Durability of Precast Prestressed Concrete Piles in Marine Environment: Reinforcement Corrosion and Mitigation – Part 1

Total Page:16

File Type:pdf, Size:1020Kb

Durability of Precast Prestressed Concrete Piles in Marine Environment: Reinforcement Corrosion and Mitigation – Part 1 School of Civil and Environmental Engineering Durability of Precast Prestressed Concrete Piles in Marine Environment: Reinforcement Corrosion and Mitigation – Part 1 Final Report Prepared for Office of Materials and Research Georgia Department of Transportation GDOT Research Project No. 07-30 Task Order No. 02-55 by Robert Moser, Brett Holland, Lawrence Kahn, Preet Singh, and Kimberly Kurtis June 2011 Contract Research GDOT Research Project No. 07-30 Task Order No. 02-55 Durability of Precast Prestressed Concrete Piles in Marine Environment: Reinforcement Corrosion and Mitigation Part 1 Final Report Prepared for Office of Materials and Research Georgia Department of Transportation By Robert Moser, Brett Holland, Lawrence Kahn, Preet Singh, and Kimberly Kurtis, June 2011 The contents of this report reflect the views of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Georgia Department of Transportation. This report does not constitute a standard, specification or regulation. i Executive Summary Research conducted in Part 1 has verified that precast prestressed concrete piles in Georgia’s marine environment are deteriorating. The concrete is subjected to sulfate and biological attack and the prestressed and nonprestressed reinforcement is corroding. Concrete is reported as “soft” in many bridges; and exterior cracking indicates reinforcement corrosion. Researchers reviewed concrete durability and reinforcement corrosion research and experiences. These reviews gave the necessary background to evaluate the condition of Georgia’s prestressed concrete piles and to establish future tests for strand corrosion and for concrete mix design experiments. Based on discussions with the Bridge Maintenance Engineer, four 40-ft lengths of piles were removed from the Turtle River Bridge and transported to Georgia Institute of Technology. The forensic examination of the piles indicated that after 32 years in service, the concrete within the water had suffered from biological attack by sponges which consumed the limestone aggregate, and the cement had deteriorated due to sulfate attack. Prestressing strands and tie reinforcement had severely corroded in spash zones due to high levels of chloride. Concrete above water was in good condition. Experiments on the corrosion resistance of typical A416 prestressing strand wire and on 7-wire prestressing strands were conducted. Solutions represented various chloride conditions; concentrations varied from none to twice that of seawater. Georgia marsh conditions have an average chloride content about one-half that of open seawater. For wire in good quality, non- carbonated concrete, corrosion is very limited. In carbonated concrete, corrosion starts quickly at low chloride concentrations. The experiments further showed that prestressing strands exhibit a 60-70% reduction in corrosion resistance when compared with wires and reinforcing bars because of crevices created in the stranded geometry. Future experiments must consider such crevice corrosion. Most of the past corrosion research did not consider this effect of crevice corrosion due to stranding. Six alloys of stainless steel were considered for potential use as prestressing wire and strand. Most stainless steels are not capable of developing the high strength needed for prestressing applications. Change in structure of the steel due to cold drawing has the potential for making the steel very susceptible to corrosion. Further, stainless steels such as the nitronic 33 used in older Navy piles have high stress relaxation. While all six will be investigated in Part 2, the most promising alloys are 2205 and 2304. Such stainless steel prestressing strands seem to be the best solution for providing durable piles in the marine environment. Based on the research conducted in Part 1, research in Part 2 will concentrate on (1) concrete mixes which have improved sulfate resistance, resist biological attack and have the ability to self-heal cracks caused by pile driving, and (2) determination of stainless steel ii properties including corrosion resistance, stress relaxation, yield strength, ultimate strength and ductility. The result of the research will be recommendations for high-performance concrete for marine piles and for corrosion-resistant high-strength stainless steel prestressing reinforcement. iii Acknowledgements The research reported herein was sponsored by the Georgia Department of Transportation through Research Project Number 07-30, Task Order Number 02-55. Mr. Paul Liles, Assistant State Preconstruction Engineer, Mr. Myron Banks, Concrete