42 7992 Sudbury Coherence
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Future of Continental Scientific Drilling U.S
THE FUTURE OF CONTINENTAL SCIENTIFIC DRILLING U.S. PERSPECTIVE Proceedings of a workshop | June 4-5, 2009 | Denver, Colorado DOSECC WORKSHOP PUBLICATION 1 Front Cover: Basalts and rhyolites of the Snake River Plain at Twin Falls, Idaho. Project Hotspot will explore the interaction of the Yellowstone hotspot with the continental crust by sampling the volcanic rocks underlying the plain. Two 1.5 km holes will penetrate both the surficial basalt and the underlying rhyolite caldera-fill and outflow depos- its. A separate drill hole will explore the paleoclimate record in Pliocene Lake Idaho in the western Snake River Plain. In addition to the understanding of continent-mantle interaction that develops and the paleoclimate data collected, the project will study water-rock interaction, gases emanating from the deeper curst, and the geomicro- biology of the rocks of the plain. Once scientific objectives and set, budgets are developed, and funding is granted, successful implementation of projects requires careful planning, professional on-site staff, appropriate equip- ment, effective logistics, and accurate accounting. Photo by Tony Walton The authors gratefully acknowledge support of the National Science Foundation (NSF EAR 0923056 to The University of Kansas) and DOSECC, Inc. of Salt Lake City, Utah. Anthony W. Walton, University of Kansas, Lawrence, Kansas Kenneth G. Miller, Rutgers University, New Brunswick, N.J. Christian Koeberl, University of Vienna, Vienna, Austria John Shervais, Utah State University, Logan, Utah Steve Colman, University of Minnesota, Duluth, Duluth, Minnesota edited by Cathy Evans. Stephen Hickman, US Geological Survey, Menlo Park, California covers and design by mitch favrow. Will Clyde, University of New Hampshire, Durham, New Hampshire document layout by Pam Lerow and Paula Courtney. -
Terrestrial Impact Structures Provide the Only Ground Truth Against Which Computational and Experimental Results Can Be Com Pared
Ann. Rev. Earth Planet. Sci. 1987. 15:245-70 Copyright([;; /987 by Annual Reviews Inc. All rights reserved TERRESTRIAL IMI!ACT STRUCTURES ··- Richard A. F. Grieve Geophysics Division, Geological Survey of Canada, Ottawa, Ontario KIA OY3, Canada INTRODUCTION Impact structures are the dominant landform on planets that have retained portions of their earliest crust. The present surface of the Earth, however, has comparatively few recognized impact structures. This is due to its relative youthfulness and the dynamic nature of the terrestrial geosphere, both of which serve to obscure and remove the impact record. Although not generally viewed as an important terrestrial (as opposed to planetary) geologic process, the role of impact in Earth evolution is now receiving mounting consideration. For example, large-scale impact events may hav~~ been responsible for such phenomena as the formation of the Earth's moon and certain mass extinctions in the biologic record. The importance of the terrestrial impact record is greater than the relatively small number of known structures would indicate. Impact is a highly transient, high-energy event. It is inherently difficult to study through experimentation because of the problem of scale. In addition, sophisticated finite-element code calculations of impact cratering are gen erally limited to relatively early-time phenomena as a result of high com putational costs. Terrestrial impact structures provide the only ground truth against which computational and experimental results can be com pared. These structures provide information on aspects of the third dimen sion, the pre- and postimpact distribution of target lithologies, and the nature of the lithologic and mineralogic changes produced by the passage of a shock wave. -
Stishovite and Seifertite in Lunar Meteorite Northwest Africa 4734
