Where the Majority of the World's Earthquakes Occur

Total Page:16

File Type:pdf, Size:1020Kb

Where the Majority of the World's Earthquakes Occur Map showing world’s three major “belts” (major plate boundaries) where the majority of the world’s earthquakes occur. Mid-Atlantic Ridge Ring of Fire Alpide Belt Alpide Belt Visual Credit: USGS Earthquake Hazard and Emergency Management: Session 3 Distribution Visual 3.1 3-1 Seismicity of North America North American Plate Pacific Plate Figure Credit: USGS Earthquake Hazard and Emergency Management: Session 3 Distribution 3-2 Visual 3.2 Map Showing Seismicity in S. California Figure Credit: USGS Earthquake Hazard and Emergency Management: Session 3 Distribution 3-3 Visual 3.3 Northern California Seismicity • Seismicity relatively well understood Earthquake Hazard and Emergency Management: Session 3 Distribution 3-4 Visual 3.4 Figure Credit: USGS Pacific Northwest – Cascadia Subduction Zone Figure Credit: USGS Earthquake Hazard and Emergency Management: Session 3 Distribution 3-5 Visual 3.5 Idaho, Utah, Wyoming • Recurring events along Wasatch Figure Credit: USGS Earthquake Hazard and Emergency Management: Session 3 Distribution 3-6 Visual 3.6 Central US Seismic Zones Figure Credit: USGS Earthquake Hazard and Emergency Management: Session 3 Distribution 3-7 Visual 3.7 Reelfoot Rift Figure Credit: USGS Earthquake Hazard and Emergency Management: Session 3 Distribution 3-8 Visual 3.8 Charlevoix Seismic Zone Credit: Natural Resources Canada Earthquake Hazard and Emergency Management: Session 3 Distribution 3-9 Visual 3.9 Southeastern Seismicity • TN relatively active • 1886 event not explained • magnetic signature from NC to GA similar to Charleston Epicenters of earthquakes (M>0.0) in the southeastern U.S. from 1977 through 1999. Figure Credit: VA Tech Seismological Earthquake Hazard and Emergency Management: Session 3 Distribution 3-10 Observatory (VTSO) Visual 3.10 Generalized US Seismic Hazard Map Earthquake Hazard and Emergency Management: Session 3 Distribution 3-11 Visual 3.11 USGS SEISMIC HAZARD MAP (PGA) http://eqhazmaps.usgs.gov/2002April03/US/USpga2500v4.gif 2% in 50 years Earthquake Hazard and Emergency Management: Session 3 Distribution 3-12 Visual 3.12 USGS seismic hazard map for California and Nevada Figure Credit: USGS Earthquake Hazard and Emergency Management: Session 3 Distribution 3-13 Visual 3.13.
Recommended publications
  • Geography) 2018
    IASbaba’s 60 Days Plan – Day 46 (Geography) 2018 Q.1) Consider the following statements. 1. A mid-oceanic ridge is composed of two chains of mountains separated by a large depression. 2. Mid-oceanic ridges are formed at convergent boundary of two plates. Which of the above statements is/are correct? a) 1 only b) 2 only c) Both 1 and 2 d) None Q.1) Solution (a) A mid-oceanic ridge is composed of two chains of mountains separated by a large depression. The mountain ranges can have peaks as high as 2,500 m and some even reach above the ocean’s surface. Running for a total length of 75,000 km, these ridges form the largest mountain systems on earth. These ridges are either broad, like a plateau, gently sloping or in the form of steep- sided narrow mountains. These oceanic ridge systems are of tectonic origin formed at divergent plate boundaries and provide evidence in support of the theory of Plate Tectonics. Do you know? A land bridge, in biogeography, is an isthmus or wider land connection between otherwise separate areas, over which animals and plants are able to cross and colonise new lands. A land bridge can be created by marine regression, in which sea levels fall, exposing shallow, previously submerged sections of continental shelf; or when new land is created by plate tectonics; or occasionally when the sea floor rises due to post-glacial rebound after an ice age. THINK! Straits Q.2) ‘Insular shelf’ means a) A continental shelf allocated to landlocked countries.
