Morphology of Obligate Ectosymbionts Reveals Paralaxus Gen. Nov., a New

Total Page:16

File Type:pdf, Size:1020Kb

Morphology of Obligate Ectosymbionts Reveals Paralaxus Gen. Nov., a New bioRxiv preprint doi: https://doi.org/10.1101/728105; this version posted August 7, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Harald Gruber-Vodicka 2 Max Planck Institute for Marine Microbiology, Celsiusstrasse 1; 28359 Bremen, 3 Germany, +49 421 2028 825, [email protected] 4 5 Morphology of obligate ectosymbionts reveals Paralaxus gen. nov., a 6 new circumtropical genus of marine stilbonematine nematodes 7 8 Florian Scharhauser1*, Judith Zimmermann2*, Jörg A. Ott1, Nikolaus Leisch2 and Harald 9 Gruber-Vodicka2 10 11 1Department of Limnology and Bio-Oceanography, University of Vienna, Althanstrasse 12 14, A-1090 Vienna, Austria 2 13 Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, 14 Germany 15 16 *Contributed equally 17 18 19 20 Keywords: Paralaxus, thiotrophic symbiosis, systematics, ectosymbionts, molecular 21 phylogeny, cytochrome oxidase subunit I, 18S rRNA, 16S rRNA, 22 23 24 Running title: “Ectosymbiont morphology reveals new nematode genus“ 25 Scharhauser et al. 26 27 bioRxiv preprint doi: https://doi.org/10.1101/728105; this version posted August 7, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Scharhauser et al. 2 28 Abstract 29 Stilbonematinae are a subfamily of conspicuous marine nematodes, distinguished by a 30 coat of sulphur-oxidizing bacterial ectosymbionts on their cuticle. As most nematodes, 31 the worm hosts have a simple anatomy and few taxonomically informative characters, 32 and this has resulted in numerous taxonomic reassignments and synonymizations. 33 Recent studies using a combination of morphological and molecular traits have helped 34 to improve the taxonomy of Stilbonematinae but also raised questions on the validity 35 of several genera. Here we describe a new circumtropically distributed genus 36 Paralaxus (Stilbonematinae) with three species: Paralaxus cocos sp. nov., 37 P. bermudensis sp. nov. and P. columbae sp. nov.. We used single worm metagenomes 38 to generate host 18S rRNA and cytochrome oxidase I (COI) as well as symbiont 39 16S rRNA gene sequences. Intriguingly, COI alignments and primer matching analyses 40 suggest that the COI is not suitable for PCR-based barcoding approaches in 41 Stilbonematinae as the genera have a highly diverse base composition and no 42 conserved primer sites. The phylogenetic analyses of all three gene sets however 43 confirm the morphological assignments and support the erection of the new genus 44 Paralaxus as well as corroborate the status of the other stilbonematine genera. 45 Paralaxus most closely resembles the stilbonematine genus Laxus in overlapping sets 46 of diagnostic features but can be distinguished from Laxus by the morphology of the 47 genus-specific symbiont coat. Our re-analyses of key parameters of the symbiont coat 48 morphology as character for all Stilbonematinae genera show that with amended 49 descriptions, including the coat, highly reliable genus assignments can be obtained. bioRxiv preprint doi: https://doi.org/10.1101/728105; this version posted August 7, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Scharhauser et al. 3 50 Introduction 51 The identification of many nematode genera and species is difficult based on 52 morphological characters alone (Sudhaus & Kiontke 2007, de-León & Nadler 2010, 53 Derycke et al. 2008, Palomares-Rius et al. 2014). A prime example for this problem are 54 the Stilbonematinae, a