotation and their proximodistal fu- sion with the median cytoplasmic process. This process is accompanied by extension of both the mitochondrion and nucleus into the median cytoplasmic process. The two pairs of electron-dense attachment zones mark the lines where the proximodistal fusion of the median cytoplasmic process with the two flagella takes place. The intercentriolar body, previously undetermined inA. foliacea, is composed of three electron-dense and two electron-lucent plates. Also new for this species is the finding of electron-dense material in the apical region of the differentiation zone at the early stage of spermiogenesis, and the fact that two arching membranes appear at the base of the differentiation zone only when the two flagella rotate towards the median cytoplasmic process. The present data add more evidence for a close relationship between the Amphilinidea and the Eucestoda. -
Neodermata: Gyrocotylidea)
FOLIA PARASITOLOGICA 57[3]: 173–184, 2010 © Institute of Parasitology, Biology Centre ASCR ISSN 0015-5683 (print), ISSN 1803-6465 (online) http://www.paru.cas.cz/folia/ Ultrastructure of the ovarian follicles, oviducts and oocytes of Gyrocotyle urna (Neodermata: Gyrocotylidea) Larisa G. Poddubnaya1, Roman Kuchta2, Tomáš Scholz2 and Willi E.R. Xylander3 1 Institute of Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Yaroslavl Province, Russia; 2 Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Branišovská 31, 370 05 České Budějovice, Czech Republic; 3 Senckenberg Museum für Naturkunde Görlitz, Postfach 300 154, 02806 Görlitz, Germany Abstract: An ultrastructural study of the ovarian follicles and their associated oviducts of the cestode Gyrocotyle urna Grube et Wagener, 1852, a parasite from the spiral valve of the rabbit fish,Chimaera monstrosa L., was undertaken. Each follicle gives rise to follicular oviduct, which opens into one of the five collecting ducts, through which pass mature oocytes. These collecting ducts open into an ovarian receptacle which, in turn, opens via a muscular sphincter (the oocapt) to the main oviduct. The maturation of oocytes surrounded by the syncytial interstitial cells within the ovarian follicles of G. urna follows a pattern similar to that in Eucestoda. The ooplasm of mature oocytes contain lipid droplets (2.0 × 1.8 µm) and cortical granules (0.26 × 0.19 µm). The cytoplasm of primary and secondary oocytes contains centrioles, indicating the presence of the so-called “centriole cycle” during ������������������������oocyte �����������������divisions. A mor- phological variation between different oviducts was observed. The luminal surface of the follicular and the collecting oviducts is smooth. -
Proceedings of the Helminthological Society of Washington 52(1) 1985
Volumes? V f January 1985 Number 1 PROCEEDINGS ;• r ' •'• .\f The Helminthological Society --. ':''.,. --'. .x; .-- , •'','.• ••• •, ^ ' s\ * - .^ :~ s--\: •' } • ,' '•• ;UIoftI I ? V A semiannual journal of. research devoted to He/m/nfho/ogy and jail branches of Parasifo/ogy -- \_i - Suppprted in part by the vr / .'" BraytpnH. Ransom Memorial Trust Fund . - BROOKS, DANIEL R.,-RIGHARD T.O'GnADY, AND DAVID R. GLEN. The Phylogeny of < the Cercomeria Brooks, 1982 (Platyhelminthes) .:.........'.....^..i.....l. /..pi._.,.,.....:l^.r._l..^' IXDTZ,' JEFFREY M.,,AND JAMES R. .PALMIERI. Lecithodendriidae (Trematoda) from TaphozQUS melanopogon (Chiroptera) in Perlis, Malaysia , : .........i , LEMLY, A. DENNIS, AND GERALD W. ESCH. Black-spot Caused by Uvuliferambloplitis (Tfemato^a) Among JuVenileoCentrarchids.in the Piedmont Area of North S 'Carolina ....:..^...: „.. ......„..! ...; ,.........„...,......;. ;„... ._.^.... r EATON, ANNE PAULA, AND WJLLIAM F. FONT. Comparative "Seasonal Dynamics of ,'Alloglossidium macrdbdellensis (Digenea: Macroderoididae) in Wisconsin and HUEY/RICHARD. Proterogynotaenia texanum'sp. h. (Cestoidea: Progynotaeniidae) 7' from the Black-bellied Plover, Pluvialis squatarola ..;.. ...:....^..:..... £_ .HILDRETH, MICHAEL^ B.; AND RICHARD ;D. LUMSDEN. -Description of Otobothrium '-•I j«,tt£7z<? Plerocercus (Cestoda: Trypanorhyncha) and Its Incidence in Catfish from the Gulf Coast of Louisiana r A...:™.:.. J ......:.^., „..,..., ; , ; ...L....1 FRITZ, GA.RY N. A Consideration^of Alternative Intermediate Hosts for Mohiezia -
Parasitology Volume 60 60