    [Show full text]
  • NSF 03-021, Arctic Research in the United States
    This document has been archived. Home is Where the Habitat is An Ecosystem Foundation for Wildlife Distribution and Behavior This article was prepared The lands and near-shore waters of Alaska remaining from recent geomorphic activities such by Page Spencer, stretch from 48° to 68° north latitude and from 130° as glaciers, floods, and volcanic eruptions.* National Park Service, west to 175° east longitude. The immense size of Ecosystems in Alaska are spread out along Anchorage, Alaska; Alaska is frequently portrayed through its super- three major bioclimatic gradients, represented by Gregory Nowacki, USDA Forest Service; Michael imposition on the continental U.S., stretching from the factors of climate (temperature and precipita- Fleming, U.S. Geological Georgia to California and from Minnesota to tion), vegetation (forested to non-forested), and Survey; Terry Brock, Texas. Within Alaska’s broad geographic extent disturbance regime. When the 32 ecoregions are USDA Forest Service there are widely diverse ecosystems, including arrayed along these gradients, eight large group- (retired); and Torre Arctic deserts, rainforests, boreal forests, alpine ings, or ecological divisions, emerge. In this paper Jorgenson, ABR, Inc. tundra, and impenetrable shrub thickets. This land we describe the eight ecological divisions, with is shaped by storms and waves driven across 8000 details from their component ecoregions and rep- miles of the Pacific Ocean, by huge river systems, resentative photos. by wildfire and permafrost, by volcanoes in the Ecosystem structures and environmental Ring of Fire where the Pacific plate dives beneath processes largely dictate the distribution and the North American plate, by frequent earth- behavior of wildlife species.
    [Show full text]
  • Subregional and Regional Approaches for Disaster Resilience
    United Nations ESCAP/76/14 Economic and Social Council Distr.: General 3 March 2020 Original: English Economic and Social Commission for Asia and the Pacific Seventy-sixth session Bangkok, 21 May 2020 Item 5 (d) of the provisional agenda* Review of the implementation of the 2030 Agenda for Sustainable Development in Asia and the Pacific: disaster risk reduction Subregional and regional approaches for disaster resilience Note by the secretariat Summary As climate uncertainties grow, Asia and the Pacific faces an increasingly complex disaster riskscape. In the Asia-Pacific Disaster Report 2019: The Disaster Riskscape across Asia-Pacific – Pathways for Resilience, Inclusion and Empowerment, the Economic and Social Commission for Asia and the Pacific provided a comprehensive overview of the regional riskscape, identifying the region’s main hotspots and options for action. Based on the findings, the present document contains highlights of the changing geography of disasters together with the associated multi-hazard risk hotspots at the subregional level, namely, South-East Asia, South and South-West Asia, the Pacific small island developing States, North and Central Asia, and North and East Asia. For each subregion, the document provides specific solution-oriented resilience-building approaches. In this regard, the document contains information about the opportunities to build resilience provided by subregional and regional cooperation and a discussion of the secretariat’s responses under the aegis of the Asia-Pacific Disaster Resilience Network. The Commission may wish to review the present document and provide guidance for the future work of the secretariat. I. Introduction 1. The 2030 Agenda for Sustainable Development provides a blueprint for development, including ending poverty, fighting inequalities and tackling climate change.
    [Show full text]
  • My Friend, the Volcano (Adapted from the 2004 Submarine Ring of Fire Expedition)
    New Zealand American Submarine Ring of Fire 2007 My Friend, The Volcano (adapted from the 2004 Submarine Ring of Fire Expedition) FOCUS MAXIMUM NUMBER OF STUDENTS Ecological impacts of volcanism in the Mariana 30 and Kermadec Islands KEY WORDS GRADE LEVEL Ring of Fire 5-6 (Life Science/Earth Science) Asthenosphere Lithosphere FOCUS QUESTION Magma What are the ecological impacts of volcanic erup- Fault tions on tropical island arcs? Transform boundary Convergent boundary LEARNING OBJECTIVES Divergent boundary Students will be able to describe at least three Subduction beneficial impacts of volcanic activity on marine Tectonic plate ecosystems. BACKGROUND INFORMATION Students will be able to explain the overall tec- The Submarine Ring of Fire is an arc of active vol- tonic processes that cause volcanic activity along canoes that partially encircles the Pacific Ocean the Mariana Arc and Kermadec Arc. Basin, including the Kermadec and Mariana Islands in the western Pacific, the Aleutian Islands MATERIALS between the Pacific and Bering Sea, the Cascade Copies of “Marianas eruption killed Anatahan’s Mountains in western North America, and numer- corals,” one copy per student or student group ous volcanoes on the western coasts of Central (from http://www.cdnn.info/eco/e030920/e030920.html) America and South America. These volcanoes result from the motion of large pieces of the AUDIO/VISUAL MATERIALS Earth’s crust known as tectonic plates. None Tectonic plates are portions of the Earth’s outer TEACHING TIME crust (the lithosphere) about 5 km thick, as Two or three 45-minute class periods, plus time well as the upper 60 - 75 km of the underlying for student research mantle.