subfamily of the Desmodoridae that have experienced several 55 changes in the classification of species and even genera in the past (Tchesunov 2013; 56 Ott et al. 2014). The exclusively marine Stilbonematinae are common members of the 57 interstitial meiofauna in sheltered intertidal and subtidal porous sediments and have 58 been found worldwide (Ott et al. 2004, Tchesunov et al. 2013). Their diversity and 59 abundances are highest in subtropical and tropical shallow-water sands, but some 60 species were also described from higher latitudes (e.g. Gerlach 1950, Wieser 1960, 61 Platt & Zhang 1982, Riemann et al. 2003, Tchesunov 2012), deep-sea sediments (Van 62 Gaever et al. 2004, Tchesunov et al. 2012, Leduc 2013), near shallow hydrothermal 63 vents (Kamenev et al. 1993, Thiermann et al. 1997) and methane seeps (Dando et al. 64 1995). 65 To date, a total of 10 different stilbonematine nematode genera and more than 50 66 different species are described (reviewed by Tchesunov 2013; Leduc 2013, Armenteros 67 et al. 2014b, Ott et al. 2014a,b, Leduc and Sinniger 2018). Most species and genera still 68 lack molecular data, but recent taxonomic work has started to integrate molecular 69 data using the 18S rRNA gene (18S) (Ott et al. 2014a, b; Armenteros et al. 2014ab; 70 Leduc and Zhao 2016, Leduc and Sinniger 2018) and the mitochondrial cytochrome 71 oxidase subunit I (COI) gene (Armenteros et al. 2014a, b). The phylogenetic signal of 72 the two marker genes was however not consistent and called morphological genus and 73 species identifications into question (Armenteros et al. 2014b). While the monophyly 74 of the subfamily Stilbonematinae has strong support based on 18S data (Kampfer et al. 75 1998, Bayer et al. 2009, van Megen et al. 2009, Ott et al 2014a and b; Leduc & Zhao 76 2016), it was questioned in a recent study by Armenteros et al. (2014b) which used 77 both 18S and COI. 78 bioRxiv preprint doi: https://doi.org/10.1101/728105; this version posted August 7, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Scharhauser et al. 4 79 A trait that unites all stilbonematine nematodes is the conspicuous ectosymbiosis with 80 sulphur-oxidizing Gammaproteobacteria that cover major parts of the cuticle 81 (reviewed by Ott et al. 2004). Stilbonematine symbionts have diverse morphologies, 82 including rod, coccus, coccobacillus, filament, corn-kernel or crescent shapes, and each 83 host species harbours a single morphotype (Ott & Novak 1989, Polz et al. 1992; Polz et 84 al. 1994; Ott et al., 2004; Bayer et al. 2009, Pende et al 2014, Ott et al. 2014a, b). In 85 phylogenetic analyses of the symbiont 16S rRNA gene (16S) sequences, all 86 stilbonematine symbionts fall into a monophyletic clade of Gammaproteobacteria 87 related to Chromatiaceae, which has been described as Candidatus Thiosymbion (from 88 here on ‘Thiosymbion’) (Bayer et al. 2009, Bulgheresi et al. 2011, Heindl et al. 2011, 89 Zimmermann et al. 2016). Based on phylogenetic analyses of host 18S and symbiont 90 16S sequences closely related stilbonematine nematode species of the same genus 91 consistently harbour closely related and genus specific ‘Thiosymbion’ symbionts (Ott et 92 al. 2004, Zimmermann et al. 2016). ‘Thiosymbion’ encompasses not only the 93 ectosymbionts of stilbonematine nematodes, but also the primary symbionts of gutless 94 phallodriline oligochaetes and siphonolaimid nematodes (Zimmermann et al. 2016). 95 Comparative analyses of stilbonematine nematodes and their symbionts showed a 96 high degree of phylogenetic congruence that indicates a long-term co-diversification 97 between ‘Thiosymbion’ and the Stilbonematinae (Zimmermann et al. 2016). 