Nematoda: Adenophorea
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hydrothermal Vent Fields and Chemosynthetic Biota on the World's
ARTICLE Received 13 Jul 2011 | Accepted 7 Dec 2011 | Published 10 Jan 2012 DOI: 10.1038/ncomms1636 Hydrothermal vent fields and chemosynthetic biota on the world’s deepest seafloor spreading centre Douglas P. Connelly1,*, Jonathan T. Copley2,*, Bramley J. Murton1, Kate Stansfield2, Paul A. Tyler2, Christopher R. German3, Cindy L. Van Dover4, Diva Amon2, Maaten Furlong1, Nancy Grindlay5, Nicholas Hayman6, Veit Hühnerbach1, Maria Judge7, Tim Le Bas1, Stephen McPhail1, Alexandra Meier2, Ko-ichi Nakamura8, Verity Nye2, Miles Pebody1, Rolf B. Pedersen9, Sophie Plouviez4, Carla Sands1, Roger C. Searle10, Peter Stevenson1, Sarah Taws2 & Sally Wilcox11 The Mid-Cayman spreading centre is an ultraslow-spreading ridge in the Caribbean Sea. Its extreme depth and geographic isolation from other mid-ocean ridges offer insights into the effects of pressure on hydrothermal venting, and the biogeography of vent fauna. Here we report the discovery of two hydrothermal vent fields on theM id-Cayman spreading centre. The Von Damm Vent Field is located on the upper slopes of an oceanic core complex at a depth of 2,300 m. High-temperature venting in this off-axis setting suggests that the global incidence of vent fields may be underestimated. At a depth of 4,960 m on the Mid-Cayman spreading centre axis, the Beebe Vent Field emits copper-enriched fluids and a buoyant plume that rises 1,100 m, consistent with > 400 °C venting from the world’s deepest known hydrothermal system. At both sites, a new morphospecies of alvinocaridid shrimp dominates faunal assemblages, which exhibit similarities to those of Mid-Atlantic vents. 1 National Oceanography Centre, Southampton, UK. -
Crustacea; Decapoda; Caridea; Alvinocarididae; Alvinocaris; New Species; Cold Seeps; Blake Ridge; Northwestern Atlantic
Zootaxa 1019: 27–42 (2005) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 1019 Copyright © 2005 Magnolia Press ISSN 1175-5334 (online edition) A new species of Alvinocaris (Crustacea: Decapoda: Caridea: Alvi- nocarididae) and a new record of A. muricola from methane seeps on the Blake Ridge Diapir, Northwestern Atlantic T. KOMAI1, T. M. SHANK 2 & C. L. VAN DOVER3 1 Natural History Museum and Institute, Chiba, 955-2 Aoba-cho, Chuo-ku, Chiba, 260-8682 Japan; [email protected] 2 Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, U.S.A. 3 Biology Department, College of William & Mary, Williamsburg, VA 23187, U.S.A. Abstract Two species of the alvinocaridid shrimp genus Alvinocaris, A. methanophila n. sp. and A. muricola Williams, are reported from a cold seep site on the Blake Ridge Diapir, northwestern Atlantic, at a depth of 2155 m. Alvinocaris methanophila is described and illustrated on the basis of 33 adult specimens. It is most similar to the sympatrically found A. muricola Williams, but differs in the comparatively stout second segment of the antennular peduncle and smaller size at maturity in females. Available data suggest that A. muricola is rare at this site. Brief notes on habitat and distri- bution of the two species are provided. Key words: Crustacea; Decapoda; Caridea; Alvinocarididae; Alvinocaris; new species; cold seeps; Blake Ridge; northwestern Atlantic Introduction Shrimps of the genus Alvinocaris are almost exclusively associated with chemosynthetic communities influenced by hydrothermal vents or hydrocarbon seeps (Komai & Segonzac, 2005). Recently, Escobar-Briones & Villalobos-Hiriart (2003) recorded an indeterminate species of Alvinocaris from non-chemosynthetic environments on the Banco Chinchorro in the northern Caribbean at depths of 176–203 m, although no information on morphol- ogy of the voucher specimens was provided. -
2018 Bibliography of Taxonomic Literature
