The Case for an Ultra-High Precision Radial Velocity Spectrograph at Gemini Jacob L

Total Page:16

File Type:pdf, Size:1020Kb

The Case for an Ultra-High Precision Radial Velocity Spectrograph at Gemini Jacob L Radial Velocity Spectrograph Bean et al. The Case for an Ultra-High Precision Radial Velocity Spectrograph at Gemini Jacob L. Bean1, Andrew Szentgyorgyi1, Drake Deming2, & David Latham1 1 Harvard-Smithsonian Center for Astrophysics 2 NASA/Goddard Space Flight Center contact: [email protected] We advocate here for the implementation of a next-generation optical spectrograph capable of measuring differential radial velocities to a precision of 9 cm s−1, which is equal to the ve- locity semi-amplitude induced on the Sun by the Earth. The primary anticipated use for this instrument is the discovery and characterization of planets with masses less than 10 M⊕, including potentially habitable planets, as part of both standalone surveys, and in conjunc- tion with transit surveys and transit spectroscopy efforts. The instrument would ideally be installed at the Gemini North telescope to enable Kepler follow-up, and so as to not conflict with similar planned instruments on large telescopes in the southern hemisphere. Background Doppler spectroscopy has arguably been the most important observational technique in the short history of the field of exoplanet science, and the technique could continue to play a critical role in this field despite the advances made with other methods. One reason for this is that radial velocity surveys yield a more statistically complete sample of exoplanets than any other technique. Another reason for the ongoing importance of the radial velocity method is that radial velocity measure- ments are needed to confirm and measure the masses of planet candidates identified by transit searches. Transiting planets are the only planets for which masses and radii can be measured, and these properties together provide potent insight to the structure and bulk compositions of the planets. The fortuitous geometry of transiting planets also allows their spectra to be obtained in transmission, emission, and reflection via temporal rather than spatial sampling. In contrast, direct imaging could potentially yield the masses and spectra of planets, but will never be able to de- liver model-independent radii for planets. Therefore, the combination of transit and orbital Doppler spectroscopy provides the most complete picture of exoplanet characteristics that can be obtained short of actually sending a satellite to another system. The need for a next generation radial velocity instrument One of the main goals of the field of exoplanet science now is to ascertain the frequency, and physical and orbital characteristics of low-mass planets (defined as those with masses at least below 10 M⊕ and especially below 5 M⊕ for the purposes of this document), including those in the habitable zones of main sequence stars. The success of the combination of the radial velocity and transit techniques to study planets so far suggests that a “dynamics-based” approach could effectively address this goal over the next 10 years (Charbonneau & Deming 2007). The main aspects of this approach are: • The combination of the transit and radial velocity methods to identify and deliver masses and radii for a large, representative sample of low-mass planets so that the range of physical properties of these planets can be ascertained. Page 1 of 5 Radial Velocity Spectrograph Bean et al. • The combination of the transit and radial velocity methods to identify a few low-mass planets around bright stars for which atmospheric studies can be carried out with the techniques of transit spectroscopy. This includes the search for molecular features in the atmospheres of potentially habitable planets around M dwarfs. • The use of the radial velocity method on its own to obtain a statistically complete census of low-mass planets in the solar neighborhood so that the frequency, orbital parameters, and host star properties of low-mass planets can be investigated. The essential technology components for this approach are of course radial velocity, transit survey, and transit spectroscopy facilities that can obtain the required sensitivities. The recent launch of Kepler and its demonstrated capabilities (Borucki et al. 2010) indicates that the transit side of the statistics of low-mass planets is on firm ground. Indeed, Kepler has already identified hundreds of low-mass planet candidates in orbital periods out to a few tens of days. As the mission continues, it is likely that more transiting planet candidates will be identified at longer periods, and Kepler ultimately aims to detect a transiting Earth analog. The MEarth ongoing ground-based transit search targeting M dwarfs has already found the first transiting super- Earth around a nearby star (Charbonneau et al. 2009), and this has opened the door for the first atmospheric characterization of a low-mass planet. The proposed missions TESS1 and PLATO2 suggest that the appropriate