71st Annual Meteoritical Society Meeting (2008) 5058.pdf FIRST EVIDENCE OF HIGH PRESSURE SILICA: STISHOVITE AND SEIFERTITE IN LUNAR METEORITE NORTHWEST AFRICA 4734. H. Chennaoui Aoudjehane1-2, A. Jambon2 1Université Hassan II Aïn Chock, Laboratoire Géosciences, BP 5366 Maârif Casa- blanca Morocco (e-mail: [email protected]), 2Université Pierre et Marie Curie-Paris6 and IPGP Laboratoire MAGIE, Case 110, 4 place Jussieu, 75252 Paris France. Introduction: Silica is a rare phase in lunar rocks; it has been described as either quartz, cristobalite and/or tridymite [1]. Northwest Africa 4734, is an uncommon type of lunar rock, which may be launched paired with the LaPaz Icefield Lunar Mare basalts found in 2002-03 in Antarctica [2-6], it is a coarse grained rock of basaltic composition, exhibits a number of sig- nificant shock features, such as PDFs, extensive fracturation of pyroxene, impact melt pockets and transformation of plagioclase to maskelynite; silica is present as a minor phase. Analytical procedures: We studied the speciation of silica polymorphs to characterize the shock, using SEM imaging, Ra- man spectroscopy, CL imaging and spectroscopy. Further details can be found in [7]. Results: According to the CL spectra [7-9], cristobalite, tridymite, high-pressure silica glass, stishovite and seifertite, are all present. Special emphasis is made on stishovite and seifertite, which, like in shergottites, exhibit specific textural features [7]. Cathodoluminescence spectra characteristic of high-pressure sil- ica phases: glass, stishovite and seifertite have been recorded in addition to the original low-pressure phases. The remanence of cristobalite and tridymite underscores a significant heterogeneity of the shock supported by the rock. -
EPSC2018-833, 2018 European Planetary Science Congress 2018 Eeuropeapn Planetarsy Science Ccongress C Author(S) 2018
EPSC Abstracts Vol. 12, EPSC2018-833, 2018 European Planetary Science Congress 2018 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2018 Impact melt boulder from northern Sweden from an unknown source Timmu Kreitsmann (1), Satu Hietala (2), Tapio Soukka (3), Jüri Plado (1), Jari Nenonen (2) and Lauri J. Pesonen (4) (1) Department of Geology, University of Tartu, Estonia ([email protected], [email protected]), (2) Geological Survey of Finland, Finland ([email protected], [email protected]), (3) Oulu Mining School, University of Oulu, Finland ([email protected]) (4) Solid Earth Geophysics Laboratory, Physics Department, University of Helsinki, Finland ([email protected]) Abstract We report an impact melt rock finding from northern Sweden, near the village of Kitkiöjärvi. There is no confirmed meteorite impact structure nearby, thus, the source is currently undiscovered. The impact origin of the finding was confirmed by the presence of planar deformation features (PDFs) in quartz. 1. Introduction Impact cratering is a common and frequent process that affects the planetary surfaces across the solar system throughout geologic time. On Earth, there are 191 confirmed impact structures which are distributed unevenly around the globe. The Fennoscandian Shield houses around 10% of them. Here, we report an impact melt rock finding that originates from an unknown structure in northern Sweden. The semi-rounded impactite boulder, sized 10 × 7 cm, was found by Tapio Soukka in 2017 from a gravel pit at the western side of village Kitkiöjärvi (67°46'16"N 23°03'06"E; Fig. 1). Figure 1: Proven impact structures in Fennoscandia. -
A New Way to Confirm Meteorite Impact Produced Planar Features in Quartz: Combining Universal Stage and Electron Backscatter Diffraction Techniques
A new way to confirm meteorite impact produced planar features in quartz: combining Universal Stage and Electron Backscatter Diffraction techniques M.H. Voorn MSc Thesis August 2010 Utrecht University - Earth Sciences department Structural Geology and Tectonic research group Abstract As recognised from the geological record, meteorite impact events can have a severe influence on (local) geology, climate and life. Solid evidence for these events is therefore important to obtain. The most convincing evidence comes from microstructures in quartz. Upon impact, Planar Fractures (PFs) and Planar Deformation Features (PDFs) form parallel to specific crystallographic planes in quartz. Non-impact formed (tectonic) Deformation Lamellae (DL) may be hard to distinguish qualitatively from PFs or PDFs with the optical microscope, but do not form parallel to crystallographic planes. Quantitative methods using the Universal Stage (U-Stage) on the optical microscope have therefore been applied widely to (dis)confirm this parallelism. With the method, the quartz c-axis and poles to planar features are measured and plotted. An improved technique requires so-called indexing of the measured orientations using a stereographic projection template. Even when these techniques are applied, some proposed impact structures remain debated. An important reason for this is the U-stage can not provide the full crystal orientation of quartz. The goal of this thesis was to check the classical U-stage techniques for quantitatively confirming impact planar features in quartz, and to see whether the addition of Electron Backscatter Diffraction (EBSD, on the Scanning Electron Microscope: SEM) and Cathodoluminescence (CL, on the SEM) can provide more solid evidence. Six previously confirmed impact and three non-impact samples were studied. -