Bibliography of taxonomic literature for marine and brackish water Fauna and Flora of the North East Atlantic. Compiled by: Tim Worsfold Reviewed by: David Hall, NMBAQCS Project Manager Edited by: Myles O'Reilly, Contract Manager, SEPA Contact: [email protected] APEM Ltd. Date of Issue: February 2018 Bibliography of taxonomic literature 2017/18 (Year 24) 1. Introduction 3 1.1 References for introduction 5 2. Identification literature for benthic invertebrates (by taxonomic group) 5 2.1 General 5 2.2 Protozoa 7 2.3 Porifera 7 2.4 Cnidaria 8 2.5 Entoprocta 13 2.6 Platyhelminthes 13 2.7 Gnathostomulida 16 2.8 Nemertea 16 2.9 Rotifera 17 2.10 Gastrotricha 18 2.11 Nematoda 18 2.12 Kinorhyncha 19 2.13 Loricifera 20 2.14 Echiura 20 2.15 Sipuncula 20 2.16 Priapulida 21 2.17 Annelida 22 2.18 Arthropoda 76 2.19 Tardigrada 117 2.20 Mollusca 118 2.21 Brachiopoda 141 2.22 Cycliophora 141 2.23 Phoronida 141 2.24 Bryozoa 141 2.25 Chaetognatha 144 2.26 Echinodermata 144 2.27 Hemichordata 146 2.28 Chordata 146 3. Identification literature for fish 148 4. Identification literature for marine zooplankton 151 4.1 General 151 4.2 Protozoa 152 NMBAQC Scheme – Bibliography of taxonomic literature 2 4.3 Cnidaria 153 4.4 Ctenophora 156 4.5 Nemertea 156 4.6 Rotifera 156 4.7 Annelida 157 4.8 Arthropoda 157 4.9 Mollusca 167 4.10 Phoronida 169 4.11 Bryozoa 169 4.12 Chaetognatha 169 4.13 Echinodermata 169 4.14 Hemichordata 169 4.15 Chordata 169 5. -
Free-Living Marine Nematodes from San Antonio Bay (Río Negro, Argentina)
A peer-reviewed open-access journal ZooKeys 574: 43–55Free-living (2016) marine nematodes from San Antonio Bay (Río Negro, Argentina) 43 doi: 10.3897/zookeys.574.7222 DATA PAPER http://zookeys.pensoft.net Launched to accelerate biodiversity research Free-living marine nematodes from San Antonio Bay (Río Negro, Argentina) Gabriela Villares1, Virginia Lo Russo1, Catalina Pastor de Ward1, Viviana Milano2, Lidia Miyashiro3, Renato Mazzanti3 1 Laboratorio de Meiobentos LAMEIMA-CENPAT-CONICET, Boulevard Brown 2915, U9120ACF, Puerto Madryn, Argentina 2 Universidad Nacional de la Patagonia San Juan Bosco, sede Puerto Madryn. Boulevard Brown 3051, U9120ACF, Puerto Madryn, Argentina 3Centro de Cómputos CENPAT-CONICET, Boulevard Brown 2915, U9120ACF, Puerto Madryn, Argentina Corresponding author: Gabriela Villares ([email protected]) Academic editor: H-P Fagerholm | Received 18 November 2015 | Accepted 11 February 2016 | Published 28 March 2016 http://zoobank.org/3E8B6DD5-51FA-499D-AA94-6D426D5B1913 Citation: Villares G, Lo Russo V, Pastor de Ward C, Milano V, Miyashiro L, Mazzanti R (2016) Free-living marine nematodes from San Antonio Bay (Río Negro, Argentina). ZooKeys 574: 43–55. doi: 10.3897/zookeys.574.7222 Abstract The dataset of free-living marine nematodes of San Antonio Bay is based on sediment samples collected in February 2009 during doctoral theses funded by CONICET grants. A total of 36 samples has been taken at three locations in the San Antonio Bay, Santa Cruz Province, Argentina on the coastal littoral at three tidal levels. This presents a unique and important collection for benthic biodiversity assessment of Patagonian nematodes as this area remains one of the least known regions. -
Nematoda, Chromadoridae) from Dr Theodor Mortensen’S Pacific Expedition 1914–16 with an Identification Key to the Genus
Zootaxa 3881 (6): 501–512 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3881.6.1 http://zoobank.org/urn:lsid:zoobank.org:pub:0668CE39-F233-4ADC-BCEA-95C7EB8747D5 A new species of Parapinnanema (Nematoda, Chromadoridae) from Dr Theodor Mortensen’s Pacific Expedition 1914–16 with an identification key to the genus FEDERICA SEMPRUCCI1,3 & MARTIN V. SØRENSEN2 1Dipartimento di Scienze della Terra, della Vita e dell'Ambiente (DiSTeVA), Università di Urbino, loc. Crocicchia, 61029 Urbino, Italy. E-mail: [email protected] 2Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen K, Denmark. E-mail: [email protected] 3Corresponding author Abstract A new species from the family Chromadoridae is described from samples collected during Dr Mortensen’s Pacific Expe- dition 1914–16 to Honolulu, Hawaii. Parapinnanema hawaiiensis sp. nov. is characterized by a low c’ ratio and especially by a peculiar complex morphology of the median part of the gubernaculum. An updated and modified key to all the valid species of Parapinnanema is proposed. Key words: Chromadorida, Euchromadorinae, Hawaii, taxonomy, marine nematodes Introduction The family Chromadoridae, generally marine and represented by about 410 species (Tchesunov 2014), has been recorded worldwide, and their abundance appears to be positively correlated with an increase in sediment grain size (Heip et al. 1985). Chromadoridae are currently divided into five subfamilies: Chromadorinae, Euchromadorinae, Harpagonchinae, Hypodontolaiminae and Spilipherinae. Euchromadorinae accommodates 12 genera and more than 60 species (Tchesunov 2014). -