    [Show full text]
  • 2020 Technical Sessions
    1 2020 Technical Sessions Advances in Real-Time GNSS Data Analysis and Network Operations for Hazards Monitoring Advances in Seismic Imaging of Earth’s Mantle and Core and Implications for Convective Processes Advances in Seismic Interferometry: Theory, Computation and Applications Advances in Upper Crustal Geophysical Characterization Alpine-Himalayan Alpide Shallow Earthquakes and the Current and the Future Hazard Assessments Amphibious Seismic Studies of Plate Boundary Structure and Processes Applications and Technologies in Large-Scale Seismic Analysis Back to the Future: Innovative New Research with Legacy Seismic Data Crustal Stress and Strain and Implications for Fault Interaction and Slip Cryptic Faults: Assessing Seismic Hazard on Slow Slipping, Blind or Distributed Fault Systems Data Fusion and Uncertainty Quantification in Near-Surface Site Characterization Early Results from the 2020 M6.4 Indios, Puerto Rico Earthquake Sequence Earthquake Early Warning: Current Status and Latest Innovations Earthquake Source Parameters: Theory, Observations and Interpretations Environmental and Near Surface Seismology: From Glaciers and Rivers to Engineered Structures and Beyond Exploring Rupture Dynamics and Seismic Wave Propagation Along Complex Fault Systems Explosion Seismology Advances 2 Forthcoming Updates of the USGS NSHMs: Hawaii, Conterminous U.S. and Alaska From Aseismic Deformation to Seismic Transient Detection, Location and Characterization Full-Waveform Inversion: Recent Advances and Applications Innovative Seismo-Acoustic Applications
    [Show full text]
  • Natural Disasters in Latin America and the Caribbean
    NATURAL DISASTERS IN LATIN AMERICA AND THE CARIBBEAN 2000 - 2019 1 Latin America and the Caribbean (LAC) is the second most disaster-prone region in the world 152 million affected by 1,205 disasters (2000-2019)* Floods are the most common disaster in the region. Brazil ranks among the 15 548 On 12 occasions since 2000, floods in the region have caused more than FLOODS S1 in total damages. An average of 17 23 C 5 (2000-2019). The 2017 hurricane season is the thir ecord in terms of number of disasters and countries affected as well as the magnitude of damage. 330 In 2019, Hurricane Dorian became the str A on STORMS record to directly impact a landmass. 25 per cent of earthquakes magnitude 8.0 or higher hav S America Since 2000, there have been 20 -70 thquakes 75 in the region The 2010 Haiti earthquake ranks among the top 10 EARTHQUAKES earthquak ory. Drought is the disaster which affects the highest number of people in the region. Crop yield reductions of 50-75 per cent in central and eastern Guatemala, southern Honduras, eastern El Salvador and parts of Nicaragua. 74 In these countries (known as the Dry Corridor), 8 10 in the DROUGHTS communities most affected by drought resort to crisis coping mechanisms. 66 50 38 24 EXTREME VOLCANIC LANDSLIDES TEMPERATURE EVENTS WILDFIRES * All data on number of occurrences of natural disasters, people affected, injuries and total damages are from CRED ME-DAT, unless otherwise specified. 2 Cyclical Nature of Disasters Although many hazards are cyclical in nature, the hazards most likely to trigger a major humanitarian response in the region are sudden onset hazards such as earthquakes, hurricanes and flash floods.
    [Show full text]
  • Notice Concerning Copyright Restrictions
    NOTICE CONCERNING COPYRIGHT RESTRICTIONS This document may contain copyrighted materials. These materials have been made available for use in research, teaching, and private study, but may not be used for any commercial purpose. Users may not otherwise copy, reproduce, retransmit, distribute, publish, commercially exploit or otherwise transfer any material. The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specific conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use," that user may be liable for copyright infringement. This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law. 2 31. Cosmogony and Uses of Geothermal Resources in Mesoamerica Abstract: Many Mesoamerican cultures developed in the Mexican by Volcanic Belt, which runs east-west Mario Cesar SuArez Arriaga across Southern Mexico. For RalTaele Cataldi thousands of years, this was a place Susan F. Hodgson particularly rich in active geothermal manifestations, where intense contacts between mankind and geothermal forces deeply influenced “Mexico has as many volcanoes the material lives of Mesoamericans as England does blackberries.” -1 0th International Geological and played an important role in basic Congress, Guadalajara, 1906 decisions, such as selecting where to live.
