7.12 Order Chromadorida Chitwood, 1933

Total Page:16

File Type:pdf, Size:1020Kb

7.12 Order Chromadorida Chitwood, 1933 Alexei V. Tchesunov 7.12 Order Chromadorida Chitwood, 1933 Diagnosis : Chromadorea. Cuticle ornamented with body (cuticle heterogeneous) or the ornamentation may be transverse rows of punctuations as dots, rods or “ basket made up of rods jointed in a “basket weave ”. Pharyngos- weave ” and often with lateral differentiation. Anterior toma with dorsal tooth usually larger than ventrosublate- sensilla arranged in two or three circles, i.e., an ante- ral ones; teeth hollow or solid; denticles may be present; rior circle of inner labial sensilla (usually papillae, but three nearly equal solid teeth also occur in some genera. may be setiform), an outer circle of outer labial sensilla Male monorchic with anterior testis (synapomorphy); pre- (seti- or papilliform) and a third circle of cephalic setae cloacal supplements cup-shaped (never tubular), may be (pattern six + six + four); the second and third circles absent. Females with two antidromously reflexed ovaries, may form a single circle of ten sensilla (pattern six + ten). the anterior gonad to the right of the intestine, the pos- In the case of pattern six + six + four, the four cephalic terior gonad to the left of the intestine (synapomorphy). setae are longer than the six outer labial sensilla, and in Mostly marine. Five subfamilies. the case of pattern six + ten, the six outer labial sensilla are longer than the four cephalic setae of the same joint circle. Amphideal fovea variable, simple spiral, comma- 7.12.1.1 Subfamily Chromadorinae like, transverse loop or slit, or multispiral; when spiral, Filipjev, 1917 amphideal fovea usually located posterior to the cepha- lic setae, but sometimes lying between the four cephalic Diagnosis (after Decraemer & Smol 2006): Chromadori- setae and are then difficult to observe. Cephalic helmet dae. Cuticle homo- or heterogeneous, usually without not developed as such, but head cuticle may be slightly or with slight lateral differentiation made by larger dots inflated within several genera. Cheilostoma with twelve (only in Chromadorella, the lateral larger dots arranged in cheilorhabdia (folds or rugae); pharyngostoma of varia- longitudinal rows). Outer labial papilliform sensilla and ble size and shape, very often armed with a single bigger four cephalic setae in two separate circles. Amphideal dorsal tooth and two or more smaller ventrosublateral fovea transverse slit-like, difficult to observe under light teeth or denticles. Pharynx largely evenly muscular, microscopy. Buccal cavity armed with three nearly equal cylindrical, posteriorly often widened or terminated with solid teeth (except for Prochromadora with the dorsal muscular bulb with well-cuticularized luminal walls. tooth single or prevails). Pharyngeal tissue not enlarged Female reproductive system didelphic-amphidelphic with around the buccal cavity. Simple and distinctly defined antidromously reflexed ovaries. Males monorchic or dior- posterior pharyngeal bulb. Preanal cup-shaped supple- chic. Precloacal supplements cup-shaped, fine tubular or mentary organs usually present. setose. Caudal glands and spinneret present. Marine free- Type genus: Chromadora Bastian, 1865 living, a few species epibiotic, uncommon in freshwater and soil. Six families. 