development of transit identification of low-mass planets around bright stars is also progressing. In addition, the planned capabilities of JWST will enable atmospheric studies of transiting low-mass planets in the habitable zones around bright stars (Deming et al. 2009). Given the ongoing and expected progress on the discovery of transiting planets, the key miss- ing technology component in the dynamics-based approach to studying low-mass exoplanets are appropriate radial velocity facilities. In the last 15 years the techniques for Doppler spectroscopy have progressed to the point that precisions of 1 – 2 m s−1 are routinely obtained on bright stars (e.g., Howard et al. 2009; Bouchy et al. 2009), and precisions of 60 – 80 cm s−1 have been ob- tained in a few select cases (e.g., Mayor et al. 2009). This level of precision enables the detection of planets with masses down to approximately 5 M⊕ with periods up to a few tens of days around solar-type stars, and down to a few M⊕ in similar periods around M dwarfs. Figure 1 shows the known planets detected with the radial velocity method and the detection limits corresponding to different levels of precision. Despite the past progress on Doppler spectroscopy techniques, the radial velocity detection of low-mass planets orbiting in the habitable zones of solar-type stars requires an approximately order of magnitude improvement over existing capabilities. In addition, the most interesting planets already identified with Kepler, to say nothing of those planets still to be identified during the nominal mission, can not be confirmed and weighed with existing facilities because the radial velocity sig- nals are too small and/or the host stars are too faint (note that Kepler looks at a field from +37.5◦ to +52.5◦ in declination). TESS and PLATO will have the same problem if they fly. Furthermore, the recent super-Earth planet discovered by the MEarth facility was only possible to be confirmed and have its mass measured because it was observable by southern hemisphere facilities. Exclusively northern hemisphere candidates identified by MEarth in the future will be extremely challenging to perform the necessary follow-up radial velocity measurements for, primarily because of the faint- ness of their host stars. Ultimately, the lack of follow-up capabilities for ongoing and future transit 1see http://space.mit.edu/TESS 2see http://www.lesia.obspm.fr/perso/claude-catala/plato web.html Page 2 of 5 Radial Velocity Spectrograph Bean et al. Figure 1: Comparison of planet masses and orbital periods with radial velocity detection limits. The filled circles are the known exoplanets detected with the radial velocity method. The crosses are the eight Solar System planets. The lines give the planet mass corresponding to a velocity −1 −1 semi-amplitude of 1 m s (dashed lines) and 9 cm s (solid lines) for a 1.0 M⊙ star (blue lines) and a 0.2 M⊙ star (orange lines). searches suggests that the future atmospheric characterization of low-mass transiting planets with JWST hinges critically on the development of new radial velocity capabilities, especially in the northern hemisphere Instrument requirements Clearly, a next-generation specialized radial velocity instrument is needed. We advocate for a such an instrument with an achievable precision given by the velocity semi-amplitude induced on the Sun by the Earth: 9 cm s−1. This is the minimum precision needed to detect a true Earth analog as part of a survey (i.e., not an “all eggs in one basket” intense campaign on one or two stars), and would also at least technically enable detection of analogs of all the other Solar System planets except Mercury and Mars. In addition, this level of precision would enable confirmation and mass measurement for many candidate transiting low-mass planets identified by Kepler and other existing or planned surveys to be accomplished as part of routine operations. We acknowledge the possibility that ultimately the radial velocity technique may be limited by astrophysical noise sources like pulsations, granulation, and magnetic field effects, and that 9 cm s−1 may be difficult to impossible to obtain in practice. However, stellar variability at this level is poorly understood, and current instruments have been used up to their technical limits (sig- nificantly less than 1 m s−1 for HARPS) for quiet stars without reaching the astrophysical noise floor. Furthermore, many people in the community feel that long-term precisions of at least about Page 3 of 5 Radial Velocity Spectrograph Bean et al. 30 cm s−1 can be obtained for solar-type stars with an appropriate observing strategy3. In light of this, we propose that a next generation radial velocity instrument should be designed so that the technical issues are not the limiting factor in approaching the detection of an Earth analog. An 8 m class telescope is required for an instrument designed to obtain a new level of sensitivity because obtaining just a photon-limited precision of 9 cm s−1 requires a huge number of counts to be recorded.