Engineer, Mr. Mike Clements, Bridge Maintenance Engineer, Ms. Supriya Kamatkar, Research Engineer, Mr. Kevin Schwartz, Bridge Inspection Engineer, Mrs. Lisa Sikes, Bridge Liasson, Mr. Michael Garner, Bridge Liasson, Mr. Andy Doyle, State Bridge Inspection Engineer, Mr. Jeff Carroll, Materials and Research Branch, Mr. Brian Scarbrough, Area Engineer, and Mr. Slade Cole, Assistant Area Engineer of GDOT provided many valuable suggestions throughout the study. The opinions and conclusions expressed herein are those of the authors and do not represent the opinions, conclusions, policies, standards or specifications of the Georgia Department of Transportation or of other cooperating organizations. Mr. Daniel Schuetz assisted with the production of the corrosion test specimens, and Mr. Jamshad Mahmood helped with the corrosion experimental setups and potentiostats. Messrs. Fred Aguayo, Robert Heusel, and Armin Vosough assisted with the forensic investigation of piling from the Turtle River Bridge. Mr. Jeremy Mitchell provided help and expertise with equipment and research tasks at the Georgia Tech Structures Laboratory. Messrs. Richard Potts and Alan Pritchard of Standard Concrete Products provided expertise and valuable suggestions throughout the study. Mr. Bill McClenathan, Brian Burr, Jon Cornelius, and colleagues from Sumiden Wire Products Corporation provided valuable insights into the production of materials for stainless steel prestressing wire and strand; their assistance and expertise are gratefully acknowledged. iv Table of Contents Executive Summary ii Acknowledgments iii Table of Contents iv Chapter 1. Introduction 1-1 2. Background – Corrosion Mechanisms in Reinforced and Prestressed Concrete 2-1 Structures 3. Background – Concrete for Marine Piles 3-1 4. Background – Interviews 4-1 5. Georgia Coastal Bridge Inspections 5-1 6. Forensic Investigation of Turtle River Bridge Piles 6-1 7. Preliminary Corrosion Studies on Carbon Steel A416 Prestressing Strand 7-1 8. Preliminary Corrosion Studies on Stainless Steel Prestressing Strand 8-1 9. Future Studies Planned for Part 2 9-1 10. Conclusions 10-1 Appendix A: Inspection Reports A-1 Combined References R-1 v 1. Introduction 1.1 Purpose and Objectives The purpose of the overall research project is to determine methods which may be applied economically to mitigate corrosion of reinforcement in precast prestressed concrete piles in Georgia’s marine environments. The overall goal is to improve the durability of bridge piles so that a design life of 100 years may be achieved. The research has four specific objectives. The first objective is to determine the extent of corrosion damage in Georgia’s structural concrete bridge piling and the success of methods used to improve the durability of bridge piles in Georgia. The second objective is to fully document past research and investigations on the durability of structural concrete in the marine environment with particular emphasis on the corrosion of reinforcement and its mitigation. The latter includes learning from state departments of transportations: finding from their experiences with corrosion mitigation including the effect of concrete quality and cover and with regard to types of reinforcement, their metallurgy and coatings. The third objective is to perform a preliminary experimental investigation on the corrosion of reinforcement in concrete piles in Georgia by measuring corrosion potential and by characterization of concrete, steel, and reinforced concrete, including samples obtained from the field. The durability of these field and laboratory samples will be compared to the findings from the literature study to see how Georgia’s marine environment and construction matches that found from the other states. The fourth objective is to identify what, if any, further research needs to be undertaken to determine improved methods to increase the durability of piles in Georgia’s marine environment. 1.2 Need for Research The maintenance costs for Georgia bridges are growing. There is a need to reduce maintenance costs. Further, the Federal Highway Administration has mandated that the design life of new bridges be between 75 and 100 years; the Georgia State Bridge Engineer has suggested that the design life be 100 years. Some prestressed concrete piles in the coastal region of Georgia have been shown to have severe corrosion damage in the splash zone after less than 25 years of service. Therefore, the current design standards for assuring durability of new structures are not sufficient if the 100- year design life is to be achieved. New standards must be developed and implemented; but what those standards are is unknown. One suggestion is to require that concrete for precast prestressed piles be High-Performance Concrete (HPC) with a rapid chloride ion permeability of less than 2000 coulombs.