    [Show full text]
  • Draft IEE: Viet Nam: Water Sector Investment Program
    Initial Environmental Examination Project Number: 41456-033 March 2011 MFF 0054-VIE: Water Sector Investment Program – Tranche 2 This initial environmental examination is a document of the borrower. The views expressed herein do not necessarily represent those of ADB’s Board of Directors, Management, or staff, and may be preliminary in nature. Your attention is directed to the “terms of use” section of this website. In preparing any country program or strategy, financing any project, or by making any designation of or reference to a particular territory or geographic area in this document, the Asian Development Bank does not intend to make any judgments as to the legal or other status of any territory or area. Rehabilitating and Upgrading Project of Haiphong Water Supply System – Stage II: Final Report - Draft Supplementary Appendix 19-a Initial Environmental Examination Construction of Kim Son Water Supply System AECOM Asia Company Ltd. Supplementary Appendix 19-a Rehabilitating and Upgrading Project of Haiphong Water Supply System – Stage II: Final Report - Draft Table of Contents Abbreviations, Weights and Measures, Currency Equivalent iii I. EXECUTIVE SUMMARY 1 A. Purpose of the Report 1 B. Rehabilitating & Upgrading Project of the Hai Phong Water Supply System - 1 Stage II C. Construction of Kim Son Water System 2 D. Summary of Impacts and Mitigation Measures 3 E. Information Disclosure, Consultation and Participation 4 F. Grievance Redress Mechanism 4 G. Environmental Management Plan 5 H. Conclusion 6 II. POLICY, LEGAL & ADMINISTRATIVE FRAMEWORK 7 A. Policy and Legal Framework 7 B. Assessment and Approval Requirements 8 III. DESCRIPTION OF THE SUBPROJECT 8 A.
    [Show full text]
  • Ring of Fire Proposed RMP and Final EIS- Volume 1 Cover Page
    U.S. Department of the Interior Bureau of Land Management N T OF M E TH T E R A IN P T E E D R . I O S R . U M 9 AR 8 4 C H 3, 1 Ring of Fire FINAL Proposed Resource Management Plan and Final Environmental Impact Statement and Final Environmental Impact Statement and Final Environmental Management Plan Resource Proposed Ring of Fire Volume 1: Chapters 1-3 July 2006 Anchorage Field Office, Alaska July 200 U.S. DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMMENT 6 Volume 1 The Bureau of Land Management Today Our Vision To enhance the quality of life for all citizens through the balanced stewardship of America’s public lands and resources. Our Mission To sustain the health, diversity, and productivity of the public lands for the use and enjoyment of present and future generations. BLM/AK/PL-06/022+1610+040 BLM File Photos: 1. Aerial view of the Chilligan River north of Chakachamna Lake in the northern portion of Neacola Block 2. OHV users on Knik River gravel bar 3. Mountain goat 1 4. Helicopter and raft at Tsirku River 2 3 4 U.S. Department of the Interior Bureau of Land Management Ring of Fire Proposed Resource Management Plan and Final Environmental Impact Statement Prepared By: Anchorage Field Office July 2006 United States Department of the Interior BUREAU OF LAND MANAGEMENT Alaska State Office 222 West Seventh Avenue, #13 Anchorage, Alaska 995 13-7599 http://www.ak.blm.gov Dear Reader: Enclosed for your review is the Proposed Resource Management Plan and Final Environmental Impact Statement (Proposed RMPIFinal EIS) for the lands administered in the Ring of Fire by the Bureau of Land Management's (BLM's) Anchorage Field Office (AFO).
