Melissa Price
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Checklist of Fish and Invertebrates Listed in the CITES Appendices
JOINTS NATURE \=^ CONSERVATION COMMITTEE Checklist of fish and mvertebrates Usted in the CITES appendices JNCC REPORT (SSN0963-«OStl JOINT NATURE CONSERVATION COMMITTEE Report distribution Report Number: No. 238 Contract Number/JNCC project number: F7 1-12-332 Date received: 9 June 1995 Report tide: Checklist of fish and invertebrates listed in the CITES appendices Contract tide: Revised Checklists of CITES species database Contractor: World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge, CB3 ODL Comments: A further fish and invertebrate edition in the Checklist series begun by NCC in 1979, revised and brought up to date with current CITES listings Restrictions: Distribution: JNCC report collection 2 copies Nature Conservancy Council for England, HQ, Library 1 copy Scottish Natural Heritage, HQ, Library 1 copy Countryside Council for Wales, HQ, Library 1 copy A T Smail, Copyright Libraries Agent, 100 Euston Road, London, NWl 2HQ 5 copies British Library, Legal Deposit Office, Boston Spa, Wetherby, West Yorkshire, LS23 7BQ 1 copy Chadwick-Healey Ltd, Cambridge Place, Cambridge, CB2 INR 1 copy BIOSIS UK, Garforth House, 54 Michlegate, York, YOl ILF 1 copy CITES Management and Scientific Authorities of EC Member States total 30 copies CITES Authorities, UK Dependencies total 13 copies CITES Secretariat 5 copies CITES Animals Committee chairman 1 copy European Commission DG Xl/D/2 1 copy World Conservation Monitoring Centre 20 copies TRAFFIC International 5 copies Animal Quarantine Station, Heathrow 1 copy Department of the Environment (GWD) 5 copies Foreign & Commonwealth Office (ESED) 1 copy HM Customs & Excise 3 copies M Bradley Taylor (ACPO) 1 copy ^\(\\ Joint Nature Conservation Committee Report No. -
Hawaiian Tree Snail Genetics
Appendix ES-9 Introduction Recent evolutionary radiations on island chains such as the Hawaiian Islands can provide insight into evolutionary processes, such as genetic drift and adaptation (Wallace 1880, Grant and Grant 1994, Losos and Ricklefs 2009). For limited mobility species, colonization processes hold important evolutionary stories not just among islands, but within islands as well (Holland and Hadfield 2002, Parent 2012). One such radiation produced at least 91 species of Hawaiian tree snails in the endemic subfamily Achatinellinae, on at least five of the six main Hawaiian Islands: O‘ahu, Maui, Lana‘i, Moloka‘i, and Hawai‘i (Pilsbry and Cooke 1912–1914, Holland and Hadfield 2007). As simultaneous hermaphrodites with the ability to self-fertilize, colonization events among islands may have occurred via the accidental transfer of a single individual by birds (Pilsbry and Cooke 1912–1914), or via land bridges that connected Maui, Molokai, and Lanai at various points in geologic history (Price and Elliot- Fisk 2004). Early naturalists attributed speciation solely to genetic drift, noting that this subfamily was “still a youthful group in the full flower of their evolution” (Pilsbry and Cooke 1912–1914). However, as these species evolved over dramatic precipitation and temperature gradients, natural selection and adaptation may have been quite rapid as species expanded to fill unexploited niches along environmental gradients, early in this subfamily’s history. As such, species in the subfamily Achatinellinae provide an excellent system for examining both neutral and adaptive processes of evolution. Habitat loss, predation by introduced species, and over-harvesting by collectors led to the extinction of more than 50 species in the subfamily Achatinellinae, and resulted in the declaration of all remaining species in the genus Achatinella as Endangered (Hadfield and Mountain 1980; U.S. -
Achatinella Abbreviata (O`Ahu Tree Snail) 5-Year Review Summary And