Recommended publications
  • Design and Uses of Prestressed Concrete Columns by Raymond Itaya*
    PROCEEDINGS PAPER Design and Uses of Prestressed Concrete Columns by Raymond Itaya* SYNOPSIS At the present time, criteria for the design of prestressed concrete columns are not included in the PCI Building Code Requirements nor the ACI Build- ing Code Requirements for Reinforced Concrete. The PCI Prestressed Con- crete Column Committee has been studying the behavior of prestressed concrete columns for nearly two years. This paper attempts to summarize the knowledge to date and outline an approach to the design of prestressed concrete columns. INTRODUCTION cant when bending predominates9 Since columns are generally con- (Fig. 1) . Prestressing yields a homo- sidered as members under compres- geneous member with reliable buck- sion, it might first appear that there ling capacity which is important for is no justification for putting com- slender columns. For precast col- pression into the concrete by pre- umns subjected to transportation and stressing. Upon closer examination, erection stresses, prestressing sup- however, columns are very often sub- plies a higher resistance to cracking jected to tensile stresses when bend- during handling. It is therefore clear ing moments due to wind and earth- that prestressed concrete columns quake forces, eccentric loads, or will be found useful under many frame action are applied to columns. conditions. Figs. 2 and 3 illustrate Prestressing columns then can be the use of such columns where con- considered as an extension of ordi- ventional reinforced columns would nary reinforced concrete columns have been uneconomical, if not im- where reinforcing steel is used to possible. Several possible types of pre- resist tension. Prestressing introduces additional stressed concrete columns should be advantages to concrete columns.
    [Show full text]
  • Prestressed Concrete Girders Achieve Record Lengths Tacoma, Washington
    THE CONCRETE BRIDGE MAGAZINE FALL 2019 www.aspirebridge.org WSDOT inspects 223-ft-long, 247-kip lightweight concrete girder Prestressed Concrete Girders Achieve Record Lengths Tacoma, Washington BRIDGES OF THE FOOTHILLS PARKWAY Great Smoky Mountains National Park DWIGHT D. EISENHOWER VETERANS MEMORIAL BRIDGE Anderson, Indiana MARC BASNIGHT BRIDGE Dare County, North Carolina COURTLAND STREET BRIDGE Atlanta, Georgia Permit No. 567 No. Permit Lebanon Junction, KY Junction, Lebanon Postage Paid Postage Presorted Standard Presorted OVER NEW I-35W BRIDGE I-91 BRATTLEBORO BRIDGE MINNESOTA 40 VERMONT YEARS PENOBSCOT NARROWS BRIDGE & OBSERVATORY HONOLULU RAIL TRANSIT PROJECT MAINE HAWAII 4TH STREET BRIDGE COLORADO AIRTRAIN JFK 410 NEW YORK SARAH MILDRED LONG BRIDGE MAINE/NEW HAMPSHIRE AWARDS FOR OUR CUSTOMERS ACROSS THE UNITED STATES I-280 VETERANS’ GLASS CITY SKYWAY VICTORY BRIDGE OHIO NEW JERSEY DAUPHIN ISLAND BRIDGE ALABAMA FOUR BEARS BRIDGE Creating Bridges As Art® NORTH DAKOTA www.figgbridge.com | 1 800 358 3444 NEW WINONA BRIDGE MINNESOTA VETERANS MEMORIAL BRIDGE TEXAS US 191 COLORADO RIVER BRIDGE I-76 ALLEGHENY RIVER BRIDGE UTAH PENNSYLVANIA I-275 SUNSHINE SKYWAY BRIDGE BLUE RIDGE PARKWAY VIADUCT FLORIDA NORTH CAROLINA SENATOR WILLIAM V. ROTH, JR. BRIDGE NATCHEZ TRACE PARKWAY ARCHES SOUTH NORFOLK JORDAN BRIDGE DELAWARE TENNESSEE VIRGINIA CONTENTS Features “A Shot in the Arm” 6 Armeni Consulting Services helps many clients address 10 estimating and scheduling challenges as the array of delivery and construction methods grows. Bridges of the Foothills Parkway 10 Dwight D. Eisenhower Veterans Memorial Bridge 14 Marc Basnight Bridge 18 Courtland Street Bridge 24 Departments Photo: Eastern Federal Lands Highway Division of the Federal Highway Administration.