Advances in Parasitology Volume 60 60 Cover illustration: Echinobothrium elegans from the blue-spotted ribbontail ray (Taeniura lymma) in Australia, a 'classical' hypothesis of tapeworm evolution proposed 2005 by Prof. Emeritus L. Euzet in 1959, and the molecular sequence data that now represent the basis of contemporary phylogenetic investigation. The emergence of molecular systematics at the end of the twentieth century provided a new class of data with which to revisit hypotheses based on interpretations of morphology and life ADVANCES IN history. The result has been a mixture of corroboration, upheaval and considerable insight into the correspondence between genetic divergence and taxonomic circumscription. PARASITOLOGY ADVANCES IN ADVANCES Complete list of Contents: Sulfur-Containing Amino Acid Metabolism in Parasitic Protozoa T. Nozaki, V. Ali and M. Tokoro The Use and Implications of Ribosomal DNA Sequencing for the Discrimination of Digenean Species M. J. Nolan and T. H. Cribb Advances and Trends in the Molecular Systematics of the Parasitic Platyhelminthes P P. D. Olson and V. V. Tkach ARASITOLOGY Wolbachia Bacterial Endosymbionts of Filarial Nematodes M. J. Taylor, C. Bandi and A. Hoerauf The Biology of Avian Eimeria with an Emphasis on Their Control by Vaccination M. W. Shirley, A. L. Smith and F. M. Tomley 60 Edited by elsevier.com J.R. BAKER R. MULLER D. ROLLINSON Advances and Trends in the Molecular Systematics of the Parasitic Platyhelminthes Peter D. Olson1 and Vasyl V. Tkach2 1Division of Parasitology, Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK 2Department of Biology, University of North Dakota, Grand Forks, North Dakota, 58202-9019, USA Abstract ...................................166 1. -
Ontogenesis and Phylogenetic Interrelationships of Parasitic Flatworms
W&M ScholarWorks Reports 1981 Ontogenesis and phylogenetic interrelationships of parasitic flatworms Boris E. Bychowsky Follow this and additional works at: https://scholarworks.wm.edu/reports Part of the Aquaculture and Fisheries Commons, Marine Biology Commons, Oceanography Commons, Parasitology Commons, and the Zoology Commons Recommended Citation Bychowsky, B. E. (1981) Ontogenesis and phylogenetic interrelationships of parasitic flatworms. Translation series (Virginia Institute of Marine Science) ; no. 26. Virginia Institute of Marine Science, William & Mary. https://scholarworks.wm.edu/reports/32 This Report is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Reports by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. /J,J:>' :;_~fo c. :-),, ONTOGENESIS AND PHYLOGENETIC INTERRELATIONSHIPS OF PARASITIC FLATWORMS by Boris E. Bychowsky Izvestiz Akademia Nauk S.S.S.R., Ser. Biol. IV: 1353-1383 (1937) Edited by John E. Simmons Department of Zoology University of California at Berkeley Berkeley, California Translated by Maria A. Kassatkin and Serge Kassatkin Department of Slavic Languages and Literature University of California at Berkeley Berkeley, California Translation Series No. 26 VIRGINIA INSTITUTE OF MARINE SCIENCE COLLEGE OF WILLIAM AND MARY Gloucester Point, Virginia 23062 William J. Hargis, Jr. Director 1981 Preface This publication of Professor Bychowsky is a major contribution to the study of the phylogeny of parasitic flatworms. It is a singular coincidence for it t6 have appeared in print the same year as Stunkardts nThe Physiology, Life Cycles and Phylogeny of the Parasitic Flatwormsn (Amer. Museum Novitates, No. 908, 27 pp., 1937 ), and this editor well remembers perusing the latter under the rather demanding tutelage of A.C. -
D070p001.Pdf
DISEASES OF AQUATIC ORGANISMS Vol. 70: 1–36, 2006 Published June 12 Dis Aquat Org OPENPEN ACCESSCCESS FEATURE ARTICLE: REVIEW Guide to the identification of fish protozoan and metazoan parasites in stained tissue sections D. W. Bruno1,*, B. Nowak2, D. G. Elliott3 1FRS Marine Laboratory, PO Box 101, 375 Victoria Road, Aberdeen AB11 9DB, UK 2School of Aquaculture, Tasmanian Aquaculture and Fisheries Institute, CRC Aquafin, University of Tasmania, Locked Bag 1370, Launceston, Tasmania 7250, Australia 3Western Fisheries Research Center, US Geological Survey/Biological Resources Discipline, 6505 N.E. 65th Street, Seattle, Washington 98115, USA ABSTRACT: The identification of protozoan and metazoan parasites is traditionally carried out using a series of classical keys based upon the morphology of the whole organism. However, in stained tis- sue sections prepared for light microscopy, taxonomic features will be missing, thus making parasite identification difficult. This work highlights the characteristic features of representative parasites in tissue sections to aid identification. The parasite examples discussed are derived from species af- fecting finfish, and predominantly include parasites associated with disease or those commonly observed as incidental findings in disease diagnostic cases. Emphasis is on protozoan and small metazoan parasites (such as Myxosporidia) because these are the organisms most likely to be missed or mis-diagnosed during gross examination. Figures are presented in colour to assist biologists and veterinarians who are required to assess host/parasite interactions by light microscopy. KEY WORDS: Identification · Light microscopy · Metazoa · Protozoa · Staining · Tissue sections Resale or republication not permitted without written consent of the publisher INTRODUCTION identifying the type of epithelial cells that compose the intestine. -