Citações (2021-1979)
Página anterior/Back Citações (2021-1979) Número de citações em artigos de que tenho conhecimento não entrando em linha de conta com as dos artigos em que sou autor ou co-autor: 593 424) 2021 - Franke, M., B. Geier, J. U. Hammel, N. Dubilier, N & N. Leisch - Coming together- symbiont acquisition and early development in deep-sea bathymodioline mussels. Proceedings of the Royal Society B-Biological Sciences . 288 (1957): - na bibliografia cita o trabalho nº 40 423) 2021 - Tamayo, M., Barria, C., Coll, M. & Navarro, J. - Highly specialized feeding habits of the rabbitfish Chimaera monstrosa in the deep sea ecosystem of the northwestern Mediterranean Sea. Journal of Applied Ichthyology - na bibliografia cita o trabalho nº 25 422) 2021 – R. Thiel, Knebelsberger, T., Kihara, T. & Gerdes, K. - Description of a new eelpout Pachycara angeloi sp. nov. (Perciformes: Zoarcidae) from deep-sea hydrothermal vent fields in the Indian Ocean. ZOOTAXA, 4980 (1): 99-112 . - na bibliografia cita o trabalho nº 56 421) 2021 - Bujtor, L. & Nagy, J. - Fauna, palaeoecology and ecotypes of the Early Cretaceous sediment hosted hydrothermal vent environment of Zengovarkony (Mecsek Mountains, Hungary) - na bibliografia cita o trabalho nº 40 420) 2021 - Song, Xikun; Lyu, Mingxin; Zhang, Xiaodi; et al. Large Plastic Debris Dumps: New Biodiversity Hot Spots Emerging on the Deep-Sea Floor Environmental Science & Technology Letters. 8 Edição 2: 148-154 . - na bibliografia cita o trabalho nº 40 419) 2021 - Gomes-dos-Santos, N. Vilas-Arrondo, A. M. Machado, A. Veríssimo, M. Pérez, F. Baldó, L. F. C. Castro & E. Froufe.- Shedding light on the Chimaeridae taxonomy: the complete mitochondrial genome of the cartilaginous fish Hydrolagus mirabilis (Collett, 1904) (Holocephali: Chimaeridae). -
Decapoda: Caridea: Alvinocarididae) from Cold Seeps in the Congo Basin
J. Mar. Biol. Ass. U.K. (2006), 86, 1347^1356 doi: 10.1017/S0025315406014378 Printed in the United Kingdom Reproductive biology of Alvinocaris muricola (Decapoda: Caridea: Alvinocarididae) from cold seeps in the Congo Basin P O Eva Ramirez-Llodra* and Michel Segonzac *Institut de Cie' ncies del Mar, CMIMA-CSIC, Psg. Mar|¤tim de la Barceloneta 37-49, 08003 Barcelona, Spain. O Ifremer, Centre de Brest, Laboratoire Environnement Profond-Centob, BP 70, 29280 Plouzane¤Cedex, France. P Corresponding author, e-mail: [email protected] The caridean shrimp Alvinocaris muricola has been observed forming high density populations over mussel beds on the giant pockmark cold seep site Regab in the Gulf of Guinea at 3150 m depth. Samples were collected using the ROV Victor 6000, a beam trawl and a TV grab from two sites. The specimens were sexed and measured for population structure analysis. In one sample the sex ratio was 1:1, but the other sample had a sex ratio signi¢cantly biased towards females. The maximum size of females is larger than males. A sub-sample was used for gametogenesis and fecundity analysis. The oogenesis and spermatogen- esis of A. muricola is characteristic of caridean shrimps. The oogonia proliferate from the germinal epithelium and develop into previtellogenic oocytes that migrate to the growth zone. Vitellogenesis starts at 80^100 mm oocyte size and the developing oocytes are surrounded by a monolayer of accessory cells. The maximum oocyte size was 515 mm. There was no evidence of synchrony in oocyte development, with all oocyte stages present in all ovaries analysed. -
Vent Fauna in the Mariana Trough 25 Shigeaki Kojima and Hiromi Watanabe