    [Show full text]
  • List of TMDL Implementation Plans with Tmdls Organized by Basin
    Latest 305(b)/303(d) List of Streams List of Stream Reaches With TMDLs and TMDL Implementation Plans - Updated June 2011 Total Maximum Daily Loadings TMDL TMDL PLAN DELIST BASIN NAME HUC10 REACH NAME LOCATION VIOLATIONS TMDL YEAR TMDL PLAN YEAR YEAR Altamaha 0307010601 Bullard Creek ~0.25 mi u/s Altamaha Road to Altamaha River Bio(sediment) TMDL 2007 09/30/2009 Altamaha 0307010601 Cobb Creek Oconee Creek to Altamaha River DO TMDL 2001 TMDL PLAN 08/31/2003 Altamaha 0307010601 Cobb Creek Oconee Creek to Altamaha River FC 2012 Altamaha 0307010601 Milligan Creek Uvalda to Altamaha River DO TMDL 2001 TMDL PLAN 08/31/2003 2006 Altamaha 0307010601 Milligan Creek Uvalda to Altamaha River FC TMDL 2001 TMDL PLAN 08/31/2003 Altamaha 0307010601 Oconee Creek Headwaters to Cobb Creek DO TMDL 2001 TMDL PLAN 08/31/2003 Altamaha 0307010601 Oconee Creek Headwaters to Cobb Creek FC TMDL 2001 TMDL PLAN 08/31/2003 Altamaha 0307010602 Ten Mile Creek Little Ten Mile Creek to Altamaha River Bio F 2012 Altamaha 0307010602 Ten Mile Creek Little Ten Mile Creek to Altamaha River DO TMDL 2001 TMDL PLAN 08/31/2003 Altamaha 0307010603 Beards Creek Spring Branch to Altamaha River Bio F 2012 Altamaha 0307010603 Five Mile Creek Headwaters to Altamaha River Bio(sediment) TMDL 2007 09/30/2009 Altamaha 0307010603 Goose Creek U/S Rd. S1922(Walton Griffis Rd.) to Little Goose Creek FC TMDL 2001 TMDL PLAN 08/31/2003 Altamaha 0307010603 Mushmelon Creek Headwaters to Delbos Bay Bio F 2012 Altamaha 0307010604 Altamaha River Confluence of Oconee and Ocmulgee Rivers to ITT Rayonier
    [Show full text]
  • Thermal Properties of Conventional and High-Strength Concrete
    MATEC Web of Conferences 245, 06005 (2018) https://doi.org/10.1051/matecconf/201824506005 EECE-2018 Thermal Properties of Conventional and High- strength Concrete Tatiana Musorina1,*, Alexsander Katcay1, Mikhail Petrichenko1 and Anna Selezneva1 1Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg, 195251, Russian Federation Abstract. Important characteristics for the Nordic countries: a freeze-thaw resistance and an ability of a material to keep heat inside the building. This paper aims to define the thermophysical properties of a high-strength concrete, compare the discovered performance with the conventional concrete properties. With this object in mind two experiments in cold chamber "CHALLENGE 250" have been conducted and followed by analysis. In these experiments, the insulation of facades is beyond the framework of the investigation. Only the thermophysical properties of concrete are taken into account. The samples were affected by temperature fluctuations. Results from the experiments show that strength characteristics of a material are in indirect ratio to accumulation properties of a structure. This conclusion is directly related to porosity of material and additives. During 70 minutes, with outside temperature being below zero, the temperature inside the concrete dropped to an average. As the outside temperature increases significantly to more than zero, the temperature inside the concrete has become below average (continued to decline) in 70 minutes. The more strength of material, the better thermophysical properties. High- strength concrete is less susceptible to temperature fluctuations, therefore more heat-resistant. As mentioned in the paper below, the material has one disadvantage: this is a large cost per cubic meter. 1 Introduction The application of a high grade concrete allows to reduce the self-weight of structures and the concrete area, to create a higher, bigger and smarter constructive form of the elements.