98 Recent 18S-based phylogenetic analyses suggested a novel, morphologically 99 uncharacterized stilbonematine genus from the Caribbean Sea (Belize) and the 100 Australian Great Barrier Reef (Heron Island) (Zimmermann et al. 2016). The genus level 101 of this clade was supported by the distinct 16S sequences of their symbionts that also 102 formed a new phylogenetic clade in the study. Here we combine morphological and 103 molecular data to describe this recently detected host clade as ‘Paralaxus’ gen. nov.. 104 We use single worm metagenomes to provide host 18S and COI gene sequences as 105 well as symbiont 16S sequences from nine Paralaxus specimens, and 20 additional 106 specimens covering six stilbonematine genera. We place Paralaxus in a unified 107 taxonomy of Stilbonematinae and formally describe the new genus Paralaxus with a 108 Caribbean type species P. cocos sp. nov. In addition, we describe two new species, bioRxiv preprint doi: https://doi.org/10.1101/728105; this version posted August 7, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Scharhauser et al. 5 109 P. bermudensis sp. nov. and P. columbae sp. nov. from Bermuda and Florida, and 110 report on members of this new genus from localities in the Western and Central Pacific 111 Ocean. While characterizing the key anatomical features of Paralaxus, we identified 112 the high taxonomic value of its symbiont coat. We extend this concept and evaluate 113 coat and symbiont morphology as additional traits for all stilbonematine genera. 114 In addition, we substantially improve the molecular dataset of Stilbonematinae full- 115 length 18S and COI marker gene sequences to answer the following questions: (1) Are 116 Stilbonematinae monophyletic? (2) At which taxonomic level are 18S and COI valuable 117 phylogenetic markers for Stilbonematinae? (3) Can we find suitable COI PCR priming 118 sites that are conserved across the subfamily? 119 bioRxiv preprint doi: https://doi.org/10.1101/728105; this version posted August 7, 2019.
Recommended publications
  • Biological and Chemical Diversity of Bacteria Associated with a Marine Flatworm
    Article Biological and Chemical Diversity of Bacteria Associated with a Marine Flatworm Hui-Na Lin 1,2,†, Kai-Ling Wang 1,3,†, Ze-Hong Wu 4,5, Ren-Mao Tian 6, Guo-Zhu Liu 7 and Ying Xu 1,* 1 Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; [email protected] (H.-N.L.); [email protected] (K.-L.W.) 2 School of Life Sciences, Xiamen University, Xiamen 361102, China 3 Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China 4 The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China; [email protected] 5 Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China 6 Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China; [email protected] 7 HEC Research and Development Center, HEC Pharm Group, Dongguan 523871, China; [email protected] * Correspondence: [email protected]; Tel.: +86-755-26958849; Fax: +86-755-26534274 † These authors contributed equally to this work. Received: 20 July 2017; Accepted: 29 August 2017; Published: 1 September 2017 Abstract: The aim of this research is to explore the biological and chemical diversity of bacteria associated with a marine flatworm Paraplanocera sp., and to discover the bioactive metabolites from culturable strains. A total of 141 strains of bacteria including 45 strains of actinomycetes and 96 strains of other bacteria were isolated, identified and fermented on a small scale.