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Vent Fauna in the Mariana Trough 25 Shigeaki Kojima and Hiromi Watanabe Abstract The Mariana Trough is a back-arc basin in the Northwestern Pacific. To date, active hydrothermal vent fields associated with the back-arc spreading center have been reported from the central to the southernmost region of the basin. In spite of a large variation of water depth, no clear segregation of vent faunas has been recognized among vent fields in the Mariana Trough and a large snail Alviniconcha hessleri dominates chemosynthesis- based communities in most fields. Although the Mariana Trough approaches the Mariana Arc at both northern and southern ends, the fauna at back-arc vents within the trough appears to differ from arc vents. In addition, a distinct chemosynthesis-based community was recently discovered in a methane seep site on the landward slope of the Mariana Trench. On the other hand, some hydrothermal vent fields in the Okinawa Trough backarc basin and the Izu-Ogasawara Arc share some faunal groups with the Mariana Trough. The Mariana Trough is a very interesting area from the zoogeographical point of view. Keywords Alvinoconcha hessleri Chemosynthetic-based communities Hydrothermal vent Mariana Arc Mariana Trough 25.1 Introduction The first hydrothermal vent field discovered in the Mariana Trough was the Alice Springs, in the Central Mariana Trough The Mariana Trough is a back-arc basin in the Northwestern (18 130 N, 144 430 E: 3,600 m depth) in 1987 (Craig et al. -
!Zbinden Et Al. 2018.Pdf
fmars-05-00357 October 4, 2018 Time: 19:12 # 1 ORIGINAL RESEARCH published: 08 October 2018 doi: 10.3389/fmars.2018.00357 Blow Your Nose, Shrimp! Unexpectedly Dense Bacterial Communities Occur on the Antennae and Antennules of Hydrothermal Vent Shrimp Magali Zbinden1, Alison Gallet1, Kamil M. Szafranski2, Julia Machon1, Juliette Ravaux1, Nelly Léger1 and Sébastien Duperron1,3* 1 Unité Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Muséum National d’Histoire Naturelle, Sorbonne Université, Université de Caen Normandie, Université des Antilles, CNRS, IRD, Eq. Adaptations aux Milieux Extrêmes, Paris, France, 2 InterRidge Office, Institut de Physique du Globe de Paris, Paris, France, 3 UMR CNRS MNHN 7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d’Histoire Naturelle et Institut Universitaire de France, Paris, France In crustaceans, as in other animals, perception of environmental cues is of key importance for a wide range of interactions with the environment and congeners. Chemoreception involves mainly the antennae and antennules, which carry sensilla that Edited by: detect water-borne chemicals. The functional importance of these as exchange surfaces David William Waite, University of Auckland, New Zealand in the shrimp’s sensory perception requires them to remain free of any microorganism Reviewed by: and deposit that could impair the fixation of odorant molecules on sensory neurons. We Adrian Ochoa-Leyva, report here the occurrence of an unexpected dense bacterial colonization on surface of Universidad Nacional Autónoma the antennae and antennules of four hydrothermal vent shrimp species. Microscopic de México, Mexico Patrick Joseph Kearns, observation, qPCR and 16S rRNA barcoding reveal the abundance, diversity and Tufts University, United States taxonomic composition of these bacterial communities, that are compared with those *Correspondence: found on a related coastal shrimp. -
(Stsm) Scientific Report
SHORT TERM SCIENTIFIC MISSION (STSM) SCIENTIFIC REPORT This report is submitted for approval by the STSM applicant to the STSM coordinator Action number: CA15219-45333 STSM title: Free-living marine nematodes from the eastern Mediterranean deep sea - connecting COI and 18S rRNA barcodes to structure and function STSM start and end date: 06/02/2020 to 18/3/2020 (short than the planned two months due to the Co-Vid 19 virus pandemic) Grantee name: Zoya Garbuzov PURPOSE OF THE STSM: My Ph.D. thesis is devoted to the population ecology of free-living nematodes inhabiting deep-sea soft substrates of the Mediterranean Levantine Basin. The success of the study largely depends on my ability to accurately identify collected nematodes at the species level, essential for appropriate environmental analysis. Morphological identification of nematodes at the species level is fraught with difficulties, mainly because of their relatively simple body shape and the absence of distinctive morphological characters. Therefore, a combination of morphological identification to genus level and the use of molecular markers to reach species identification is assumed to provide a better distinction of species in this difficult to identify group. My STSM host, Dr. Nikolaos Lampadariou, is an experienced taxonomist and nematode ecologist. In addition, I will have access to the molecular laboratory of Dr. Panagiotis Kasapidis. Both researchers are based at the Hellenic Center for Marine Research (HCMR) in Crete and this STSM is aimed at combining morphological taxonomy, under the supervision of Dr. Lampadariou, with my recently acquired experience in nematode molecular taxonomy for relating molecular identifiers to nematode morphology. -