7.12.1.1.1 Genus Atrochromadora Wieser, 1959 (Fig. 7.92 A) 7.12.1 Family Chromadoridae Diagnosis : Chromadorinae. Homogeneous р unctated Filipjev, 1917 body cuticle pattern along the body and with lateral diffe- rentiation of larger dots. Amphideal fovea transverse oval, Diagnosis: Chromadorida. Amphideal fovea as simple open loop-shaped. Pharyngostoma with three solid teeth, transverse slit-like, often inconspicuous, or ventrally the dorsal tooth larger than the ventrosublateral teeth. wound spiral, located between the cephalic setae or pos- Males usually with cup-shaped precloacal supplements. terior to them. Cuticular ornamentation as punctuations, Marine. which may be evenly distributed and of equal size (cuticle Number of species: 12 homogeneous), or unevenly distributed, for example, Type species: Atrochromadora parva (de Man, 1893) enlarged in the lateral body regions or different along the Wieser, 1954 ( = Spiliphera parva de Man, 1893) Authenticated | [email protected] Download Date | 2/15/14 10:06 AM 374 7.12 Order Chromadorida Chitwood, 1933 B A H D C E F G I Fig. 7.92 : Examples of Chromadorinae. A, Atrochromadora obscura (from Wieser 1959, Fig. 66, A – C); B, Chromadora yamadai (from Kito 1978, Fig. 2); C, Chromadorella edmondsoni (from Wieser 1959, Fig. 67 A – D); D, Chromadorina astacicola (from Wieser 1968, Abb. 1); E, Prochromadora oerleji (head and anterior body) and P. erythrophthalma (male tail) (from Gerlach 1951, Abb. 21, 22); F, Prochromadorella obtusidens (from de Coninck & Stekhoven 1933, Fig. 56 – 57); G, H, Punctodora exochopora (from Hopper 1963, Fig. 1 – 3, 5, 9); I, Timmia acuticauda (from Gal ’ tsova 1985, Fig. 19). Authenticated | [email protected] Download Date | 2/15/14 10:06 AM 7.12.1 Family Chromadoridae Filipjev, 1917 375 7.12.1.1.2 Genus Chromadora Bastian, 1865 by a small elevation of the buccal wall or small ventro- (Fig. 7.92 B) sublateral teeth. Precloacal supplements present. Seven marine and one freshwater species. Diagnosis : Chromadorinae. Homogeneous punctated body Number of species: 8 cuticle pattern along the body, with lateral differentiation Type species: Prochromadora megodonta Filipjev, 1922 of larger dots. Transverse slit-like amphideal fovea. Pha- ryngostoma with three solid teeth, the dorsal tooth larger than the ventrosublateral teeth. Ocelli may be present. 7.12.1.1.6 Genus Prochromadorella Micoletzky, 1924 Males usually with cup-shaped precloacal supplements. (Fig. 7.92 F) Differs from very close Atrochromadora by only amphid shape, but the differentiation is not always clear. Marine. ( = Trichromadora Kreis, 1929) Number of species: 31 Diagnosis (after Decraemer & Smol 2006): Chromado- Type species: Chromadora nudicapitata Bastian, 1865 rinae. Heterogeneous punctated body cuticle along the body, lateral dots may be enlarged but not arranged in longitudinal rows. Amphideal fovea transversely oval, 7.12.1.1.3 Genus Chromadorella Filipjev, 1918 obscure, located between the four cephalic setae. Buccal (Fig. 7.92 C) cavity with three solid teeth of about equal size or the two ventrosublateral teeth smaller. Ocelli may be present. Diagnosis : Chromadorinae. Heterogeneous punctated Males with cup-shaped precloacal supplements. Marine. body cuticle along the body, with lateral differentiation in Number of species: 35 longitudinal rows of larger dots. Amphideal fovea trans- Type species: Prochromadorella neapolitana (de Man, verse oval in shape and slightly bent. Pharyngostoma with 1876) Micoletzky, 1924 ( = Chromadora neapolitana de three solid teeth of about equal size. Posterior pharyngeal Man, 1876) bulb not distinctly set off and with plasmatic interruptions that may appear double in some species. Males with five to twelve (mostly five) cup-shaped precloacal supplements. 