Experimental Reproduction of Tectonic Deformation Lamellae in Quartz and Comparison to Shock-Induced Planar Deformation Features
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Terrestrial Impact Structures Provide the Only Ground Truth Against Which Computational and Experimental Results Can Be Com Pared
Ann. Rev. Earth Planet. Sci. 1987. 15:245-70 Copyright([;; /987 by Annual Reviews Inc. All rights reserved TERRESTRIAL IMI!ACT STRUCTURES ··- Richard A. F. Grieve Geophysics Division, Geological Survey of Canada, Ottawa, Ontario KIA OY3, Canada INTRODUCTION Impact structures are the dominant landform on planets that have retained portions of their earliest crust. The present surface of the Earth, however, has comparatively few recognized impact structures. This is due to its relative youthfulness and the dynamic nature of the terrestrial geosphere, both of which serve to obscure and remove the impact record. Although not generally viewed as an important terrestrial (as opposed to planetary) geologic process, the role of impact in Earth evolution is now receiving mounting consideration. For example, large-scale impact events may hav~~ been responsible for such phenomena as the formation of the Earth's moon and certain mass extinctions in the biologic record. The importance of the terrestrial impact record is greater than the relatively small number of known structures would indicate. Impact is a highly transient, high-energy event. It is inherently difficult to study through experimentation because of the problem of scale. In addition, sophisticated finite-element code calculations of impact cratering are gen erally limited to relatively early-time phenomena as a result of high com putational costs. Terrestrial impact structures provide the only ground truth against which computational and experimental results can be com pared. These structures provide information on aspects of the third dimen sion, the pre- and postimpact distribution of target lithologies, and the nature of the lithologic and mineralogic changes produced by the passage of a shock wave. -
Stishovite and Seifertite in Lunar Meteorite Northwest Africa 4734
71st Annual Meteoritical Society Meeting (2008) 5058.pdf FIRST EVIDENCE OF HIGH PRESSURE SILICA: STISHOVITE AND SEIFERTITE IN LUNAR METEORITE NORTHWEST AFRICA 4734. H. Chennaoui Aoudjehane1-2, A. Jambon2 1Université Hassan II Aïn Chock, Laboratoire Géosciences, BP 5366 Maârif Casa- blanca Morocco (e-mail: [email protected]), 2Université Pierre et Marie Curie-Paris6 and IPGP Laboratoire MAGIE, Case 110, 4 place Jussieu, 75252 Paris France. Introduction: Silica is a rare phase in lunar rocks; it has been described as either quartz, cristobalite and/or tridymite [1]. Northwest Africa 4734, is an uncommon type of lunar rock, which may be launched paired with the LaPaz Icefield Lunar Mare basalts found in 2002-03 in Antarctica [2-6], it is a coarse grained rock of basaltic composition, exhibits a number of sig- nificant shock features, such as PDFs, extensive fracturation of pyroxene, impact melt pockets and transformation of plagioclase to maskelynite; silica is present as a minor phase. Analytical procedures: We studied the speciation of silica polymorphs to characterize the shock, using SEM imaging, Ra- man spectroscopy, CL imaging and spectroscopy. Further details can be found in [7]. Results: According to the CL spectra [7-9], cristobalite, tridymite, high-pressure silica glass, stishovite and seifertite, are all present. Special emphasis is made on stishovite and seifertite, which, like in shergottites, exhibit specific textural features [7]. Cathodoluminescence spectra characteristic of high-pressure sil- ica phases: glass, stishovite and seifertite have been recorded in addition to the original low-pressure phases. The remanence of cristobalite and tridymite underscores a significant heterogeneity of the shock supported by the rock. -
Impact Cratering