    [Show full text]
  • Sherman's March and Georgia's Refugee Slaves Ben Parten Clemson University, [email protected]
    Clemson University TigerPrints All Theses Theses 5-2017 "Somewhere Toward Freedom:" Sherman's March and Georgia's Refugee Slaves Ben Parten Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Recommended Citation Parten, Ben, ""Somewhere Toward Freedom:" Sherman's March and Georgia's Refugee Slaves" (2017). All Theses. 2665. https://tigerprints.clemson.edu/all_theses/2665 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. “SOMEWHERE TOWARD FREEDOM:” SHERMAN’S MARCH AND GEORGIA’S REFUGEE SLAVES A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Masters of Arts History by Ben Parten May 2017 Accepted by: Dr. Vernon Burton, Committee Chair Dr. Lee Wilson Dr. Rod Andrew ABSTRACT When General William T. Sherman’s army marched through Georgia during the American Civil War, it did not travel alone. As many as 17,000 refugee slaves followed his army to the coast; as many, if not more, fled to the army but decided to stay on their plantations rather than march on. This study seeks to understand Sherman’s march from their point of view. It argues that through their refugee experiences, Georgia’s refugee slaves transformed the march into one for their own freedom and citizenship. Such a transformation would not be easy. Not only did the refugees have to brave the physical challenges of life on the march, they had to also exist within a war waged by white men.
    [Show full text]
  • Problem Statement 1-4-1. Portland Cement Concrete Pavement Mix Design System Integration Stage 1: Volumetrics-Based Mix Design (Mix Proportioning)
    Long-Term Plan for Concrete Pavement Research and Technology—The Concrete Pavement Road Map (Second Generation): Volume II, Tracks PUBLICATION NO. FHWA-HRT-11-070 JULY 2012 Research, Development, and Technology Turner-Fairbank Highway Research Center 6300 Georgetown Pike McLean, VA 22101-2296 FOREWORD The concrete paving industry has experienced many changes in the last 15 years. In order for concrete pavement to achieve its full potential in the 21st century, the industry has identified trends that call for dramatic, even revolutionary, improvements. Aiming for a holistic approach, the improvements can best be implemented through a carefully developed and aggressively implemented strategic plan for research and technology transfer known as the Long-Term Plan for Concrete Pavement Research and Technology (CP Road Map). This is volume II of two volumes. It provides the background and summary information on the effort that led to the CP Road Map. Jorge E. Pagán-Ortiz Director, Office of Infrastructure Research and Development Notice This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in this document. This report does not constitute a standard, specification, or regulation. The U.S. Government does not endorse products or manufacturers. Trademarks or manufacturers’ names appear in this report because they are considered essential to the objective of the document. Quality Assurance Statement The Federal Highway Administration (FHWA) provides high-quality information to serve the Government, industry, and the public in a manner that promotes public understanding.
    [Show full text]
  • Analysis of Cracked Prestressed Concrete Sections: a Practical Approach
    Analysis of Cracked Prestressed Concrete Sections: A Practical Approach This paper presents a practical approach for analyzing the elastic behavior of cracked prestressed concrete sections of any shape, using existing section property software. The use of the results for estimating deflection and crack control is presented. The method is applicable to .81!.... ' sections with any degree of prestress, from no prestress to full prestress. Examples are given, including the analysis of cracked composite ,f('' sections. The procedural steps for analyzing cracked prestressed Robert F. Mast, P.E. concrete sections are summarized. Senior Principal BERGER/ABAM Engineers Inc. Fed eral Way, Washington o fully understand the behavior The purpose of this paper is to pre­ of a prestressed concrete mem­ sent an analysis method using conven­ T ber cracked at service load, an tional section property software. The analysis of the cracked prestressed solution requires iteration, but the section should be made. This analysis bulk of the work is done by an exist­ is needed in order to find the change ing section property program. The it­ in steel stress after cracking (for use in eration may be done manually or a evaluating crack control at service small additional program may be writ­ load), and for finding the appropriate ten that will do the iteration, using an flexural stiffness for use in deflection existing section property program to calculations. do the computation inside an iteration The analysis of cracked prestressed loop. sections requires, at best, the solution The iterative procedure consists of 2 3 of a cubic equation.'· • .. The complex­ assuming a depth c of the neutral axis, ity of this solution, requiring the use computing section properties of the of charts, tables, or special software, net cracked section, checking stresses has impeded the use of prestressed at the assumed neutral axis location, concrete members with ten sile stresses and revising c as necessary to make beyond the code limits for nominal the concrete stress equal to zero at the tensile stress.