7.12.1.1.7 Genus Punctodora Filipjev, 1929, Differs from the similar Neochromadora by only structure (Fig. 7.92 G, H) of the pharyngostomal teeth. Marine. Number of species: 16 Diagnosis : Chromadorinae. Cuticle finely striated and finely Type species: Chromadorella filiformis (Bastian, 1865) homogeneously punctated along the body; lateral dots, Filipjev, 1918 ( = Chromadora filiformis Bastian, 1865) some bigger than submedian dots. Amphideal fovea flatte- ned, spiral and situated at the level of dorsal tooth. Stoma with well-developed dorsal tooth and two smaller ventro- 7.12.1.1.4 Genus Chromadorina Filipjev, 1918 sublateral teeth visible at the anterior and posterior border (Fig. 7.92 D) of an indentation, also described as two transverse folds. Ocelli present. Secretory-excretory in head region. Well- Diagnosis : Chromadorinae. Homogeneous cuticle with defined posterior pharyngeal bulb. From one to 18 cup- transverse rows of dots but without obvious lateral differen- shaped preanal supplements. Three species are freshwater, tiation. Amphideal fovea when visible, transverse slit-like. one is brackish and another is freshwater and brackish. Pharyngostoma with three nearly equal solid teeth. Ocelli Number of species: 5 may be present. Cup-shaped precloacal supplements present. Type species: Punctodora ratzeburgensis (Linstow, 1876) Marine and brackish species and four freshwater species. Filipjev, 1929 ( = Chromadora ratzeburgensis Linstow, 1876 Number of species: 26 Type species: Chromadorina obtusa Filipjev, 1918 7.12.1.1.8 Genus Timmia Hopper, 1961 (Fig. 7.92 I) 7.12.1.1.5 Genus Prochromadora Filipjev, 1922 ( = Parachromadora Timm, 1952, homonym to Parachro- (Fig. 7.92 E) madora Micoletzky, 1913) Diagnosis : Chromadorinae. Homogeneous cuticle with Diagnosis : Chromadorinae. Cuticle with homogeneous transverse rows of dots but without lateral differentiation. punctuation, without lateral differentiation. A single large Amphideal fovea slit-like, when visible. Buccal cavity dorsal tooth opposed by a ventrosublateral pit or at most with three teeth of about equal size. A tubular curved Authenticated | [email protected] Download Date | 2/15/14 10:06 AM 376 7.12 Order Chromadorida Chitwood, 1933 supplement immediately preanal in addition to the 7.12.1.2.3 Genus Austranema Inglis, 1969 (Fig. 7.93 C) typical cup-shaped pre-cloacal supplements. Timmia is similar to Chromadorina except for the tubular pre-cloacal Diagnosis : (after Inglis 1969): Euchromadorinae. Cuticle supplement. Marine. complex, marked
Recommended publications
  • Responses of an Abyssal Meiobenthic Community to Short-Term Burial With
    Responses of an abyssal meiobenthic community to short-term burial with crushed nodule particles in the South-East Pacific Lisa Mevenkamp, Katja Guilini, Antje Boetius, Johan De Grave, Brecht Laforce, Dimitri Vandenberghe, Laszlo Vincze, Ann Vanreusel 5 Supplementary Material Figure S1 A) Front view on the sediment-dispensing device, sediment is filled in tubes inside the round plexiglass space B) Top view 10 in open position, tubes are visible as big holes and C) Top view in closed position. Holes in the plexiglass cover ensured escape of all air in the device. 1 Figure S2 Pictures of push cores taken at the end of the experiment from the Control treatment (A) and the Burial treatment (B and C). Through its black colour, the layer of crushed nodule debris is easily distinguishable from the underlying sediment. 5 Figure S3 Example of the crushed nodule substrate. Scale in centimetres. 2 Figure S4 MDS plot of the relative nematode genus composition in each sample of the Control and Burial treatment (BT) per sediment depth layer with overlying contours of significant (SIMPROF test) clusters at a 40 % similarity level. NOD = crushed nodule layer 5 3 Table S1 Mean densities (ind. 10 cm-2, ± standard error)and feeding type group of nematode genera found in both treatments of the experiment combining all depth layers. Feeding Order Family Genus type Control Burial treatment Araeolaimida Axonolaimidae Ascolaimus 1B 0.17 ± 0.17 Comesomatidae Cervonema 1B 3.57 ± 0.81 2.59 ± 0.90 Minolaimus 1A 0.43 ± 0.43 0.29 ± 0.29 Pierrickia 1B 0.42 ± 0.21 0.94