    [Show full text]
  • Species Variability and Connectivity in the Deep Sea: Evaluating Effects of Spatial Heterogeneity and Hydrodynamic Effects]
    Supplementary material for [L Lins], [2016], [Species variability and connectivity in the deep sea: evaluating effects of spatial heterogeneity and hydrodynamic effects] Species variability and connectivity in the deep sea: evaluating effects of spatial heterogeneity and hydrodynamic effects Supplementary material for [L Lins], [2016], [Species variability and connectivity in the deep sea: evaluating effects of spatial heterogeneity and hydrodynamic effects] Supplementary material for [L Lins], [2016], [Species variability and connectivity in the deep sea: evaluating effects of spatial heterogeneity and hydrodynamic effects] Supplementary Figure 1: Partial-18S rDNA phylogeny of Nematoda: Chromadorea. The inferred relationships support a broad taxonomic representation of nematodes in samples from lower shelf and upper slope at the West-Iberian Margin and furthermore indicate neither geographic nor depth clustering between ‘deep’ and ‘shallow’ taxa at any level of the tree topology. Reconstruction of nematode 18S relationships was conducted using Maximum Likelihood. Bootstrap support values were generated using 1000 replicates and are presented as node support. The analyses were performed by means of Randomized Axelerated Maximum Likelihood (RAxML). Branch (line) width represents statistical support. Sequences retrieved from Genbank are represented by their Genbank Accession numbers. Orders and Families are annotated as branch labels. PERMANOVA table of results (2-factor design) Source df SS MS Pseudo-F P(perm) Unique perms Depth 1 105.29
    [Show full text]
  • Revision of the Genus Cobbionema Filipjev, 1922 (Nematoda, Chromadorida, Selachinematidae)
    European Journal of Taxonomy 702: 1–34 ISSN 2118-9773 https://doi.org/10.5852/ejt.2020.702 www.europeanjournaloftaxonomy.eu 2020 · Ahmed M. et al. This work is licensed under a Creative Commons Attribution License (CC BY 4.0). Research article urn:lsid:zoobank.org:pub:B4DDC9C7-69F4-40D1-A424-27D04331D1F8 Revision of the genus Cobbionema Filipjev, 1922 (Nematoda, Chromadorida, Selachinematidae) Mohammed AHMED 1,*, Sven BOSTRÖM 2 & Oleksandr HOLOVACHOV 3 1,2,3 Department of Zoology, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden. * Corresponding author: [email protected] 2 Email: [email protected] 3 Email: [email protected] 1 urn:lsid:zoobank.org:author:C6B054C8-6794-445F-8483-177FB3853954 2 urn:lsid:zoobank.org:author:528300CC-D0F0-4097-9631-6C5F75922799 3 urn:lsid:zoobank.org:author:89D30ED8-CFD2-42EF-B962-30A13F97D203 Abstract. This paper reports on the genus Cobbionema Filipjev, 1922 in Sweden with the description of four species and a revision of the genus. Cobbionema acrocerca Filipjev, 1922 is relatively small in size, with a tail that has a conical proximal and a digitate distal section. Cobbionema cylindrolaimoides Schuurmans Stekhoven, 1950 is similar to C. acrocerca in most characters except having a larger body size and heavily cuticularized mandibles. Cobbionema brevispicula sp. nov. is characterised by short spicules and a conoid tail. Cobbionema acuminata sp. nov. is characterised by a long two-part spicule, a conical tail and three (one mid dorsal and two ventrosublateral) sharply pointed tines in the anterior chamber of the stoma that are located more anterior than in all the other species.
    [Show full text]
  • Phylogenetic and Functional Characterization of Symbiotic Bacteria in Gutless Marine Worms (Annelida, Oligochaeta)
    Phylogenetic and functional characterization of symbiotic bacteria in gutless marine worms (Annelida, Oligochaeta) Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften -Dr. rer. nat.- dem Fachbereich Biologie/Chemie der Universität Bremen vorgelegt von Anna Blazejak Oktober 2005 Die vorliegende Arbeit wurde in der Zeit vom März 2002 bis Oktober 2005 am Max-Planck-Institut für Marine Mikrobiologie in Bremen angefertigt. 1. Gutachter: Prof. Dr. Rudolf Amann 2. Gutachter: Prof. Dr. Ulrich Fischer Tag des Promotionskolloquiums: 22. November 2005 Contents Summary ………………………………………………………………………………….… 1 Zusammenfassung ………………………………………………………………………… 2 Part I: Combined Presentation of Results A Introduction .…………………………………………………………………… 4 1 Definition and characteristics of symbiosis ...……………………………………. 4 2 Chemoautotrophic symbioses ..…………………………………………………… 6 2.1 Habitats of chemoautotrophic symbioses .………………………………… 8 2.2 Diversity of hosts harboring chemoautotrophic bacteria ………………… 10 2.2.1 Phylogenetic diversity of chemoautotrophic symbionts …………… 11 3 Symbiotic associations in gutless oligochaetes ………………………………… 13 3.1 Biogeography and phylogeny of the hosts …..……………………………. 13 3.2 The environment …..…………………………………………………………. 14 3.3 Structure of the symbiosis ………..…………………………………………. 16 3.4 Transmission of the symbionts ………..……………………………………. 18 3.5 Molecular characterization of the symbionts …..………………………….. 19 3.6 Function of the symbionts in gutless oligochaetes ..…..…………………. 20 4 Goals of this thesis …….…………………………………………………………..