ANIC IMPACTS: MS and IRONMENTAL P ONS Abstracts Edited by Rainer Gersonde and Alexander Deutsch
ANIC IMPACTS: MS AND IRONMENTAL P ONS APRIL 15 - APRIL 17, 1999 Alfred Wegener Institute for Polar and Marine Research Bremerhaven, Germany Abstracts Edited by Rainer Gersonde and Alexander Deutsch Ber. Polarforsch. 343 (1999) ISSN 01 76 - 5027 Preface .......3 Acknowledgements .......6 Program ....... 7 Abstracts P. Agrinier, A. Deutsch, U. Schäre and I. Martinez: On the kinetics of reaction of CO, with hot Ca0 during impact events: An experimental study. .11 L. Ainsaar and M. Semidor: Long-term effect of the Kärdl impact crater (Hiiumaa, Estonia) On the middle Ordovician carbonate sedimentation. ......13 N. Artemieva and V.Shuvalov: Shock zones on the ocean floor - Numerical simulations. ......16 H. Bahlburg and P. Claeys: Tsunami deposit or not: The problem of interpreting the siliciclastic K/T sections in northeastern Mexico. ......19 R. Coccioni, D. Basso, H. Brinkhuis, S. Galeotti, S. Gardin, S. Monechi, E. Morettini, M. Renard, S. Spezzaferri, and M. van der Hoeven: Environmental perturbation following a late Eocene impact event: Evidence from the Massignano Section, Italy. ......21 I von Dalwigk and J. Ormö Formation of resurge gullies at impacts at sea: the Lockne crater, Sweden. ......24 J. Ebbing, P. Janle, J, Koulouris and B. Milkereit: Palaeotopography of the Chicxulub impact crater and implications for oceanic craters. .25 V. Feldman and S.Kotelnikov: The methods of shock pressure estimation in impacted rocks. ......28 J.-A. Flores, F. J. Sierro and R. Gersonde: Calcareous plankton stratigraphies from the "Eltanin" asteroid impact area: Strategies for geological and paleoceanographic reconstruction. ......29 M.V.Gerasimov, Y. P. Dikov, 0 . I. Yakovlev and F.Wlotzka: Experimental investigation of the role of water in the impact vaporization chemistry. -
Multivariate Statistic and Time Series Analyses of Grain-Size Data in Quaternary Sediments of Lake El’Gygytgyn, NE Russia
Clim. Past, 9, 2459–2470, 2013 Open Access www.clim-past.net/9/2459/2013/ Climate doi:10.5194/cp-9-2459-2013 © Author(s) 2013. CC Attribution 3.0 License. of the Past Multivariate statistic and time series analyses of grain-size data in quaternary sediments of Lake El’gygytgyn, NE Russia A. Francke1, V. Wennrich1, M. Sauerbrey1, O. Juschus2, M. Melles1, and J. Brigham-Grette3 1University of Cologne, Institute for Geology and Mineralogy, Cologne, Germany 2Eberswalde University for Sustainable Development, Eberswalde, Germany 3University of Massachusetts, Department of Geosciences, Amherst, USA Correspondence to: A. Francke ([email protected]) Received: 14 December 2012 – Published in Clim. Past Discuss.: 14 January 2013 Revised: 20 September 2013 – Accepted: 3 October 2013 – Published: 5 November 2013 Abstract. Lake El’gygytgyn, located in the Far East Rus- glacial–interglacial variations (eccentricity, obliquity), and sian Arctic, was formed by a meteorite impact about 3.58 Ma local insolation forcing and/or latitudinal teleconnections ago. In 2009, the International Continental Scientific Drilling (precession), respectively. Program (ICDP) at Lake El’gygytgyn obtained a continu- ous sediment sequence of the lacustrine deposits and the up- per part of the impact breccia. Here, we present grain-size data of the past 2.6 Ma. General downcore grain-size varia- 1 Introduction tions yield coarser sediments during warm periods and finer The polar regions are known to play a crucial but not ones during cold periods. According to principal component yet well understood role within the global climate system analysis (PCA), the climate-dependent variations in grain- (Washington and Meehl, 1996; Johannessen et al., 2004), in- size distributions mainly occur in the coarse silt and very fluencing both the oceanic and the atmospheric circulation. -
Twinning, Reidite, and Zro in Shocked Zircon from Meteor Crater