    [Show full text]
  • Species Variability and Connectivity in the Deep Sea: Evaluating Effects of Spatial Heterogeneity and Hydrodynamic Effects]
    Supplementary material for [L Lins], [2016], [Species variability and connectivity in the deep sea: evaluating effects of spatial heterogeneity and hydrodynamic effects] Species variability and connectivity in the deep sea: evaluating effects of spatial heterogeneity and hydrodynamic effects Supplementary material for [L Lins], [2016], [Species variability and connectivity in the deep sea: evaluating effects of spatial heterogeneity and hydrodynamic effects] Supplementary material for [L Lins], [2016], [Species variability and connectivity in the deep sea: evaluating effects of spatial heterogeneity and hydrodynamic effects] Supplementary Figure 1: Partial-18S rDNA phylogeny of Nematoda: Chromadorea. The inferred relationships support a broad taxonomic representation of nematodes in samples from lower shelf and upper slope at the West-Iberian Margin and furthermore indicate neither geographic nor depth clustering between ‘deep’ and ‘shallow’ taxa at any level of the tree topology. Reconstruction of nematode 18S relationships was conducted using Maximum Likelihood. Bootstrap support values were generated using 1000 replicates and are presented as node support. The analyses were performed by means of Randomized Axelerated Maximum Likelihood (RAxML). Branch (line) width represents statistical support. Sequences retrieved from Genbank are represented by their Genbank Accession numbers. Orders and Families are annotated as branch labels. PERMANOVA table of results (2-factor design) Source df SS MS Pseudo-F P(perm) Unique perms Depth 1 105.29
    [Show full text]
  • Revision of the Genus Cobbionema Filipjev, 1922 (Nematoda, Chromadorida, Selachinematidae)
    European Journal of Taxonomy 702: 1–34 ISSN 2118-9773 https://doi.org/10.5852/ejt.2020.702 www.europeanjournaloftaxonomy.eu 2020 · Ahmed M. et al. This work is licensed under a Creative Commons Attribution License (CC BY 4.0). Research article urn:lsid:zoobank.org:pub:B4DDC9C7-69F4-40D1-A424-27D04331D1F8 Revision of the genus Cobbionema Filipjev, 1922 (Nematoda, Chromadorida, Selachinematidae) Mohammed AHMED 1,*, Sven BOSTRÖM 2 & Oleksandr HOLOVACHOV 3 1,2,3 Department of Zoology, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden. * Corresponding author: [email protected] 2 Email: [email protected] 3 Email: [email protected] 1 urn:lsid:zoobank.org:author:C6B054C8-6794-445F-8483-177FB3853954 2 urn:lsid:zoobank.org:author:528300CC-D0F0-4097-9631-6C5F75922799 3 urn:lsid:zoobank.org:author:89D30ED8-CFD2-42EF-B962-30A13F97D203 Abstract. This paper reports on the genus Cobbionema Filipjev, 1922 in Sweden with the description of four species and a revision of the genus. Cobbionema acrocerca Filipjev, 1922 is relatively small in size, with a tail that has a conical proximal and a digitate distal section. Cobbionema cylindrolaimoides Schuurmans Stekhoven, 1950 is similar to C. acrocerca in most characters except having a larger body size and heavily cuticularized mandibles. Cobbionema brevispicula sp. nov. is characterised by short spicules and a conoid tail. Cobbionema acuminata sp. nov. is characterised by a long two-part spicule, a conical tail and three (one mid dorsal and two ventrosublateral) sharply pointed tines in the anterior chamber of the stoma that are located more anterior than in all the other species.