Recommended publications
  • The Discovery of Exoplanets
    L'Univers, S´eminairePoincar´eXX (2015) 113 { 137 S´eminairePoincar´e New Worlds Ahead: The Discovery of Exoplanets Arnaud Cassan Universit´ePierre et Marie Curie Institut d'Astrophysique de Paris 98bis boulevard Arago 75014 Paris, France Abstract. Exoplanets are planets orbiting stars other than the Sun. In 1995, the discovery of the first exoplanet orbiting a solar-type star paved the way to an exoplanet detection rush, which revealed an astonishing diversity of possible worlds. These detections led us to completely renew planet formation and evolu- tion theories. Several detection techniques have revealed a wealth of surprising properties characterizing exoplanets that are not found in our own planetary system. After two decades of exoplanet search, these new worlds are found to be ubiquitous throughout the Milky Way. A positive sign that life has developed elsewhere than on Earth? 1 The Solar system paradigm: the end of certainties Looking at the Solar system, striking facts appear clearly: all seven planets orbit in the same plane (the ecliptic), all have almost circular orbits, the Sun rotation is perpendicular to this plane, and the direction of the Sun rotation is the same as the planets revolution around the Sun. These observations gave birth to the Solar nebula theory, which was proposed by Kant and Laplace more that two hundred years ago, but, although correct, it has been for decades the subject of many debates. In this theory, the Solar system was formed by the collapse of an approximately spheric giant interstellar cloud of gas and dust, which eventually flattened in the plane perpendicular to its initial rotation axis.
    [Show full text]
  • Exep Science Plan Appendix (SPA) (This Document)
    ExEP Science Plan, Rev A JPL D: 1735632 Release Date: February 15, 2019 Page 1 of 61 Created By: David A. Breda Date Program TDEM System Engineer Exoplanet Exploration Program NASA/Jet Propulsion Laboratory California Institute of Technology Dr. Nick Siegler Date Program Chief Technologist Exoplanet Exploration Program NASA/Jet Propulsion Laboratory California Institute of Technology Concurred By: Dr. Gary Blackwood Date Program Manager Exoplanet Exploration Program NASA/Jet Propulsion Laboratory California Institute of Technology EXOPDr.LANET Douglas Hudgins E XPLORATION PROGRAMDate Program Scientist Exoplanet Exploration Program ScienceScience Plan Mission DirectorateAppendix NASA Headquarters Karl Stapelfeldt, Program Chief Scientist Eric Mamajek, Deputy Program Chief Scientist Exoplanet Exploration Program JPL CL#19-0790 JPL Document No: 1735632 ExEP Science Plan, Rev A JPL D: 1735632 Release Date: February 15, 2019 Page 2 of 61 Approved by: Dr. Gary Blackwood Date Program Manager, Exoplanet Exploration Program Office NASA/Jet Propulsion Laboratory Dr. Douglas Hudgins Date Program Scientist Exoplanet Exploration Program Science Mission Directorate NASA Headquarters Created by: Dr. Karl Stapelfeldt Chief Program Scientist Exoplanet Exploration Program Office NASA/Jet Propulsion Laboratory California Institute of Technology Dr. Eric Mamajek Deputy Program Chief Scientist Exoplanet Exploration Program Office NASA/Jet Propulsion Laboratory California Institute of Technology This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. © 2018 California Institute of Technology. Government sponsorship acknowledged. Exoplanet Exploration Program JPL CL#19-0790 ExEP Science Plan, Rev A JPL D: 1735632 Release Date: February 15, 2019 Page 3 of 61 Table of Contents 1.