    [Show full text]
  • Wild and Free-Flowing Identifying and Safeguarding Canada’S Wild Rivers Acknowledgements
    Wild and free-flowing Identifying and safeguarding Canada’s wild rivers Acknowledgements: This study was made possible through technical and research support from Korice Moir, Grace Arabian, Anna Labetski, Juan Zuloaga, Rahul Chandra, and Alex Serki. This work was funded in part by funds raised through WWF-Canada’s River Quest Canoe Challenge. Reproduction of this report in part or full requires written permission from WWF General disclaimer: Information in this report was obtained from highly regarded data sources, references, and individual experts. It is the intent to print accurate and reliable information. However, the authors are not responsible for the validity of all information presented in this report or for the consequences of its use. The views, opinions, or conclusions expressed in this report are those of the communities and do not necessarily reflect those of the WWF-Canada or the authors. Published: November 2017 By: Heather Crochetiere (Specialist, Freshwater) with help from James Snider (Vice President, Science, Research and Innovation), Joyce Arabian (Specialist, GIS & Spatial Analysis), Elizabeth Hendriks (Vice President, Freshwater) and Sarah MacWhirter (Senior Manager, Strategic Communications) at WWF-Canada Cover photo: Paddler on the Thelon River, N.W.T, Canada © JEREMY HARRISON / WWF-Canada WILD AND FREE-FLOWING RIVERS Historically, Canada has been a land of wild, large and free-flowing rivers teeming with abundant fish and other wildlife. These rivers have nourished Indigenous peoples for thousands of years and, over the past 150 years, have provided sustenance and supported a wide array of economic activities for Canadians in communities of all sizes throughout the country.
    [Show full text]
  • 2006 Submarine Ring of Fire, It's Going to Blow
    2006 Submarine Ring of Fire It’s Going to Blow Up! (adapted from the 2005 New Zealand American Submarine Ring of Fire Expedition) FOCUS TEACHING TIME Volcanism on the Pacific Ring of Fire One or two 45-minute class periods, plus time for student research GRADE LEVEL 7-8 (Earth Science) SEATING ARRANGEMENT Classroom style if students are working individu- FOCUS QUESTION ally, or groups of two to four students What are major characteristics of volcanoes on the Pacific Ring of Fire? MAXIMUM NUMBER OF STUDENTS 30 LEARNING OBJECTIVES Students will be able to describe the processes KEY WORDS that produce the “Submarine Ring of Fire.” Volcano Caldera Students will be able to explain the factors that Cascade Mountains contribute to explosive volcanic eruptions. Ring of Fire Asthenosphere Students will be able to identify at least three ben- Lithosphere efits that humans derive from volcanism. Magma Fault Students will be able to describe the primary risks Transform boundary posed by volcanic activity in the United States, Convergent boundary and will be able to identify the volcano within the Divergent boundary continental U.S. that is considered most danger- Subduction ous. Tectonic plate Mariana Arc MATERIALS Copies of “Ring of Fire Volcanism Worksheet,” BACKGROUND INFORMATION one copy for each student or student group The Submarine Ring of Fire is an arc of active vol- canoes that partially encircles the Pacific Ocean AUDIO/VISUAL MATERIALS Basin and results from the motion of large pieces (Optional) Equipment for viewing video clips of the Earth’s crust known as tectonic plates. from the Ocean Explorer Web site These plates are portions of the Earth’s outer crust (the lithosphere) about 5 km thick, as well as the upper 60 - 75 km of the underlying mantle.
    [Show full text]
  • Australia and Oceania: Physical Geography
    R E S O U R C E L I B R A R Y E N C Y C L O P E D I C E N T RY Australia and Oceania: Physical Geography Encyclopedic entry. Oceania is a region made up of thousands of islands throughout the South Pacific Ocean. G R A D E S 6 - 12+ S U B J E C T S Biology, Earth Science, Geology, Geography, Human Geography, Physical Geography C O N T E N T S 10 Images For the complete encyclopedic entry with media resources, visit: http://www.nationalgeographic.org/encyclopedia/oceania-physical-geography/ Oceania is a region made up of thousands of islands throughout the Central and South Pacific Ocean. It includes Australia, the smallest continent in terms of total land area. Most of Australia and Oceania is under the Pacific, a vast body of water that is larger than all the Earth’s continental landmasses and islands combined. The name “Oceania” justly establishes the Pacific Ocean as the defining characteristic of the continent. Oceania is dominated by the nation of Australia. The other two major landmasses of Oceania are the microcontinent of Zealandia, which includes the country of New Zealand, and the eastern half of the island of New Guinea, made up of the nation of Papua New Guinea. Oceania also includes three island regions: Melanesia, Micronesia, and Polynesia (including the U.S. state of Hawaii). Oceania’s physical geography, environment and resources, and human geography can be considered separately. Oceania can be divided into three island groups: continental islands, high islands, and low islands.
    [Show full text]