    [Show full text]
  • July 3-9, 2011
    Department of Natural Resources Wildlife Resources Division Law Enforcement Section Field Operations Weekly Report July 3-9, 2011 This report is a broad sampling of events that have taken place in the past week, but does not include all actions taken by the Law Enforcement Section. Region I- Calhoun (Northwest) FLOYD COUNTY On Sunday June 26th, Cpl. Shawn Elmore was working along the Etowah River in Rome and overheard radio traffic from Rome PD about a vehicle getting broken into at the Etowah River boat ramp. Cpl. Elmore responded to the boat ramp and assisted Rome PD officer. Cpl. Elmore located one of the suspects hiding in the woods and the other suspect came out of the river. Three juvenile suspects were detained and charged with entering an auto and criminal damage to property by Rome PD. On June 26th, Cpl. Shawn Elmore was at the Heritage Park boat ramp on the Coosa River in Rome when he was approached by a parent of four teenagers that were caught in a storm on the Etowah River. Cpl. Elmore went to get his patrol vessel and while enroute to the Etowah River boat ramp the four teens called the parents and advised they had gotten out of the river safely and were waiting on a ride on Turner Chapel Rd. On the night of June 26th, Cpl. Shawn Elmore received a call from Floyd E911 about 3 adults and a 3 year-old child stranded on the Etowah River. Cpl. Elmore responded to the scene and assisted Rome/Floyd Fire with a search of the river and the four were located and safely returned to their vehicle.
    [Show full text]
  • Shrinkage and Creep in Prestressed Concrete
    Shrinkage and Creep In Prestressed Concrete Announcing —The Building Science Series The "Building Science Series" disseminates technical information developed at the Bureau on building materials, components, systems, and whole structures. The series presents research results, test methods, and performance criteria related to the structural and environmental functions and the durability and safety char- acteristics of building elements and systems. These publications, similar in style and content to the NBS Building Materials and Structure Reports (1938-59), are directed toward the manufacturing, design, and construction segments of the building industry, standards organizations, offi- cials, responsible for building codes, and scientists and engineers concerned vdth the properties of building materials. The material for this series originates principally in the Building Research Divi- sion of the NBS Institute for Applied Technology. Published or in preparation are: BSSl. Building Research at the National Bureau of Standards. (In prepara- tion. ) BSS2. Interrelations Between Cement and Concrete Properties: Part 1, Ma- terials and Techniques, Water Requirements and Trace Elements. 35 cents BSS3. Doors as Barriers to Fire and Smoke. 15 cents BSS4. Weather Resistance of Porcelain Enamels : Effect of Exposure Site and Other Variables After Seven Years. 20 cents BSS5. Interrelations Between Cement and Concrete Properties : Part 2, Sulfate Expansion, Heat of Hydration, and Autoclave Expansion. 35 cents BSS6. Some Properties of the Calcium Aluminoferrite Hydrates. 20 cents BSS7. Organic Coatings. Properties, Selection, and Use. (In press.) BSS8. Interrelations Between Cement and Concrete Properties: Part 3. (In preparation.) BSS9. Thermal-Shock Resistance for Built-Up Membranes. 20 cents BSSIO. Field Burnout Tests of Apartment Dwelling Units.