    [Show full text]
  • Exoplanetary Atmospheres: Key Insights, Challenges, and Prospects
    AA57CH15_Madhusudhan ARjats.cls August 7, 2019 14:11 Annual Review of Astronomy and Astrophysics Exoplanetary Atmospheres: Key Insights, Challenges, and Prospects Nikku Madhusudhan Institute of Astronomy, University of Cambridge, Cambridge CB3 0HA, United Kingdom; email: [email protected] Annu. Rev. Astron. Astrophys. 2019. 57:617–63 Keywords The Annual Review of Astronomy and Astrophysics is extrasolar planets, spectroscopy, planet formation, habitability, atmospheric online at astro.annualreviews.org composition https://doi.org/10.1146/annurev-astro-081817- 051846 Abstract Copyright © 2019 by Annual Reviews. Exoplanetary science is on the verge of an unprecedented revolution. The All rights reserved thousands of exoplanets discovered over the past decade have most recently been supplemented by discoveries of potentially habitable planets around nearby low-mass stars. Currently, the field is rapidly progressing toward de- tailed spectroscopic observations to characterize the atmospheres of these planets. Various surveys from space and the ground are expected to detect numerous more exoplanets orbiting nearby stars that make the planets con- ducive for atmospheric characterization. The current state of this frontier of exoplanetary atmospheres may be summarized as follows. We have entered the era of comparative exoplanetology thanks to high-fidelity atmospheric observations now available for tens of exoplanets. Access provided by Florida International University on 01/17/21. For personal use only. Annu. Rev. Astron. Astrophys. 2019.57:617-663. Downloaded from www.annualreviews.org Recent studies reveal a rich diversity of chemical compositions and atmospheric processes hitherto unseen in the Solar System. Elemental abundances of exoplanetary atmospheres place impor- tant constraints on exoplanetary formation and migration histories.
    [Show full text]
  • On the Detection of Exoplanets Via Radial Velocity Doppler Spectroscopy
    The Downtown Review Volume 1 Issue 1 Article 6 January 2015 On the Detection of Exoplanets via Radial Velocity Doppler Spectroscopy Joseph P. Glaser Cleveland State University Follow this and additional works at: https://engagedscholarship.csuohio.edu/tdr Part of the Astrophysics and Astronomy Commons How does access to this work benefit ou?y Let us know! Recommended Citation Glaser, Joseph P.. "On the Detection of Exoplanets via Radial Velocity Doppler Spectroscopy." The Downtown Review. Vol. 1. Iss. 1 (2015) . Available at: https://engagedscholarship.csuohio.edu/tdr/vol1/iss1/6 This Article is brought to you for free and open access by the Student Scholarship at EngagedScholarship@CSU. It has been accepted for inclusion in The Downtown Review by an authorized editor of EngagedScholarship@CSU. For more information, please contact [email protected]. Glaser: Detection of Exoplanets 1 Introduction to Exoplanets For centuries, some of humanity’s greatest minds have pondered over the possibility of other worlds orbiting the uncountable number of stars that exist in the visible universe. The seeds for eventual scientific speculation on the possibility of these "exoplanets" began with the works of a 16th century philosopher, Giordano Bruno. In his modernly celebrated work, On the Infinite Universe & Worlds, Bruno states: "This space we declare to be infinite (...) In it are an infinity of worlds of the same kind as our own." By the time of the European Scientific Revolution, Isaac Newton grew fond of the idea and wrote in his Principia: "If the fixed stars are the centers of similar systems [when compared to the solar system], they will all be constructed according to a similar design and subject to the dominion of One." Due to limitations on observational equipment, the field of exoplanetary systems existed primarily in theory until the late 1980s.
    [Show full text]
  • Simulating (Sub)Millimeter Observations of Exoplanet Atmospheres in Search of Water
    University of Groningen Kapteyn Astronomical Institute Simulating (Sub)Millimeter Observations of Exoplanet Atmospheres in Search of Water September 5, 2018 Author: N.O. Oberg Supervisor: Prof. Dr. F.F.S. van der Tak Abstract Context: Spectroscopic characterization of exoplanetary atmospheres is a field still in its in- fancy. The detection of molecular spectral features in the atmosphere of several hot-Jupiters and hot-Neptunes has led to the preliminary identification of atmospheric H2O. The Atacama Large Millimiter/Submillimeter Array is particularly well suited in the search for extraterrestrial water, considering its wavelength coverage, sensitivity, resolving power and spectral resolution. Aims: Our aim is to determine the detectability of various spectroscopic signatures of H2O in the (sub)millimeter by a range of current and future observatories and the suitability of (sub)millimeter astronomy for the detection and characterization of exoplanets. Methods: We have created an atmospheric modeling framework based on the HAPI radiative transfer code. We have generated planetary spectra in the (sub)millimeter regime, covering a wide variety of possible exoplanet properties and atmospheric compositions. We have set limits on the detectability of these spectral features and of the planets themselves with emphasis on ALMA. We estimate the capabilities required to study exoplanet atmospheres directly in the (sub)millimeter by using a custom sensitivity calculator. Results: Even trace abundances of atmospheric water vapor can cause high-contrast spectral ab- sorption features in (sub)millimeter transmission spectra of exoplanets, however stellar (sub) millime- ter brightness is insufficient for transit spectroscopy with modern instruments. Excess stellar (sub) millimeter emission due to activity is unlikely to significantly enhance the detectability of planets in transit except in select pre-main-sequence stars.