    [Show full text]
  • 2018 Bibliography of Taxonomic Literature
    Bibliography of taxonomic literature for marine and brackish water Fauna and Flora of the North East Atlantic. Compiled by: Tim Worsfold Reviewed by: David Hall, NMBAQCS Project Manager Edited by: Myles O'Reilly, Contract Manager, SEPA Contact: [email protected] APEM Ltd. Date of Issue: February 2018 Bibliography of taxonomic literature 2017/18 (Year 24) 1. Introduction 3 1.1 References for introduction 5 2. Identification literature for benthic invertebrates (by taxonomic group) 5 2.1 General 5 2.2 Protozoa 7 2.3 Porifera 7 2.4 Cnidaria 8 2.5 Entoprocta 13 2.6 Platyhelminthes 13 2.7 Gnathostomulida 16 2.8 Nemertea 16 2.9 Rotifera 17 2.10 Gastrotricha 18 2.11 Nematoda 18 2.12 Kinorhyncha 19 2.13 Loricifera 20 2.14 Echiura 20 2.15 Sipuncula 20 2.16 Priapulida 21 2.17 Annelida 22 2.18 Arthropoda 76 2.19 Tardigrada 117 2.20 Mollusca 118 2.21 Brachiopoda 141 2.22 Cycliophora 141 2.23 Phoronida 141 2.24 Bryozoa 141 2.25 Chaetognatha 144 2.26 Echinodermata 144 2.27 Hemichordata 146 2.28 Chordata 146 3. Identification literature for fish 148 4. Identification literature for marine zooplankton 151 4.1 General 151 4.2 Protozoa 152 NMBAQC Scheme – Bibliography of taxonomic literature 2 4.3 Cnidaria 153 4.4 Ctenophora 156 4.5 Nemertea 156 4.6 Rotifera 156 4.7 Annelida 157 4.8 Arthropoda 157 4.9 Mollusca 167 4.10 Phoronida 169 4.11 Bryozoa 169 4.12 Chaetognatha 169 4.13 Echinodermata 169 4.14 Hemichordata 169 4.15 Chordata 169 5.
    [Show full text]
  • Free-Living Marine Nematodes from San Antonio Bay (Río Negro, Argentina)
    A peer-reviewed open-access journal ZooKeys 574: 43–55Free-living (2016) marine nematodes from San Antonio Bay (Río Negro, Argentina) 43 doi: 10.3897/zookeys.574.7222 DATA PAPER http://zookeys.pensoft.net Launched to accelerate biodiversity research Free-living marine nematodes from San Antonio Bay (Río Negro, Argentina) Gabriela Villares1, Virginia Lo Russo1, Catalina Pastor de Ward1, Viviana Milano2, Lidia Miyashiro3, Renato Mazzanti3 1 Laboratorio de Meiobentos LAMEIMA-CENPAT-CONICET, Boulevard Brown 2915, U9120ACF, Puerto Madryn, Argentina 2 Universidad Nacional de la Patagonia San Juan Bosco, sede Puerto Madryn. Boulevard Brown 3051, U9120ACF, Puerto Madryn, Argentina 3Centro de Cómputos CENPAT-CONICET, Boulevard Brown 2915, U9120ACF, Puerto Madryn, Argentina Corresponding author: Gabriela Villares ([email protected]) Academic editor: H-P Fagerholm | Received 18 November 2015 | Accepted 11 February 2016 | Published 28 March 2016 http://zoobank.org/3E8B6DD5-51FA-499D-AA94-6D426D5B1913 Citation: Villares G, Lo Russo V, Pastor de Ward C, Milano V, Miyashiro L, Mazzanti R (2016) Free-living marine nematodes from San Antonio Bay (Río Negro, Argentina). ZooKeys 574: 43–55. doi: 10.3897/zookeys.574.7222 Abstract The dataset of free-living marine nematodes of San Antonio Bay is based on sediment samples collected in February 2009 during doctoral theses funded by CONICET grants. A total of 36 samples has been taken at three locations in the San Antonio Bay, Santa Cruz Province, Argentina on the coastal littoral at three tidal levels. This presents a unique and important collection for benthic biodiversity assessment of Patagonian nematodes as this area remains one of the least known regions.