    [Show full text]
  • Deterioration of Prestressed Concrete Beams Due to Combined Effects of Carbonation and Chloride Attack
    Deterioration of Prestressed Concrete Beams Due to Combined Effects of Carbonation and Chloride Attack Rita Irmawaty1, Daisuke YAMAMOTO2, Hidenori HAMADA2 and Yasutaka SAGAWA2 1Kyushu University, Japan and Hasanuddin University, Indonesia 2Kyushu University, Japan *West 2 Building, Room 1103, 744 Motooka, Nishi-Ku, Fukuoka, Japan, 819-0395 e-mail:[email protected], [email protected], [email protected] and [email protected] ABSTRACT Performance of prestressed concrete (PC) beams subjected to both carbonation and chloride ingress has not been clarified well so far. This paper presents the evaluation results and discussion on materials deterioration and corrosion state of prestressing wire/tendons of 35 year’s test PC beams. All beams were exposed to the actual marine tidal environments at the Sakata Port more than 20 years, then transferred and stored in a constant temperature over 15 years. The results indicated that all beams showed deterioration on the exterior and the whole surface of beams was carbonated. Even carbonation did not cause corrosion of reinforcement, however, it may have contributed to degradation of cover concrete. In addition, even though tendons were protected by sheath and mortar grouting, however, corrosion area on tendons reached 40%, and prestressing wires corrosion length was 50 to 73%, indicating severe corrosion conditions for PC beams with 30 mm cover depth. Keywords: corrosion, long-term performance, prestressed concrete INTRODUCTION Corrosion of steel reinforcement is one of the important factors affecting long-term durability. Corrosion usually occurs due to either carbonation or chloride attacks, and it has been well researched for both reinforced concrete and prestressed concrete structures for long-term exposure tests.
    [Show full text]
  • Savannah River Basin Management Plan 2001
    Savannah River Basin Management Plan 2001 Georgia Department of Natural Resources Environmental Protection Division Georgia River Basin Management Planning Vision, Mission, and Goals What is the VISION for the Georgia RBMP Approach? Clean water to drink, clean water for aquatic life, and clean water for recreation, in adequate amounts to support all these uses in all river basins in the state of Georgia. What is the RBMP MISSION? To develop and implement a river basin planning program to protect, enhance, and restore the waters of the State of Georgia, that will provide for effective monitoring, allocation, use, regulation, and management of water resources. [Established January 1994 by a joint basin advisory committee workgroup.] What are the GOALS to Guide RBMP? 1) To meet or exceed local, state, and federal laws, rules, and regulations. And be consistent with other applicable plans. 2) To identify existing and future water quality issues, emphasizing nonpoint sources of pollution. 3) To propose water quality improvement practices encouraging local involvement to reduce pollution, and monitor and protect water quality. 4) To involve all interested citizens and appropriate organizations in plan development and implementation. 5) To coordinate with other river plans and regional planning. 6) To facilitate local, state, and federal activities to monitor and protect water quality. 7) To identify existing and potential water availability problems and to coordinate development of alternatives. 8) To provide for education of the general public on matters involving the environment and ecological concerns specific to each river basin. 9) To provide for improving aquatic habitat and exploring the feasibility of re-establishing native species of fish.
    [Show full text]
  • Status of Private Cypress Wetland Forests in Georgia
    STATUS OF PRIVATE CYPRESS WETLAND FORESTS IN GEORGIA Alternatives for Conservation and Restoration ACKNOWLEDGEMENTS We thank the United States Environmental Protection Agency for funding this project, and especially, Jennifer Derby and Tom Welborn for their dedication to conserving Georgia’s cypress resources. We are also grateful to Richard Harper, Jeffery Turner, and Tony Johnson of the U.S. Forest Service, Forest Inventory and Analysis, for their invaluable assistance and train- ing in the retrieval and analysis of the agency’s forest trend data. We thank the Riverkeepers of the Altamaha, Ogeechee, Satilla, and Savannah Rivers for their important contributions to this project. In addition, we wish to express our apprecia- tion to James Holland, the Altamaha Riverkeeper, for the many hours he spent arranging the Wilkinson County case study site visits and working with us in the field to document site conditions. We are grateful to the landowners of the Wilkinson County site for allowing us to evaluate their property and to Mr. Wyndell Berryhall for his assistance in the field. We also wish to thank all those who provided thoughtful review and comments on drafts of this report: Richard Harper, John Greis, Mark Brown, and Tony Johnson of the U.S. Forest Service; Rhett Jackson, Professor of Hydrology, Warnell School of Forestry and Natural Resources, University of Georgia; Frank Green and James Johnson, Georgia Forestry Commission; James Jeter, Ala- bama Forestry Commission; Hughes Simpson, Texas Forest Service; John Swords, U.S. Fish and Wildlife Service; and Shaun Blocker, U.S. Army Corps of Engineers. The Southern Environmental Law Center is a nonprofit organization dedicated to protecting the health and environment of the Southeast (Alabama, Georgia, North Carolina, South Carolina, Tennessee, and Virginia).
    [Show full text]