    [Show full text]
  • The Search for Exomoons and the Characterization of Exoplanet Atmospheres
    Corso di Laurea Specialistica in Astronomia e Astrofisica The search for exomoons and the characterization of exoplanet atmospheres Relatore interno : dott. Alessandro Melchiorri Relatore esterno : dott.ssa Giovanna Tinetti Candidato: Giammarco Campanella Anno Accademico 2008/2009 The search for exomoons and the characterization of exoplanet atmospheres Giammarco Campanella Dipartimento di Fisica Università degli studi di Roma “La Sapienza” Associate at Department of Physics & Astronomy University College London A thesis submitted for the MSc Degree in Astronomy and Astrophysics September 4th, 2009 Università degli Studi di Roma ―La Sapienza‖ Abstract THE SEARCH FOR EXOMOONS AND THE CHARACTERIZATION OF EXOPLANET ATMOSPHERES by Giammarco Campanella Since planets were first discovered outside our own Solar System in 1992 (around a pulsar) and in 1995 (around a main sequence star), extrasolar planet studies have become one of the most dynamic research fields in astronomy. Our knowledge of extrasolar planets has grown exponentially, from our understanding of their formation and evolution to the development of different methods to detect them. Now that more than 370 exoplanets have been discovered, focus has moved from finding planets to characterise these alien worlds. As well as detecting the atmospheres of these exoplanets, part of the characterisation process undoubtedly involves the search for extrasolar moons. The structure of the thesis is as follows. In Chapter 1 an historical background is provided and some general aspects about ongoing situation in the research field of extrasolar planets are shown. In Chapter 2, various detection techniques such as radial velocity, microlensing, astrometry, circumstellar disks, pulsar timing and magnetospheric emission are described. A special emphasis is given to the transit photometry technique and to the two already operational transit space missions, CoRoT and Kepler.
    [Show full text]
  • Precise Radial Velocities of Giant Stars
    A&A 555, A87 (2013) Astronomy DOI: 10.1051/0004-6361/201321714 & c ESO 2013 Astrophysics Precise radial velocities of giant stars V. A brown dwarf and a planet orbiting the K giant stars τ Geminorum and 91 Aquarii, David S. Mitchell1,2,SabineReffert1, Trifon Trifonov1, Andreas Quirrenbach1, and Debra A. Fischer3 1 Landessternwarte, Zentrum für Astronomie der Universität Heidelberg, Königstuhl 12, 69117 Heidelberg, Germany 2 Physics Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA e-mail: [email protected] 3 Department of Astronomy, Yale University, New Haven, CT 06511, USA Received 16 April 2013 / Accepted 22 May 2013 ABSTRACT Aims. We aim to detect and characterize substellar companions to K giant stars to further our knowledge of planet formation and stellar evolution of intermediate-mass stars. Methods. For more than a decade we have used Doppler spectroscopy to acquire high-precision radial velocity measurements of K giant stars. All data for this survey were taken at Lick Observatory. Our survey includes 373 G and K giants. Radial velocity data showing periodic variations were fitted with Keplerian orbits using a χ2 minimization technique. Results. We report the presence of two substellar companions to the K giant stars τ Gem and 91 Aqr. The brown dwarf orbiting τ Gem has an orbital period of 305.5±0.1 days, a minimum mass of 20.6 MJ, and an eccentricity of 0.031±0.009. The planet orbiting 91 Aqr has an orbital period of 181.4 ± 0.1 days, a minimum mass of 3.2 MJ, and an eccentricity of 0.027 ± 0.026.