    [Show full text]
  • A Review of the Family Ceramonematidae (Marine Free
    CO Zoological Institute, St.Petersburg, 2002 A review of thefamily Ceramonematidae (marine free-living nematodes), withdescriptions of nine species fromthe White Sea A.V. Tches1Jnov & M.A. Miljutina Tchesunov, A.V. & Miljutina, M.A. 2002. A review of the family Ceramonematidae (ma­ rine free-living nematodes), with descriptions of nine species from the White Sea. ZoosystematicaRossica, 11(1): 3-39. Morphology, biology and taxonomy of the nematode family Ceramonematidae Cobb, 1933 are summarised and reviewed. Plesiomorph-apomorph polarities of cuticle sculp­ ture, cephalic sensilla pattern, amphid shape are revealed with use of the out-group com­ parison and ontogenetic observations. The genera Ceramonema and Pselionema arc dis­ tinguished by the most apomorph character states; both genera combined comprise the greatest number of species, of the widest overall ecological range. The other ceramonematid genera display more plesiomorph character states and contain much less species; these are strictly confined to coarse sands. Ceramonematidae are related to the families Diplopeltoididae sensu Tchesunov (I 990) and Tarvaiidae. The family Ceramonematidae consists of two subfamilies: Ceramonematinae with the genera Ceramonema (= Ceramo­ nemoides, = Cyttaronema), Dasynemel/a (= Leptodasynemella), Dasynemoides (= Dasynemelloides), Metadasynemella (= Dictyonemella), and Metadasynemoides, and Pselionematinae with the genera Pterygonema and Pselionema (= Pselionemoides). Modi­ fied diagnoses of the family, subfamilies and genera are given. Separation of higher ceramonematid taxa is based largely on features of body cuticle annulation as well as on anterior sensilla pattern, while cephalic ratio and finer details of body annulation are important forspecies discrimination. Annotated lists of species are given for each genus. The genus Ceramonema is subdivided into two subgenera, Ceramonema s.
    [Show full text]
  • Morphology of Obligate Ectosymbionts Reveals Paralaxus Gen. Nov., a New
    bioRxiv preprint doi: https://doi.org/10.1101/728105; this version posted August 7, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Harald Gruber-Vodicka 2 Max Planck Institute for Marine Microbiology, Celsiusstrasse 1; 28359 Bremen, 3 Germany, +49 421 2028 825, [email protected] 4 5 Morphology of obligate ectosymbionts reveals Paralaxus gen. nov., a 6 new circumtropical genus of marine stilbonematine nematodes 7 8 Florian Scharhauser1*, Judith Zimmermann2*, Jörg A. Ott1, Nikolaus Leisch2 and Harald 9 Gruber-Vodicka2 10 11 1Department of Limnology and Bio-Oceanography, University of Vienna, Althanstrasse 12 14, A-1090 Vienna, Austria 2 13 Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, 14 Germany 15 16 *Contributed equally 17 18 19 20 Keywords: Paralaxus, thiotrophic symbiosis, systematics, ectosymbionts, molecular 21 phylogeny, cytochrome oxidase subunit I, 18S rRNA, 16S rRNA, 22 23 24 Running title: “Ectosymbiont morphology reveals new nematode genus“ 25 Scharhauser et al. 26 27 bioRxiv preprint doi: https://doi.org/10.1101/728105; this version posted August 7, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Scharhauser et al. 2 28 Abstract 29 Stilbonematinae are a subfamily of conspicuous marine nematodes, distinguished by a 30 coat of sulphur-oxidizing bacterial ectosymbionts on their cuticle.