Transformations to granular zircon revealed: Twinning, reidite, and ZrO2 in shocked zircon from Meteor Crater (Arizona, USA) Aaron J. Cavosie1,2,3, Nicholas E. Timms1, Timmons M. Erickson1, Justin J. Hagerty4, and Friedrich Hörz5 1TIGeR (The Institute for Geoscience Research), Department of Applied Geology, Curtin University, Perth, WA 6102, Australia 2NASA Astrobiology Institute, Department of Geoscience, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA 3Department of Geology, University of Puerto Rico–Mayagüez, Mayagüez, Puerto Rico 00681, USA 4U.S. Geological Survey (USGS) Astrogeology Science Center, Flagstaff, Arizona 86001, USA 5NASA Johnson Space Center, Science Department/Jets/HX5/ARES, Houston, Texas 77058, USA ABSTRACT Granular zircon in impact environments has long been recognized but remains poorly A N35° 2.0’ W111° 0.9’ understood due to lack of experimental data to identify mechanisms involved in its genesis. Meteor Crater in Arizona (USA) contains abundant evidence of shock metamorphism, includ- N ing shocked quartz, the high-pressure polymorphs coesite and stishovite, diaplectic SiO2 glass, and lechatelierite (fused SiO2). Here we report the presence of granular zircon, a new shocked-mineral discovery at Meteor Crater, that preserve critical orientation evidence of specific transformations that occurred during formation at extreme impact conditions. The zircon grains occur as aggregates of sub-micrometer neoblasts in highly shocked Coconino Sandstone (CS) comprised of lechatelierite. Electron backscatter diffraction shows that each MCC2 site grain consists of multiple domains, some with boundaries disoriented by 65° around <110>, (main shaft) a known {112} shock-twin orientation. Other domains have {001} in alignment with {110} of neighboring domains, consistent with the former presence of the high-pressure ZrSiO4 polymorph reidite. -
Central Ring Structure Identified in One of the World's Best-Preserved Impact
Central ring structure identi®ed in one of the world's best-preserved impact craters A.C. Gebhardt F. Niessen Alfred Wegener Institute for Polar and Marine Research, Columbusstraûe, 27568 Bremerhaven, Germany C. Kopsch Alfred Wegener Institute for Polar and Marine Research, Telegrafenberg A43, 14473 Potsdam, Germany ABSTRACT Seismic refraction and re¯ection data were acquired in 2000 and 2003 to study the morphology and sedimentary ®ll of the remote El'gygytgyn crater (Chukotka, northeast- ern Siberia; diameter 18 km). These data allow a ®rst insight into the deeper structure of this unique impact crater. Wide-angle data from sonobuoys reveal a ®ve-layer model: a water layer, two lacustrine sedimentary units that ®ll a bowl-shaped apparent crater mor- phology consisting of an upper layer of fallback breccia with P-wave velocities of ;3000 m/s, and a lower layer of brecciated bedrock (velocities .3600 m/s). The lowermost layer shows a distinct anticline structure that, by analogy with other terrestrial and lunar cra- ters of similar size, can be interpreted as a central ring structure. The El'gygytgyn crater exhibits a well-expressed morphology that is typical of craters formed in crystalline target rocks. Keywords: impact crater, El'gygytgyn, lakes, seismic refraction, seismic re¯ection. INTRODUCTION (Belyi, 1998; Gurov et al., 1979a, 1979b). The Grette, 2006; Nolan et al., 2002) formed in- The El'gygytgyn crater, located in the Rus- Anadyr Mountains are part of the Okhotsk- side the crater (the crater and crater lake are sian Arctic, is one of the world's best- Chukotka Volcanic Belt, composed of Late not concentric; see Fig. -
Meteorite Impacts, Earth, and the Solar System
Traces of Catastrophe A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures Bevan M. French Research Collaborator Department of Mineral Sciences, MRC-119 Smithsonian Institution Washington DC 20560 LPI Contribution No. 954 i Copyright © 1998 by LUNAR AND PLANETARY INSTITUTE The Institute is operated by the Universities Space Research Association under Contract No. NASW-4574 with the National Aeronautics and Space Administration. Material in this volume may be copied without restraint for library, abstract service, education, or personal research purposes; however, republication of any portion thereof requires the written permission of the Insti- tute as well as the appropriate acknowledgment of this publication. Figures 3.1, 3.2, and 3.5 used by permission of the publisher, Oxford University Press, Inc. Figures 3.13, 4.16, 4.28, 4.32, and 4.33 used by permission of the publisher, Springer-Verlag. Figure 4.25 used by permission of the publisher, Yale University. Figure 5.1 used by permission of the publisher, Geological Society of America. See individual captions for reference citations. This volume may be cited as French B. M. (1998) Traces of Catastrophe:A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures. LPI Contribution No. 954, Lunar and Planetary Institute, Houston. 