    [Show full text]
  • Exoplanet Exploration Collaboration Initiative TP Exoplanets Final Report
    EXO Exoplanet Exploration Collaboration Initiative TP Exoplanets Final Report Ca Ca Ca H Ca Fe Fe Fe H Fe Mg Fe Na O2 H O2 The cover shows the transit of an Earth like planet passing in front of a Sun like star. When a planet transits its star in this way, it is possible to see through its thin layer of atmosphere and measure its spectrum. The lines at the bottom of the page show the absorption spectrum of the Earth in front of the Sun, the signature of life as we know it. Seeing our Earth as just one possibly habitable planet among many billions fundamentally changes the perception of our place among the stars. "The 2014 Space Studies Program of the International Space University was hosted by the École de technologie supérieure (ÉTS) and the École des Hautes études commerciales (HEC), Montréal, Québec, Canada." While all care has been taken in the preparation of this report, ISU does not take any responsibility for the accuracy of its content. Electronic copies of the Final Report and the Executive Summary can be downloaded from the ISU Library website at http://isulibrary.isunet.edu/ International Space University Strasbourg Central Campus Parc d’Innovation 1 rue Jean-Dominique Cassini 67400 Illkirch-Graffenstaden Tel +33 (0)3 88 65 54 30 Fax +33 (0)3 88 65 54 47 e-mail: [email protected] website: www.isunet.edu France Unless otherwise credited, figures and images were created by TP Exoplanets. Exoplanets Final Report Page i ACKNOWLEDGEMENTS The International Space University Summer Session Program 2014 and the work on the
    [Show full text]
  • PLANETARY CANDIDATES OBSERVED by Kepler. VIII. a FULLY AUTOMATED CATALOG with MEASURED COMPLETENESS and RELIABILITY BASED on DATA RELEASE 25
    Draft version October 13, 2017 Typeset using LATEX twocolumn style in AASTeX61 PLANETARY CANDIDATES OBSERVED BY Kepler. VIII. A FULLY AUTOMATED CATALOG WITH MEASURED COMPLETENESS AND RELIABILITY BASED ON DATA RELEASE 25 Susan E. Thompson,1, 2, 3, ∗ Jeffrey L. Coughlin,2, 1 Kelsey Hoffman,1 Fergal Mullally,1, 2, 4 Jessie L. Christiansen,5 Christopher J. Burke,2, 1, 6 Steve Bryson,2 Natalie Batalha,2 Michael R. Haas,2, y Joseph Catanzarite,1, 2 Jason F. Rowe,7 Geert Barentsen,8 Douglas A. Caldwell,1, 2 Bruce D. Clarke,1, 2 Jon M. Jenkins,2 Jie Li,1 David W. Latham,9 Jack J. Lissauer,2 Savita Mathur,10 Robert L. Morris,1, 2 Shawn E. Seader,11 Jeffrey C. Smith,1, 2 Todd C. Klaus,2 Joseph D. Twicken,1, 2 Jeffrey E. Van Cleve,1 Bill Wohler,1, 2 Rachel Akeson,5 David R. Ciardi,5 William D. Cochran,12 Christopher E. Henze,2 Steve B. Howell,2 Daniel Huber,13, 14, 1, 15 Andrej Prša,16 Solange V. Ramírez,5 Timothy D. Morton,17 Thomas Barclay,18 Jennifer R. Campbell,2, 19 William J. Chaplin,20, 15 David Charbonneau,9 Jørgen Christensen-Dalsgaard,15 Jessie L. Dotson,2 Laurance Doyle,21, 1 Edward W. Dunham,22 Andrea K. Dupree,9 Eric B. Ford,23, 24, 25, 26 John C. Geary,9 Forrest R. Girouard,27, 2 Howard Isaacson,28 Hans Kjeldsen,15 Elisa V. Quintana,18 Darin Ragozzine,29 Avi Shporer,30 Victor Silva Aguirre,15 Jason H. Steffen,31 Martin Still,8 Peter Tenenbaum,1, 2 William F.