    [Show full text]
  • First Report of Ptycholaimellus Macrodentatus (Timm, 1961) (Nematoda: Chromadorida) from Indian Coast
    Rec. zool. Surv. India: Vol. 117(3)/ 274-281, 2017 ISSN (Online) : (Applied for) DOI: 10.26515/rzsi/v117/i3/2017/120970 ISSN (Print) : 0375-1511 First report of Ptycholaimellus macrodentatus (Timm, 1961) (Nematoda: Chromadorida) from Indian coast Tridip Kumar Datta1, Susanta Kumar Chakraborty1 and Anil Mohapatra2* 1Department of Zoology, Vidyasagar University, Midnapore (West), India 2Marine Aquarium and Regional Centre, Zoological Survey of India, Digha, West Bengal, India; [email protected] Abstract Ptycholaimellus macrodentatus The first reporting of from Indian coast is being made given due importance on the comparative morphometrics. The specimens under the present study have been found to attain a maximum length up to 1111 µm, are endowed with a long s-shaped dorsal tooth, collar enclosing the labial rugae, a groove at the base and double oesophageal bulb. All the specimens studied had a long ventral gland originated far behind of the oesophagus and opened intoKeywords a small slit.: This species was previously reported from the coastal Bangladesh and off the Kenyan water. Bay of Bengal, Hypodontolaiminae, Intertidal, Tajpur Introduction Panduriphrynx etc. by having a collar enclosing the labial rugae, a groove at the base of that collar and a large Benthic fauna have long been studied for monitoring s-shaped dorsal tooth. Jensen and Nehring (1992) also marine ecosystems (Gesteira et al., 2003; Sun et al., stated that the position of the ventral gland opening and 2014). Meiofauna, and in particular free-living marine the size of the gland could be additional generic characters nematodes, form an important component of the benthic but required further investigation.
    [Show full text]
  • Nematoda, Chromadoridae) from Dr Theodor Mortensen’S Pacific Expedition 1914–16 with an Identification Key to the Genus
    Zootaxa 3881 (6): 501–512 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3881.6.1 http://zoobank.org/urn:lsid:zoobank.org:pub:0668CE39-F233-4ADC-BCEA-95C7EB8747D5 A new species of Parapinnanema (Nematoda, Chromadoridae) from Dr Theodor Mortensen’s Pacific Expedition 1914–16 with an identification key to the genus FEDERICA SEMPRUCCI1,3 & MARTIN V. SØRENSEN2 1Dipartimento di Scienze della Terra, della Vita e dell'Ambiente (DiSTeVA), Università di Urbino, loc. Crocicchia, 61029 Urbino, Italy. E-mail: [email protected] 2Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen K, Denmark. E-mail: [email protected] 3Corresponding author Abstract A new species from the family Chromadoridae is described from samples collected during Dr Mortensen’s Pacific Expe- dition 1914–16 to Honolulu, Hawaii. Parapinnanema hawaiiensis sp. nov. is characterized by a low c’ ratio and especially by a peculiar complex morphology of the median part of the gubernaculum. An updated and modified key to all the valid species of Parapinnanema is proposed. Key words: Chromadorida, Euchromadorinae, Hawaii, taxonomy, marine nematodes Introduction The family Chromadoridae, generally marine and represented by about 410 species (Tchesunov 2014), has been recorded worldwide, and their abundance appears to be positively correlated with an increase in sediment grain size (Heip et al. 1985). Chromadoridae are currently divided into five subfamilies: Chromadorinae, Euchromadorinae, Harpagonchinae, Hypodontolaiminae and Spilipherinae. Euchromadorinae accommodates 12 genera and more than 60 species (Tchesunov 2014).
    [Show full text]
  • Two New Genera and Five New Species of Selachinematidae (Nematoda, Chromadorida) from the Continental Slope of New Zealand
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: European Journal of Taxonomy Jahr/Year: 2013 Band/Volume: 0063 Autor(en)/Author(s): Leduc Daniel Artikel/Article: Two new genera and fi ve new species of Selachinematidae (Nematoda, Chromadorida) from the continental slope of New Zealand 1-32 © European Journal of Taxonomy; download unter http://www.europeanjournaloftaxonomy.eu; www.biologiezentrum.at European Journal of Taxonomy 63: 1-32 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2013.63 www.europeanjournaloftaxonomy.eu 2013 · Leduc D. This work is licensed under a Creative Commons Attribution 3.0 License. Research article urn:lsid:zoobank.org:pub:BB33641C-6FAF-4D2E-93FB-C4951F7C058C Two new genera and fi ve new species of Selachinematidae (Nematoda, Chromadorida) from the continental slope of New Zealand Daniel LEDUC National Institute of Water and Atmospheric Research (NIWA), Private Bag 14-901, Kilbirnie, Wellington, New Zealand E-mail: [email protected] urn:lsid:zoobank.org:author:9393949F-3426-4EE2-8BDE-DEFFACE3D9BC Abstract. Two new genera and fi ve new species of Selachinematidae are described from the New Zealand upper continental slope (350-1240 m depth). Synonchiella rotundicauda sp. nov. is characterised by cephalic setae 0.25 cbd long, mandibles each with two pairs of hooks and two wing-like projections laterally, eight cup-shaped pre-cloacal supplements and short rounded tail. Pseudocheironchus gen. nov. is similar to Cheironchus, but differs from the latter in having a cuticle without lateral differentiation, cephalic setae only slightly longer than the outer labial sensillae, and a posterior buccal cavity with three equal mandibles.