    [Show full text]
  • Anaerobic Sulfur Oxidation Underlies Adaptation of a Chemosynthetic Symbiont
    bioRxiv preprint doi: https://doi.org/10.1101/2020.03.17.994798; this version posted January 28, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Anaerobic sulfur oxidation underlies adaptation of a chemosynthetic symbiont 2 to oxic-anoxic interfaces 3 4 Running title: chemosynthetic ectosymbiont’s response to oxygen 5 6 Gabriela F. Paredes1, Tobias Viehboeck1,2, Raymond Lee3, Marton Palatinszky2, 7 Michaela A. Mausz4, Siegfried Reipert5, Arno Schintlmeister2,6, Andreas Maier7, Jean- 8 Marie Volland1,*, Claudia Hirschfeld8, Michael Wagner2,9, David Berry2,10, Stephanie 9 Markert8, Silvia Bulgheresi1,# and Lena König1# 10 11 1 University of Vienna, Department of Functional and Evolutionary Ecology, 12 Environmental Cell Biology Group, Vienna, Austria 13 14 2 University of Vienna, Center for Microbiology and Environmental Systems Science, 15 Division of Microbial Ecology, Vienna, Austria 16 17 3 Washington State University, School of Biological Sciences, Pullman, WA, USA 18 19 4 University of Warwick, School of Life Sciences, Coventry, UK 20 21 5 University of Vienna, Core Facility Cell Imaging and Ultrastructure Research, Vienna, 22 Austria 23 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.03.17.994798; this version posted January 28, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • Free-Living Marine Nematodes from San Antonio Bay (Río Negro, Argentina)
    A peer-reviewed open-access journal ZooKeys 574: 43–55Free-living (2016) marine nematodes from San Antonio Bay (Río Negro, Argentina) 43 doi: 10.3897/zookeys.574.7222 DATA PAPER http://zookeys.pensoft.net Launched to accelerate biodiversity research Free-living marine nematodes from San Antonio Bay (Río Negro, Argentina) Gabriela Villares1, Virginia Lo Russo1, Catalina Pastor de Ward1, Viviana Milano2, Lidia Miyashiro3, Renato Mazzanti3 1 Laboratorio de Meiobentos LAMEIMA-CENPAT-CONICET, Boulevard Brown 2915, U9120ACF, Puerto Madryn, Argentina 2 Universidad Nacional de la Patagonia San Juan Bosco, sede Puerto Madryn. Boulevard Brown 3051, U9120ACF, Puerto Madryn, Argentina 3Centro de Cómputos CENPAT-CONICET, Boulevard Brown 2915, U9120ACF, Puerto Madryn, Argentina Corresponding author: Gabriela Villares ([email protected]) Academic editor: H-P Fagerholm | Received 18 November 2015 | Accepted 11 February 2016 | Published 28 March 2016 http://zoobank.org/3E8B6DD5-51FA-499D-AA94-6D426D5B1913 Citation: Villares G, Lo Russo V, Pastor de Ward C, Milano V, Miyashiro L, Mazzanti R (2016) Free-living marine nematodes from San Antonio Bay (Río Negro, Argentina). ZooKeys 574: 43–55. doi: 10.3897/zookeys.574.7222 Abstract The dataset of free-living marine nematodes of San Antonio Bay is based on sediment samples collected in February 2009 during doctoral theses funded by CONICET grants. A total of 36 samples has been taken at three locations in the San Antonio Bay, Santa Cruz Province, Argentina on the coastal littoral at three tidal levels. This presents a unique and important collection for benthic biodiversity assessment of Patagonian nematodes as this area remains one of the least known regions.