6 Impact cratering The dominant surface features of the Moon are approximately circular depressions, which may be designated by the general term craters … Solution of the origin of the lunar craters is fundamental to the unravel- ing of the history of the Moon and may shed much light on the history of the terrestrial planets as well. E. M. Shoemaker (1962) Impact craters are the dominant landform on the surface of the Moon, Mercury, and many satellites of the giant planets in the outer Solar System. The southern hemisphere of Mars is heavily affected by impact cratering. From a planetary perspective, the rarity or absence of impact craters on a planet’s surface is the exceptional state, one that needs further explanation, such as on the Earth, Io, or Europa. The process of impact cratering has touched every aspect of planetary evolution, from planetary accretion out of dust or planetesimals, to the course of biological evolution. The importance of impact cratering has been recognized only recently. E. M. Shoemaker (1928–1997), a geologist, was one of the irst to recognize the importance of this process and a major contributor to its elucidation. A few older geologists still resist the notion that important changes in the Earth’s structure and history are the consequences of extraterres- trial impact events. The decades of lunar and planetary exploration since 1970 have, how- ever, brought a new perspective into view, one in which it is clear that high-velocity impacts have, at one time or another, affected nearly every atom that is part of our planetary system. -
EPSC2018-833, 2018 European Planetary Science Congress 2018 Eeuropeapn Planetarsy Science Ccongress C Author(S) 2018
EPSC Abstracts Vol. 12, EPSC2018-833, 2018 European Planetary Science Congress 2018 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2018 Impact melt boulder from northern Sweden from an unknown source Timmu Kreitsmann (1), Satu Hietala (2), Tapio Soukka (3), Jüri Plado (1), Jari Nenonen (2) and Lauri J. Pesonen (4) (1) Department of Geology, University of Tartu, Estonia ([email protected], [email protected]), (2) Geological Survey of Finland, Finland ([email protected], [email protected]), (3) Oulu Mining School, University of Oulu, Finland ([email protected]) (4) Solid Earth Geophysics Laboratory, Physics Department, University of Helsinki, Finland ([email protected]) Abstract We report an impact melt rock finding from northern Sweden, near the village of Kitkiöjärvi. There is no confirmed meteorite impact structure nearby, thus, the source is currently undiscovered. The impact origin of the finding was confirmed by the presence of planar deformation features (PDFs) in quartz. 1. Introduction Impact cratering is a common and frequent process that affects the planetary surfaces across the solar system throughout geologic time. On Earth, there are 191 confirmed impact structures which are distributed unevenly around the globe. The Fennoscandian Shield houses around 10% of them. Here, we report an impact melt rock finding that originates from an unknown structure in northern Sweden. The semi-rounded impactite boulder, sized 10 × 7 cm, was found by Tapio Soukka in 2017 from a gravel pit at the western side of village Kitkiöjärvi (67°46'16"N 23°03'06"E; Fig. 1). Figure 1: Proven impact structures in Fennoscandia. -
A New Way to Confirm Meteorite Impact Produced Planar Features in Quartz: Combining Universal Stage and Electron Backscatter Diffraction Techniques
A new way to confirm meteorite impact produced planar features in quartz: combining Universal Stage and Electron Backscatter Diffraction techniques M.H. Voorn MSc Thesis August 2010 Utrecht University - Earth Sciences department Structural Geology and Tectonic research group Abstract As recognised from the geological record, meteorite impact events can have a severe influence on (local) geology, climate and life. Solid evidence for these events is therefore important to obtain. The most convincing evidence comes from microstructures in quartz. Upon impact, Planar Fractures (PFs) and Planar Deformation Features (PDFs) form parallel to specific crystallographic planes in quartz. Non-impact formed (tectonic) Deformation Lamellae (DL) may be hard to distinguish qualitatively from PFs or PDFs with the optical microscope, but do not form parallel to crystallographic planes. Quantitative methods using the Universal Stage (U-Stage) on the optical microscope have therefore been applied widely to (dis)confirm this parallelism. With the method, the quartz c-axis and poles to planar features are measured and plotted. An improved technique requires so-called indexing of the measured orientations using a stereographic projection template. Even when these techniques are applied, some proposed impact structures remain debated. An important reason for this is the U-stage can not provide the full crystal orientation of quartz. The goal of this thesis was to check the classical U-stage techniques for quantitatively confirming impact planar features in quartz, and to see whether the addition of Electron Backscatter Diffraction (EBSD, on the Scanning Electron Microscope: SEM) and Cathodoluminescence (CL, on the SEM) can provide more solid evidence. Six previously confirmed impact and three non-impact samples were studied. -