Cestodes in South American Freshwater Teleost Fishes: Keys to Genera and Brief Description of Species
Cestodes in South American freshwater teleost fishes: keys to genera and brief description of species Amilcar Arandas Rego 1 James C. Chubb 2 Gilberto C. Pavanelli 3 ABSTRACT. Keys to genera of cestodes in South American freshwater teleost fi shes are provided, with diagnoses of genera and short descriptions of species. Two new genera are proposed, Chambrie/la gen. n. for Goezee/la agoslinhoi Pavanelli & Santos, 1992 and G. paranaensis Pavanelli & Rego, 1989, and Brooksie/la gcn.n. tor A/JIpho lero/JIO/phus praepulialis Rego, Santos & Silva, 1974. Nomimoscolex /JIagna Rego, Santos & Silva, 1974, previously species inquirenda, is transferred to the genus Proleocephalus Weinland, 1858. Goezee/la nupeliensis Pavanelli & Rego, 1989 is considered a species inquirenda. Species and host lists are included. KEY WORDS . Cestoda, Proteocephalidea, freshwater fi shes, parasitology Eighty nine taxa of cestodes from six orders are known in South American freshwater teleost fishes . Most belong to the Order Proteocephalidea, found parti cularly in siluriform fishes . Classi fication of Proteocephalidea is based on the studies of LA RUE (19 I I, 1914), WOODLAND (I933a,b,c, 1934a,b,c, 1935a,b,c), FREZE (1965), WARDL E & McLEOD (1952), SCHMlDT (1986) and REGO (1994). BROOKS (1978) and BROOKS & RASMUSSEN (1984) acknowledged two major taxa of Proteocephalidea, Proteo cephalidae and Monticelliidae, established by LA RUE (191 I). Separation at fami1y levei was based on arrangement of the reproductive organs in re lation to the longitudinal muscle bund1es. REGO (1995) recommended modification to the taxo nomy, suggesting that South American proteocephalids should be reduced to one family Proteocephalidae, with two subfamilies, Corallobothriinae and Proteocepha linae, distinguished by the presence or absence ofa metascolex. -
Documento Completo
CAPÍTULO 6 Clase Cestoda Fabiana B. Drago y Verónica Núñez "Alrededor de 1500 a.C., un médico egipcio reunió una gran cantidad de información médica en relación con el diagnóstico y tratamiento de las enfermedades conocidas. Fue escrito en jeroglíficos sobre papiro y sellado en una tumba, hasta ser re-descubierto en 1872 y traducido por Georg Ebers en 1873, siendo conocido como el Papiro Ebers. En base a estos escritos, sabemos que los médicos egipcios, conocían al menos, dos helmintos parásitos de humanos. Uno de ellos era una solitaria, muy probablemente, Taenia saginata, para la que se recomendaba la aplicación de cataplasmas en el abdomen." TIMOTHY GOATER, CAMERON GOATER Y GERALD W. ESCH, PARASITISM (2014) Los cestodes, conocidos comúnmente como tenias, conforman un grupo de parásitos obligados, con ci- clos heteroxenos que involucran dos o más hospedadores. Los adultos viven en el intestino o anexos (rara- mente en el celoma) de todos los grupos de vertebrados y las formas larvales se desarrollan tanto en verte- brados como en invertebrados. Unas pocas especies utilizan como hospedadores definitivos a los inverte- brados. Carecen de sistema digestivo, por lo que adquieren el alimento a través del tegumento sincicial, el cual en su superficie presenta estructuras características de los cestodes denominadas microtricos que colaboran en la absorción de nutrientes. La mayoría son hermafroditas. Comprende aproximadamente 6000 especies agrupadas en 18 órdenes que difieren principalmente en las estructuras de fijación al hospedador. Su nombre deriva del latín cestum, “cinta” y del griego eidés, “con el aspecto de”. Morfología El cuerpo está organizado en tres regiones: escólex, cuello y estróbilo (Fig. -
Parasites of Cartilaginous Fishes (Chondrichthyes) in South Africa – a Neglected Field of Marine Science