    [Show full text]
  • Chemosynthetic Symbiont with a Drastically Reduced Genome Serves As Primary Energy Storage in the Marine Flatworm Paracatenula
    Chemosynthetic symbiont with a drastically reduced genome serves as primary energy storage in the marine flatworm Paracatenula Oliver Jäcklea, Brandon K. B. Seaha, Målin Tietjena, Nikolaus Leischa, Manuel Liebekea, Manuel Kleinerb,c, Jasmine S. Berga,d, and Harald R. Gruber-Vodickaa,1 aMax Planck Institute for Marine Microbiology, 28359 Bremen, Germany; bDepartment of Geoscience, University of Calgary, AB T2N 1N4, Canada; cDepartment of Plant & Microbial Biology, North Carolina State University, Raleigh, NC 27695; and dInstitut de Minéralogie, Physique des Matériaux et Cosmochimie, Université Pierre et Marie Curie, 75252 Paris Cedex 05, France Edited by Margaret J. McFall-Ngai, University of Hawaii at Manoa, Honolulu, HI, and approved March 1, 2019 (received for review November 7, 2018) Hosts of chemoautotrophic bacteria typically have much higher thrive in both free-living environmental and symbiotic states, it is biomass than their symbionts and consume symbiont cells for difficult to attribute their genomic features to either functions nutrition. In contrast to this, chemoautotrophic Candidatus Riegeria they provide to their host, or traits that are necessary for envi- symbionts in mouthless Paracatenula flatworms comprise up to ronmental survival or to both. half of the biomass of the consortium. Each species of Paracate- The smallest genomes of chemoautotrophic symbionts have nula harbors a specific Ca. Riegeria, and the endosymbionts have been observed for the gammaproteobacterial symbionts of ves- been vertically transmitted for at least 500 million years. Such icomyid clams that are directly transmitted between host genera- prolonged strict vertical transmission leads to streamlining of sym- tions (13, 14). Such strict vertical transmission leads to substantial biont genomes, and the retained physiological capacities reveal and ongoing genome reduction.
    [Show full text]
  • A Review of the Family Ceramonematidae (Marine Free
    CO Zoological Institute, St.Petersburg, 2002 A review of thefamily Ceramonematidae (marine free-living nematodes), withdescriptions of nine species fromthe White Sea A.V. Tches1Jnov & M.A. Miljutina Tchesunov, A.V. & Miljutina, M.A. 2002. A review of the family Ceramonematidae (ma­ rine free-living nematodes), with descriptions of nine species from the White Sea. ZoosystematicaRossica, 11(1): 3-39. Morphology, biology and taxonomy of the nematode family Ceramonematidae Cobb, 1933 are summarised and reviewed. Plesiomorph-apomorph polarities of cuticle sculp­ ture, cephalic sensilla pattern, amphid shape are revealed with use of the out-group com­ parison and ontogenetic observations. The genera Ceramonema and Pselionema arc dis­ tinguished by the most apomorph character states; both genera combined comprise the greatest number of species, of the widest overall ecological range. The other ceramonematid genera display more plesiomorph character states and contain much less species; these are strictly confined to coarse sands. Ceramonematidae are related to the families Diplopeltoididae sensu Tchesunov (I 990) and Tarvaiidae. The family Ceramonematidae consists of two subfamilies: Ceramonematinae with the genera Ceramonema (= Ceramo­ nemoides, = Cyttaronema), Dasynemel/a (= Leptodasynemella), Dasynemoides (= Dasynemelloides), Metadasynemella (= Dictyonemella), and Metadasynemoides, and Pselionematinae with the genera Pterygonema and Pselionema (= Pselionemoides). Modi­ fied diagnoses of the family, subfamilies and genera are given. Separation of higher ceramonematid taxa is based largely on features of body cuticle annulation as well as on anterior sensilla pattern, while cephalic ratio and finer details of body annulation are important forspecies discrimination. Annotated lists of species are given for each genus. The genus Ceramonema is subdivided into two subgenera, Ceramonema s.