ANIC IMPACTS: MS and IRONMENTAL P ONS Abstracts Edited by Rainer Gersonde and Alexander Deutsch
ANIC IMPACTS: MS AND IRONMENTAL P ONS APRIL 15 - APRIL 17, 1999 Alfred Wegener Institute for Polar and Marine Research Bremerhaven, Germany Abstracts Edited by Rainer Gersonde and Alexander Deutsch Ber. Polarforsch. 343 (1999) ISSN 01 76 - 5027 Preface .......3 Acknowledgements .......6 Program ....... 7 Abstracts P. Agrinier, A. Deutsch, U. Schäre and I. Martinez: On the kinetics of reaction of CO, with hot Ca0 during impact events: An experimental study. .11 L. Ainsaar and M. Semidor: Long-term effect of the Kärdl impact crater (Hiiumaa, Estonia) On the middle Ordovician carbonate sedimentation. ......13 N. Artemieva and V.Shuvalov: Shock zones on the ocean floor - Numerical simulations. ......16 H. Bahlburg and P. Claeys: Tsunami deposit or not: The problem of interpreting the siliciclastic K/T sections in northeastern Mexico. ......19 R. Coccioni, D. Basso, H. Brinkhuis, S. Galeotti, S. Gardin, S. Monechi, E. Morettini, M. Renard, S. Spezzaferri, and M. van der Hoeven: Environmental perturbation following a late Eocene impact event: Evidence from the Massignano Section, Italy. ......21 I von Dalwigk and J. Ormö Formation of resurge gullies at impacts at sea: the Lockne crater, Sweden. ......24 J. Ebbing, P. Janle, J, Koulouris and B. Milkereit: Palaeotopography of the Chicxulub impact crater and implications for oceanic craters. .25 V. Feldman and S.Kotelnikov: The methods of shock pressure estimation in impacted rocks. ......28 J.-A. Flores, F. J. Sierro and R. Gersonde: Calcareous plankton stratigraphies from the "Eltanin" asteroid impact area: Strategies for geological and paleoceanographic reconstruction. ......29 M.V.Gerasimov, Y. P. Dikov, 0 . I. Yakovlev and F.Wlotzka: Experimental investigation of the role of water in the impact vaporization chemistry. -
Evidence for Subsolidus Quartz-Coesite Transformation in Impact Ejecta from the Australasian Tektite Strewn field
Available online at www.sciencedirect.com ScienceDirect Geochimica et Cosmochimica Acta 264 (2019) 105–117 www.elsevier.com/locate/gca Evidence for subsolidus quartz-coesite transformation in impact ejecta from the Australasian tektite strewn field Fabrizio Campanale a,b,⇑, Enrico Mugnaioli b, Luigi Folco a, Mauro Gemmi b Martin R. Lee c, Luke Daly c,e,f, Billy P. Glass d a Dipartimento di Scienze della Terra, Universita` di Pisa, V. S. Maria 53, 56126 Pisa, Italy b Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia (IIT), Piazza San Silvestro 12, 56127 Pisa, Italy c Department of Geographical and Earth Sciences, University of Glasgow, Glasgow G12 8QQ, UK d Department of Geosciences, University of Delaware, Newark, DE, USA e Australian Centre for Microscopy and Microanalysis, University of Sydney, Sydney 2006, NSW, Australia f Space Science and Technology Centre, School of Earth and Planetary Science, Curtin University, Bentley, 6102 WA, Australia Received 1 April 2019; accepted in revised form 11 August 2019; Available online 21 August 2019 Abstract Coesite, a high-pressure silica polymorph, is a diagnostic indicator of impact cratering in quartz-bearing target rocks. The formation mechanism of coesite during hypervelocity impacts has been debated since its discovery in impact rocks in the 1960s. Electron diffraction analysis coupled with scanning electron microscopy and Raman spectroscopy of shocked silica grains from the Australasian tektite/microtektite strewn field reveals fine-grained intergrowths of coesite plus quartz bearing planar deformation features (PDFs).À Quartz and euhedral microcrystalline coesite are in direct contact, showing a recurrent pseudo iso-orientation, with the ½111* vector of quartz near parallel to the [0 1 0]* vector of coesite. -
Twinning, Reidite, and Zro in Shocked Zircon from Meteor Crater