120 pp. This volume is distributed by ORDER DEPARTMENT Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113, USA Phone:281-486-2172 Fax:281-486-2186 E-mail:[email protected] Mail order requestors will be invoiced for the cost of shipping and handling. Cover Art.“One Minute After the End of the Cretaceous.” This artist’s view shows the ancestral Gulf of Mexico near the present Yucatán peninsula as it was 65 m.y. -
Global Catastrophes in Earth History
GLOBAL CATASTROPHES IN EARTH HISTORY An Interdisciplinary Conference on Impacts, Volcanism, and Mass Mortality Snowbird, Utah October 20-23, 1988 N89-2 12E7 --?HEW- Sponsored by The Lunar and Planetary Institute and The National Academy of Sciences Abstracts Presented to the Topical Conference Global Catastrophes in Earth History: An Interdisciplinary Conference on Impacts, Volcanism, and Mass Mortality Snowbird, Utah October 20 - 23,1988 Sponsored by Lunar and Planetary Institute and The National Academy of Sciences LPI Contribution No. 673 Compiled in 1988 Lunar and Planetary Institute Material in this volume may be copied without restraint for library, abstract service, educational, or personal research purposes; however, republication of any paper or portion thereof requires the written permission of the authors as well as appropriate acknowledgment of this publication. PREFACE This volume contains abstracts that have been accepted for presentation at the topical conference Global Catastrophes in Earth History: An Interdisciplinary Conference on Impacts, Volcanism and Mass Mortality. The Organizing Committee consisted of Robert Ginsburg, Chairman, University of Miami; Kevin Burke, Lunar and Planetary Institute; Lee M. Hunt, National Research Council; Digby McLaren, University of Ottawa; Thomas Simkin, National Museum of Natural History; Starley L. Thompson, National Center for Atmospheric Research; Karl K. Turekian, Yale University; George W. Wetherill, Carnegie Institution of Washington. Logistics and administrative support were provided by the Projects Ofice at the Lunar and Planetary Institute. This abstract volume was prepared by the Publications Office staff at the Lunar and Planetary Institute. The Lunar and Planetary Institute is operated by the Universities Space Research Association under contract No. NASW-4066 with the National Aeronautics and Space Administration. -
FORTY YEARS of MICROTEKTITE RESEARCH. B. P. Glass. Geology Department, University of Delaware, New- Ark, DE 19716, USA
68th Annual Meteoritical Society Meeting (2005) 5006.pdf FORTY YEARS OF MICROTEKTITE RESEARCH. B. P. Glass. Geology Department, University of Delaware, New- ark, DE 19716, USA. E-mail: [email protected]. I first heard of tektites when I took Brian Mason’s geochem- istry course in 1965. Shortly thereafter, I found some glass beads, which I concluded must be microtektites related to the Australasian tektites, in five sediment cores from the Indian Ocean [1]. I then searched for and found Ivory Coast microtek- tites in cores from the eastern equatorial Atlantic Ocean [2]. Bill Cassidy obtained some compositional data, which helped confirm the identification of the microtektites [e.g., 3]. After this, I searched for North American (N.A.) microtektites, but before I could find them, Donnelly and Chao [4] reported finding them in an upper Eocene sediment core from the Caribbean Sea. Using biostratigraphic data from that core, we were able to find the N.A. microtektite layer in additional cores. We then discovered clinopyroxene-bearing (cpx) spherules associated with the N.A. microtektites. This layer was found to be associated with an Ir anomaly [5] and with the extinction of several radiolarian taxa. We traced the cpx spherule layer across the equatorial Pacific Ocean and into the eastern equatorial Indian Ocean. We first thought that the N.A. strewn field extended across the Pacific Ocean and into the Indian Ocean, but we later concluded that the cpx spherules belong to an older event. N.A. microtektites were then discovered in marine sediments on Barbados [6], and, so far, this is the only place where microtektites have been found on land.