    [Show full text]
  • Lists of Names of Prokaryotic Candidatus Taxa
    NOTIFICATION LIST: CANDIDATUS LIST NO. 1 Oren et al., Int. J. Syst. Evol. Microbiol. DOI 10.1099/ijsem.0.003789 Lists of names of prokaryotic Candidatus taxa Aharon Oren1,*, George M. Garrity2,3, Charles T. Parker3, Maria Chuvochina4 and Martha E. Trujillo5 Abstract We here present annotated lists of names of Candidatus taxa of prokaryotes with ranks between subspecies and class, pro- posed between the mid- 1990s, when the provisional status of Candidatus taxa was first established, and the end of 2018. Where necessary, corrected names are proposed that comply with the current provisions of the International Code of Nomenclature of Prokaryotes and its Orthography appendix. These lists, as well as updated lists of newly published names of Candidatus taxa with additions and corrections to the current lists to be published periodically in the International Journal of Systematic and Evo- lutionary Microbiology, may serve as the basis for the valid publication of the Candidatus names if and when the current propos- als to expand the type material for naming of prokaryotes to also include gene sequences of yet-uncultivated taxa is accepted by the International Committee on Systematics of Prokaryotes. Introduction of the category called Candidatus was first pro- morphology, basis of assignment as Candidatus, habitat, posed by Murray and Schleifer in 1994 [1]. The provisional metabolism and more. However, no such lists have yet been status Candidatus was intended for putative taxa of any rank published in the journal. that could not be described in sufficient details to warrant Currently, the nomenclature of Candidatus taxa is not covered establishment of a novel taxon, usually because of the absence by the rules of the Prokaryotic Code.
    [Show full text]
  • Insights from Ant Farmers and Their Trophobiont Mutualists
    Received: 28 August 2017 | Revised: 21 November 2017 | Accepted: 28 November 2017 DOI: 10.1111/mec.14506 SPECIAL ISSUE: THE HOST-ASSOCIATED MICROBIOME: PATTERN, PROCESS, AND FUNCTION Can social partnerships influence the microbiome? Insights from ant farmers and their trophobiont mutualists Aniek B. F. Ivens1,2 | Alice Gadau2 | E. Toby Kiers1 | Daniel J. C. Kronauer2 1Animal Ecology Section, Department of Ecological Science, Faculty of Science, Vrije Abstract Universiteit, Amsterdam, The Netherlands Mutualistic interactions with microbes have played a crucial role in the evolution 2Laboratory of Social Evolution and and ecology of animal hosts. However, it is unclear what factors are most important Behavior, The Rockefeller University, New York, NY, USA in influencing particular host–microbe associations. While closely related animal spe- cies may have more similar microbiota than distantly related species due to phyloge- Correspondence Aniek B. F. Ivens, Animal Ecology Section, netic contingencies, social partnerships with other organisms, such as those in Department of Ecological Science, Faculty of which one animal farms another, may also influence an organism’s symbiotic micro- Science, Vrije Universiteit, Amsterdam, The Netherlands. biome. We studied a mutualistic network of Brachymyrmex and Lasius ants farming Email: [email protected] several honeydew-producing Prociphilus aphids and Rhizoecus mealybugs to test Present address whether the mutualistic microbiomes of these interacting insects are primarily corre- Alice Gadau, Arizona
    [Show full text]
  • Eubostrichopsis Johnpearsei N. Gen., N. Sp., the First Stilbonematid Nematode (Nematoda, Desmodoridae) from the US West Coast