Transformations to granular zircon revealed: Twinning, reidite, and ZrO2 in shocked zircon from Meteor Crater (Arizona, USA) Aaron J. Cavosie1,2,3, Nicholas E. Timms1, Timmons M. Erickson1, Justin J. Hagerty4, and Friedrich Hörz5 1TIGeR (The Institute for Geoscience Research), Department of Applied Geology, Curtin University, Perth, WA 6102, Australia 2NASA Astrobiology Institute, Department of Geoscience, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA 3Department of Geology, University of Puerto Rico–Mayagüez, Mayagüez, Puerto Rico 00681, USA 4U.S. Geological Survey (USGS) Astrogeology Science Center, Flagstaff, Arizona 86001, USA 5NASA Johnson Space Center, Science Department/Jets/HX5/ARES, Houston, Texas 77058, USA ABSTRACT Granular zircon in impact environments has long been recognized but remains poorly A N35° 2.0’ W111° 0.9’ understood due to lack of experimental data to identify mechanisms involved in its genesis. Meteor Crater in Arizona (USA) contains abundant evidence of shock metamorphism, includ- N ing shocked quartz, the high-pressure polymorphs coesite and stishovite, diaplectic SiO2 glass, and lechatelierite (fused SiO2). Here we report the presence of granular zircon, a new shocked-mineral discovery at Meteor Crater, that preserve critical orientation evidence of specific transformations that occurred during formation at extreme impact conditions. The zircon grains occur as aggregates of sub-micrometer neoblasts in highly shocked Coconino Sandstone (CS) comprised of lechatelierite. Electron backscatter diffraction shows that each MCC2 site grain consists of multiple domains, some with boundaries disoriented by 65° around <110>, (main shaft) a known {112} shock-twin orientation. Other domains have {001} in alignment with {110} of neighboring domains, consistent with the former presence of the high-pressure ZrSiO4 polymorph reidite. -
Studies of the Chesapeake Bay Impact Structure— Introduction and Discussion
Studies of the Chesapeake Bay Impact Structure— Introduction and Discussion By J. Wright Horton, Jr., David S. Powars, and Gregory S. Gohn Chapter A of Studies of the Chesapeake Bay Impact Structure— The USGS-NASA Langley Corehole, Hampton, Virginia, and Related Coreholes and Geophysical Surveys Edited by J. Wright Horton, Jr., David S. Powars, and Gregory S. Gohn Prepared in cooperation with the Hampton Roads Planning District Commission, Virginia Department of Environmental Quality, and National Aeronautics and Space Administration Langley Research Center Professional Paper 1688 U.S. Department of the Interior U.S. Geological Survey iii Contents Abstract . .A1 Introduction . 1 Previous Work . 3 The Chesapeake Bay Impact Structure . 5 Form and Structure . 5 Character of the Target . 7 Land Surface Features . 7 The USGS-NASA Langley Core . 9 Significant Results . 11 Crystalline Basement Rocks . 11 Impact-Modified and Impact-Generated Sediments . 11 Postimpact Sediments . 13 Water Depths—Impact and Postimpact . 14 Dating the Impact Event . 14 Structural Interpretation of Seismic Data . 15 Interpretation of Audio-Magnetotelluric (AMT) Soundings . 15 Hydrologic Effects and Water-Resources Implications . 16 Conceptual Model . 16 Acknowledgments . 18 References Cited . 18 Appendix A1. Abstracts of Research on the Chesapeake Bay Impact Structure, 2001–2003 . 24 Figures A1. Regional map showing the location of the Chesapeake Bay impact structure, the USGS-NASA Langley corehole at Hampton, Va., and some other coreholes in southeastern Virginia . A2 A2. Map of southeastern Virginia showing locations of recently completed coreholes and geophysical surveys in relation to the Chesapeake Bay impact structure . .4 A3. Satellite image of Chesapeake Bay showing location of the buried impact structure and nearby Mesozoic to Cenozoic tectonic features. -
Sedimentary Record of Impact Events in Spain
Geological Society of America Special Paper 356 2002 Sedimentary record of impact events in Spain Enrique Dı´az-Martı´nez* Enrique Sanz-Rubio Jesu´s Martı´nez-Frı´as Centro de Astrobiologı´a Consejo Superior de Investigaciones Cientı´ficas—Instituto Nacional de Te´cnica Aeroespacial, Carretera, Torrejo´n-Ajalvir kilo´metro 4, 28850 Torrejo´n de Ardoz, Madrid, Spain ABSTRACT A review of the evidence of meteorite-impact events in the sedimentary record of Spain reveals that the only proven impact-related bed is the clay layer at the Cretaceous-Tertiary boundary (at Zumaya and Sopelana in the Bay of Biscay region, and at Caravaca, Agost, and Alamedilla in the Betic Cordilleras). Other deposits previously proposed as impact related can now be rejected, or are dubious and still debated. These include the Pelarda Formation, alleged to represent proximal ejecta from the Azuara structure; the Paleocene-Eocene boundary near Zumaya (western Pyrenees) and Alamedilla (Betic Cordillera); and the Arroyofrı´o Oolite Bed, which has been alleged as distal ejecta of an unknown Callovian-Oxfordian impact event. The scarcity of evidence for meteorite-impact events in the sedimentary record is possibly due to a lack of detailed studies. We propose several sedimentary units that could potentially be related to impact events, and where future research should focus. INTRODUCTION DISTAL RECORD OF IMPACT EVENTS The sedimentary record of Spain presents evidence for at The evidence from sedimentary units to be considered as least one impact event, as well as a number of units of potential distal impact ejecta may consist of geochemical anomalies of impact clastic origin (some of which are currently under inves- elements and isotopes (e.g., Ir, 187Os/188Os), the presence of tigation). -