Institute of Parasitology, Biology Centre CAS Folia Parasitologica 2019, 66: 002 doi: 10.14411/fp.2019.002 http://folia.paru.cas.cz Research article Parasites of cartilaginous fishes (Chondrichthyes) in South Africa – a neglected field of marine science Bjoern C. Schaeffner and Nico J. Smit Water Research Group, Unit for Environmental Sciences and Management, Potchefstroom Campus, North-West University, Potchefstroom, South Africa Abstract: Southern Africa is considered one of the world’s ‘hotspots’ for the diversity of cartilaginous fishes (Chondrichthyes), with currently 204 reported species. Although numerous literature records and treatises on chondrichthyan fishes are available, a paucity of information exists on the biodiversity of their parasites. Chondrichthyan fishes are parasitised by several groups of protozoan and metazoan organisms that live either permanently or temporarily on and within their hosts. Reports of parasites infecting elasmobranchs and holocephalans in South Africa are sparse and information on most parasitic groups is fragmentary or entirely lacking. Parasitic copepods constitute the best-studied group with currently 70 described species (excluding undescribed species or nomina nuda) from chondrichthyans. Given the large number of chondrichthyan species present in southern Africa, it is expected that only a mere fraction of the parasite diversity has been discovered to date and numerous species await discovery and description. This review summarises information on all groups of parasites of chondrichthyan hosts and demonstrates the current knowledge of chondrichthyan parasites in South Africa. Checklists are provided displaying the host-parasite and parasite-host data known to date. Keywords: Elasmobranchii, Holocephali, diversity, host-parasite list, parasite-host list The biogeographical realm of Temperate Southern Af- pagno et al. -
Bio2 Ch01-Wilson
CHAPTER 1 Introduction EDWARD O. WILSON Pellegrino University Professor, Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts “Biodiversity,” the term and concept, has been a remarkable event in recent cultural evolution: 10 years ago the word did not exist, except perhaps through occasional idiosyncratic use. Today it is one of the most commonly used expres- sions in the biological sciences and subsequently has become a household word. It was born “BioDiversity” during the National Forum on BioDiversity, held in Washington, D.C., on September 21-24, 1986, under the auspices of the National Academy of Sciences and the Smithsonian Institution. The proceedings of the forum, published in 1988 under the title BioDiversity (later to be cited with less than bibliographical accuracy by most authors as Biodiversity), became a best- seller for the National Academy Press. By the summer of 1992, as a key topic of the Rio environmental summit meeting, biodiversity had moved to center stage as one of the central issues of scientific and political concern world-wide. So what is it? Biologists are inclined to agree that it is, in one sense, every- thing. Biodiversity is defined as all hereditarily based variation at all levels of organization, from the genes within a single local population or species, to the species composing all or part of a local community, and finally to the communi- ties themselves that compose the living parts of the multifarious ecosystems of the world. The key to the effective analysis of biodiversity is the precise defini- tion of each level of organization when it is being addressed. -
Curriculum Vitae
1 CURRICULUM VITAE A. Biographical Information 1. Personal Name: Daniel Rusk Brooks Date of Birth: 12 April 1951 Citizenship: USA Address: 1821 Greenbriar Lane Lincoln, Nebraska 68506 USA Telephone: (402) 483-6046 Cell: (402) 541-4456 email: [email protected] 2. Educational Background B.S. with Distinction University of Nebraska (1973) Thesis supervisor: M. H. Pritchard M.S. University of Nebraska (1975) Thesis supervisor: M. H. Pritchard Ph.D. University of Mississippi (1978) Evolutionary Biology of Digeneans Inhabiting Crocodilians Dissertation supervisor: R. M. Overstreet 3. Employment Owner, Dan Brooks Photography LLC 2010- Adjunct Research Professor 2011- University of Nebraska-Lincoln Professor emeritus 2011 - University of Toronto Professor of Zoology 1991-2011 University of Toronto Faculty of Graduate Studies 1988-2011 University of Toronto Professor, University College 1992-1996 University of Toronto Associate Professor of Zoology 1988-1991 University of Toronto Associate Professor of Zoology 1985-8 University of British Columbia 2 Assistant Professor of Zoology 1980-5 University of British Columbia Friends of the National Zoo 1979-80 Post-doctoral Fellow National Zoological Park, Smithsonian Institution, Washington, D.C. NIH Post-doctoral Trainee 1978-9 University of Notre Dame 4. Awards and Distinctions Senior Visiting Fellow, Parmenides Foundation (2013) Anniversary Award, Helminthological Society of Washington DC (2012) Senior Visiting Fellow, Institute for Advanced Study, Collegium Budapest, (2010-2011) Fellow, Linnean