    Zootaxa 4949 (2): 353–362 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2021 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4949.2.8 http://zoobank.org/urn:lsid:zoobank.org:pub:FEA992E3-F079-4AF0-84AE-FA41A8352510 Eubostrichopsis johnpearsei n. gen., n. sp., the first stilbonematid nematode (Nematoda, Desmodoridae) from the US West Coast JÖRG A. OTT1,2 & PHILIPP PRÖTS1,3 1Bio-Oceanography and Marine Biology, Department of Functional and Evolutionary Ecology, University of Vienna, Althanstraße 14, 1090 Vienna, Austria. 2 [email protected]; http://orcid.org/0000-0003-2274-5989 3 [email protected]; http://orcid.org/0000-0002-0715-0998 Abstract A new genus of the marine Stilbonematinae (Nematoda, Desmodoridae) is described from the Pacific coast of the United States of America. The worms inhabit the sulfidic sediment among the roots of the surfgrass Phyllospadix sp. in the rocky intertidal. The ectosymbiotic coat is of a new type for Stilbonematinae. It consists of rod-shaped bacteria pointed at both poles densely attached with one pole to the host cuticle. This is the first report of this symbiotic nematode subfamily from the US West Coast. Key words: Stilbonematinae, marine free-living nematodes, thiobios, sulfide system, Phyllospadix, rocky intertidal, Oregon, California Introduction Thiobios (Boaden 1977) denotes organisms inhabiting anoxic and sulfidic aquatic sediments. It includes the mi- croscopic interstitial fauna of the sulfide system (Fenchel & Riedl 1970), the ecosystem of reduced, microoxic to anoxic marine sediments. Taxa characteristic for this habitat are the Phylum Gnathostomulida, which exclusively occurs there and specialized representatives of the Ciliata, Platyhelminthes, Gastrotricha and Nematoda.
    [Show full text]
  • Two New Genera and Five New Species of Selachinematidae (Nematoda, Chromadorida) from the Continental Slope of New Zealand
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: European Journal of Taxonomy Jahr/Year: 2013 Band/Volume: 0063 Autor(en)/Author(s): Leduc Daniel Artikel/Article: Two new genera and fi ve new species of Selachinematidae (Nematoda, Chromadorida) from the continental slope of New Zealand 1-32 © European Journal of Taxonomy; download unter http://www.europeanjournaloftaxonomy.eu; www.biologiezentrum.at European Journal of Taxonomy 63: 1-32 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2013.63 www.europeanjournaloftaxonomy.eu 2013 · Leduc D. This work is licensed under a Creative Commons Attribution 3.0 License. Research article urn:lsid:zoobank.org:pub:BB33641C-6FAF-4D2E-93FB-C4951F7C058C Two new genera and fi ve new species of Selachinematidae (Nematoda, Chromadorida) from the continental slope of New Zealand Daniel LEDUC National Institute of Water and Atmospheric Research (NIWA), Private Bag 14-901, Kilbirnie, Wellington, New Zealand E-mail: [email protected] urn:lsid:zoobank.org:author:9393949F-3426-4EE2-8BDE-DEFFACE3D9BC Abstract. Two new genera and fi ve new species of Selachinematidae are described from the New Zealand upper continental slope (350-1240 m depth). Synonchiella rotundicauda sp. nov. is characterised by cephalic setae 0.25 cbd long, mandibles each with two pairs of hooks and two wing-like projections laterally, eight cup-shaped pre-cloacal supplements and short rounded tail. Pseudocheironchus gen. nov. is similar to Cheironchus, but differs from the latter in having a cuticle without lateral differentiation, cephalic setae only slightly longer than the outer labial sensillae, and a posterior buccal cavity with three equal mandibles.
    [Show full text]