Shocked Quartz Grains in the Polymict Breccia of the Granby Structure, Sweden—Verification of an Impact
Meteoritics & Planetary Science 44, Nr 8, 1107–1113 (2009) Abstract available online at http://meteoritics.org Shocked quartz grains in the polymict breccia of the Granby structure, Sweden—Verification of an impact Carl ALWMARK Department of Geology, University of Lund, Sölvegatan 12, Lund SE-22362, Sweden *Corresponding author. E-mail: [email protected] (Submitted 30 March 2009; revision accepted 14 June 2009) Abstract–The Middle Ordovician Granby structure in Sweden is generally considered the result of an asteroidal or cometary collision with Earth, although no hard evidence, i.e., shock metamorphic features or traces of the impactor, have been presented to date. In this study, drill core samples of a sedimentary breccia from the Granby structure have been investigated for microscopic shock metamorphic evidence in an attempt to verify the impact genesis of the structure. The finding of multiple sets of decorated planar deformation features (PDFs) in quartz grains in these samples provides unambiguous evidence that the structure is impact derived. Furthermore, the orientation of the PDFs, e.g., ω {1013}, π {1012} and r, z {1011}, is characteristic for impact deformation. The fact that a majority of the PDFs are decorated implies a water-bearing target. The shocked quartz grains can be divided into two groups; rounded grains found in the breccia matrix likely originated from mature sandstone, and angular grains in fragments from crystalline target rocks. The absence of melt particles provides an estimated maximum shock pressure for the sedimentary derived quartz of 15– 20 GPa and the frequency distribution of PDF orientations in the bedrock quartz implies pressures of the order of 10 GPa. -
Post-Impact Depositional Environments As a Proxy for Crater Morphology, Late Devonian Alamo Impact, Nevada
Crater morphology of the Late Devonian Alamo impact, Nevada Post-impact depositional environments as a proxy for crater morphology, Late Devonian Alamo impact, Nevada Andrew J. Retzler1,†,*, Leif Tapanila1,2,*, Julia R. Steenberg3,*, Carrie J. Johnson4,*, and Reed A. Myers5,* 1Department of Geosciences, Idaho State University, 921 South 8th Avenue, Pocatello, Idaho 83209-8072, USA 2Division of Earth Science, Idaho Museum of Natural History, 921 South 8th Avenue, Pocatello, Idaho 83209-8096, USA 3Minnesota Geological Survey, 2642 University Avenue W., St. Paul, Minnesota 55114-1032, USA 4Chesapeake Energy Corporation, Building 05, Offi ce 249, 6001 North Classen Boulevard, Oklahoma City, Oklahoma 73118, USA 5Department of Earth and Atmospheric Sciences, 1-26 Earth Sciences Building, University of Alberta, Edmonton, Alberta T6G2E3, Canada ABSTRACT INTRODUCTION as expected for marine bolide impacts (Dypvik and Jansa, 2003; Dypvik and Kalleson, 2010). Marine facies of carbonate and siliciclas- Marine bolide impact events are under- Estimates of the fi nal crater diameter have relied tic sediments deposited on top of the upper represented in the rock record due to their low exclusively on the extent and composition of the Devonian Alamo Breccia Member identify preservation potential. Consequently, few stud- Alamo Breccia Member and not on geomorphic the shape and size of the Alamo impact cra- ies exist documenting marine impact crater size, features specifi c to marine impact craters. ter in south-central Nevada (western USA). morphology, and effects on sedimentation pat- The aim of this paper is to interpret crater There are 13 measured sections that record terns; of the 27 known marine impact craters on morphology based on post-impact deposi- peritidal to deep-subtidal deposition across Earth, 20 of them are currently located on land tional environments in the context of a regional the impacted platform, and these are corre- (Dypvik and Jansa, 2003).