    [Show full text]
  • (Stsm) Scientific Report
    SHORT TERM SCIENTIFIC MISSION (STSM) SCIENTIFIC REPORT This report is submitted for approval by the STSM applicant to the STSM coordinator Action number: CA15219-45333 STSM title: Free-living marine nematodes from the eastern Mediterranean deep sea - connecting COI and 18S rRNA barcodes to structure and function STSM start and end date: 06/02/2020 to 18/3/2020 (short than the planned two months due to the Co-Vid 19 virus pandemic) Grantee name: Zoya Garbuzov PURPOSE OF THE STSM: My Ph.D. thesis is devoted to the population ecology of free-living nematodes inhabiting deep-sea soft substrates of the Mediterranean Levantine Basin. The success of the study largely depends on my ability to accurately identify collected nematodes at the species level, essential for appropriate environmental analysis. Morphological identification of nematodes at the species level is fraught with difficulties, mainly because of their relatively simple body shape and the absence of distinctive morphological characters. Therefore, a combination of morphological identification to genus level and the use of molecular markers to reach species identification is assumed to provide a better distinction of species in this difficult to identify group. My STSM host, Dr. Nikolaos Lampadariou, is an experienced taxonomist and nematode ecologist. In addition, I will have access to the molecular laboratory of Dr. Panagiotis Kasapidis. Both researchers are based at the Hellenic Center for Marine Research (HCMR) in Crete and this STSM is aimed at combining morphological taxonomy, under the supervision of Dr. Lampadariou, with my recently acquired experience in nematode molecular taxonomy for relating molecular identifiers to nematode morphology.
    [Show full text]
  • Zootaxa, Two New Nematode Species from Saldanha Bay, South Africa
    Zootaxa 2504: 20–30 (2010) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2010 · Magnolia Press ISSN 1175-5334 (online edition) Two new nematode species from Saldanha Bay, South Africa: Perepsilonema benguelae sp. nov. and Leptepsilonema saldanhae sp. nov. (Desmodorida, Epsilonematidae) MARTIN G. J. HENDRICKS1 & MARK J. GIBBONS Department of Biodiversity and Conservation Biology, University of the Western Cape, P/Bag X17 Bellville, 7535, Cape Town, Republic of South Africa 1 Corresponding author: [email protected], telephone: ++27 (21) 9592041, fax: ++27 (21) 9591237 Abstract Perepsilonema benguelae sp. nov. and Leptepsilonema saldanhae sp. nov. are described and illustrated from coarse sand sediments in Saldanha Bay, along the west coast of South Africa. Perepsilonema benguelae sp. nov. is characterised by a large swollen body in the genital region, the annuli are not clearly orientated into anteriorly and posteriorly directed margins and copulatory thorns are restricted to three pairs in the precloacal region. In Leptepsilonema saldanhae sp. nov. the somatic setae in the pharyngeal region are very long and the first ambulatory setae of the external subventral row are short. Other distinguishing features include the shape of the amphidial fovea and the copulatory apparatus, and the presence of six ventro-lateral copulatory thorns around the cloaca. These descriptions are the first for the family Epsilonematidae from the west coast of South Africa. Key words: Description, morphology, Africa, Benguela Current, marine, Nematoda, taxonomy Introduction Although many studies have been conducted on the ecology of sandy shores around South Africa (eg Brown & McLachlan 1990), our understanding of the diversity of meiofauna, especially nematodes, is extremely limited.
    [Show full text]