    [Show full text]
  • Lecture 21: the Doppler Effect
    Matthew Schwartz Lecture 21: The Doppler effect 1 Moving sources We’d like to understand what happens when waves are produced from a moving source. Let’s say we have a source emitting sound with the frequency ν. In this case, the maxima of the 1 amplitude of the wave produced occur at intervals of the period T = ν . If the source is at rest, an observer would receive these maxima spaced by T . If we draw the waves, the maxima are separated by a wavelength λ = Tcs, with cs the speed of sound. Now, say the source is moving at velocity vs. After the source emits one maximum, it moves a distance vsT towards the observer before it emits the next maximum. Thus the two successive maxima will be closer than λ apart. In fact, they will be λahead = (cs vs)T apart. The second maximum will arrive in less than T from the first blip. It will arrive with− period λahead cs vs Tahead = = − T (1) cs cs The frequency of the blips/maxima directly ahead of the siren is thus 1 cs 1 cs νahead = = = ν . (2) T cs vs T cs vs ahead − − In other words, if the source is traveling directly towards us, the frequency we hear is shifted c upwards by a factor of s . cs − vs We can do a similar calculation for the case in which the source is traveling directly away from us with velocity v. In this case, in between pulses, the source travels a distance T and the old pulse travels outwards by a distance csT .
    [Show full text]
  • Exoplanet Detection Techniques
    Exoplanet Detection Techniques Debra A. Fischer1, Andrew W. Howard2, Greg P. Laughlin3, Bruce Macintosh4, Suvrath Mahadevan5;6, Johannes Sahlmann7, Jennifer C. Yee8 We are still in the early days of exoplanet discovery. Astronomers are beginning to model the atmospheres and interiors of exoplanets and have developed a deeper understanding of processes of planet formation and evolution. However, we have yet to map out the full complexity of multi-planet architectures or to detect Earth analogues around nearby stars. Reaching these ambitious goals will require further improvements in instru- mentation and new analysis tools. In this chapter, we provide an overview of five observational techniques that are currently employed in the detection of exoplanets: optical and IR Doppler measurements, transit pho- tometry, direct imaging, microlensing, and astrometry. We provide a basic description of how each of these techniques works and discuss forefront developments that will result in new discoveries. We also highlight the observational limitations and synergies of each method and their connections to future space missions. Subject headings: 1. Introduction tary; in practice, they are not generally applied to the same sample of stars, so our detection of exoplanet architectures Humans have long wondered whether other solar sys- has been piecemeal. The explored parameter space of ex- tems exist around the billions of stars in our galaxy. In the oplanet systems is a patchwork quilt that still has several past two decades, we have progressed from a sample of one missing squares. to a collection of hundreds of exoplanetary systems. Instead of an orderly solar nebula model, we now realize that chaos 2.
    [Show full text]
  • Tidal Evolution of Exoplanetary Systems Hosting Potentially Habitable Exoplanets
    MNRAS 494, 5082–5090 (2020) doi:10.1093/mnras/staa1110 Advance Access publication 2020 April 26 Tidal evolution of exoplanetary systems hosting potentially habitable exoplanets. The cases of LHS-1140 b-c and K2-18 b-c G. O. Gomes 1,2‹ and S. Ferraz-Mello1 1 Instituto de Astronomia, Geof´ısica e Cienciasˆ Atmosfericas,´ IAG-USP, Rua do Matao˜ 1226, 05508-900 Sao˜ Paulo, Brazil Downloaded from https://academic.oup.com/mnras/article/494/4/5082/5825369 by Universidade de S�o Paulo user on 26 August 2020 2Observatoire de Geneve,` UniversitedeGen´ eve,` 51 Chemin des Maillettes, CH-1290 Sauverny, Switzerland Accepted 2020 April 19. Received 2020 April 19; in original form 2020 March 4 ABSTRACT We present a model to study secularly and tidally evolving three-body systems composed by two low-mass planets orbiting a star, in the case where the bodies rotation axes are always perpendicular to the orbital plane. The tidal theory allows us to study the spin and orbit evolution of both stiff Earth-like planets and predominantly gaseous Neptune-like planets. The model is applied to study two recently discovered exoplanetary systems containing potentially habitable exoplanets (PHE): LHS-1140 b-c and K2-18 b-c. For the former system, we show that both LHS-1140 b and c must be in nearly circular orbits. For K2-18 b-c, the combined analysis of orbital evolution time-scales with the current eccentricity estimation of K2-18 b allows us to conclude that the inner planet (K2-18 c) must be a Neptune-like gaseous body.
    [Show full text]