7.12 Order Chromadorida Chitwood, 1933
Alexei V. Tchesunov 7.12 Order Chromadorida Chitwood, 1933 Diagnosis : Chromadorea. Cuticle ornamented with body (cuticle heterogeneous) or the ornamentation may be transverse rows of punctuations as dots, rods or “ basket made up of rods jointed in a “basket weave ”. Pharyngos- weave ” and often with lateral differentiation. Anterior toma with dorsal tooth usually larger than ventrosublate- sensilla arranged in two or three circles, i.e., an ante- ral ones; teeth hollow or solid; denticles may be present; rior circle of inner labial sensilla (usually papillae, but three nearly equal solid teeth also occur in some genera. may be setiform), an outer circle of outer labial sensilla Male monorchic with anterior testis (synapomorphy); pre- (seti- or papilliform) and a third circle of cephalic setae cloacal supplements cup-shaped (never tubular), may be (pattern six + six + four); the second and third circles absent. Females with two antidromously reflexed ovaries, may form a single circle of ten sensilla (pattern six + ten). the anterior gonad to the right of the intestine, the pos- In the case of pattern six + six + four, the four cephalic terior gonad to the left of the intestine (synapomorphy). setae are longer than the six outer labial sensilla, and in Mostly marine. Five subfamilies. the case of pattern six + ten, the six outer labial sensilla are longer than the four cephalic setae of the same joint circle. Amphideal fovea variable, simple spiral, comma- 7.12.1.1 Subfamily Chromadorinae like, transverse loop or slit, or multispiral; when spiral, Filipjev, 1917 amphideal fovea usually located posterior to the cepha- lic setae, but sometimes lying between the four cephalic Diagnosis (after Decraemer & Smol 2006): Chromadori- setae and are then difficult to observe. -
Decapod Crustaceans from Hydrothermal Vents and Cold Seeps: a Review Through 2005
Blackwell Science, LtdOxford, UKZOJZoological Journal of the Linnean Society0024-4082The Lin- nean Society of London, 2005? 2005 1454 445522 Original Article DECAPOD CRUSTACEANS FROM HOT VENTS AND COLD SEEPSJ. W. MARTIN and T. A. HANEY Zoological Journal of the Linnean Society, 2005, 145, 445–522. Decapod crustaceans from hydrothermal vents and cold seeps: a review through 2005 JOEL W. MARTIN1* and TODD A. HANEY1,2 1Research and Collections Branch, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA 2Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA 90095, USA Received July 2004; accepted for publication March 2005 The taxonomic status, biogeographical distributions and existing collections are reviewed for all species of decapod crustaceans known from the vicinity of hydrothermal vents and cold (hydrocarbon or brine) seeps. To date, more than 125 species representing 33 families of decapods have been reported. Represented families are, in alphabetical order within infraorder, the penaeoid families Benthesicymidae and Sergestidae; the caridean families Alvinocarididae (all of which are vent or seep endemics), Crangonidae, Glyphocrangonidae, Hippolytidae, Nematocarcinidae, Oplo- phoridae, Palaemonidae, Pandalidae and Stylodactylidae; the anomuran families Chirostylidae, Galatheidae, Lithodidae and Parapaguridae; the brachyuran crab families Atelecyclidae, Bythograeidae (all of which are vent endemics), Cancridae, Epialtidae, Geryonidae, Goneplacidae, Homolidae, Majidae, Ocypodidae, Oregoniidae, Par- thenopidae, Pisidae, Portunidae and Varunidae; the lobster (astacidean) family Nephropidae; and the thalassinidean families Axiidae, Callianassidae and Calocarididae. Some species appear to be vagrants, here defined as opportu- nistic species occasionally found in the vicinity of vent sites but not restricted to them.