Achatinella abbreviata (O`ahu Tree Snail) 5-Year Review Summary and Evaluation U.S. Fish and Wildlife Service Pacific Islands Fish and Wildlife Office Honolulu, Hawai`i 5-YEAR REVIEW Species reviewed: Achatinella abbreviata (O`ahu tree snail) TABLE OF CONTENTS 1.0 GENERAL INFORMATION.......................................................................................... 3 1.1 Reviewers....................................................................................................................... 3 1.2 Methodology used to complete the review:................................................................. 3 1.3 Background: .................................................................................................................. 3 2.0 REVIEW ANALYSIS....................................................................................................... 4 2.1 Application of the 1996 Distinct Population Segment (DPS) policy......................... 4 2.2 Recovery Criteria.......................................................................................................... 5 2.3 Updated Information and Current Species Status .................................................... 6 2.4 Synthesis......................................................................................................................... 9 3.0 RESULTS ........................................................................................................................ 10 3.1 Recommended Classification:................................................................................... -
BIOLOGICAL OPINION of the U.S. FISH and WILDLIFE SERVICE for ROUTINE MILITARY TRAINING and TRANSFORMATION of the 2Nd BRIGADE 25Th INFANTRY DIVISION (Light)
BIOLOGICAL OPINION of the U.S. FISH AND WILDLIFE SERVICE for ROUTINE MILITARY TRAINING and TRANSFORMATION of the 2nd BRIGADE 25th INFANTRY DIVISION (Light) U.S. ARMY INSTALLATIONS ISLAND of OAHU October 23, 2003 (1-2-2003-F-04) TABLE OF CONTENTS INTRODUCTION ........................................................... 1 CONSULTATION HISTORY .................................................. 2 BIOLOGICAL OPINION Description of the Proposed Action ............................................ 6 Dillingham Military Reservation ............................................... 11 Kahuku Training Area ..................................................... 15 Kawailoa Training Area .................................................... 20 Makua Military Reservation ................................................. 24 Schofield Barracks East Range ............................................... 25 Schofield Barracks Military Reservation ........................................ 29 South Range Acquisition Area ............................................... 35 Other Proposed SBCT Training Action Locations ................................. 36 Wildland Fire Management Plan Overview ...................................... 37 Stabilization Overview ..................................................... 38 Conservation Measures .................................................... 42 STATUS OF THE SPECIES AND ENVIRONMENTAL BASELINE - PLANTS Abutilon sandwicense ..................................................... 52 Alectryon macrococcus .................................................. -
Demographic Studies on Hawaii's Endangered Tree Snails: Partulina Proxima 1
PacificPacific SSciencecience (1989),(1989), vol. 43, 43, no.no. 1 © 19198989 byby UniversityUni versity ofof HawaiiHawaii Press.Press.All Allrights rights reservedreserved Demographic Studies on Hawaii's Endangered Tree Snails: Partulina proxima 1 2 2 MICHAELMICHAEL G.G. HADFIELDHADFIELD AANDND SSTEPHENTEPHEN E. MILLER ABSTRACT: Populations ofthethetree tree snail Partulina proproxima,xima, endemicendemicto higher elevationselevations of Molokai,Molokai, HawaiianHawaiian Islands,Islands, were studiedstudiedfor 3 years.years. AnalysesAnalyses of the data derived from 17 bimonthlybimonthly mark-recapture eventsevents determineddetermined that each tree harborsharbors a small, small, mostlymostl y nonmigratorynonmigratory populationpopulation of 8-26 8-26 snailssnails of which 2-42-4 areare adults; the snails average 4.2 mm long at birth and 21.3 mm long when growth stops;stops; growth isis slow, with maturity reached in 55-7-7 years;years; annual fecundity averages 6.2 6.2 offoffspringspring per adult; and mortality is about 98%98% over the first 4 years years of life. Given the high rate ofjuvenile mortmortality,ality, adult snails must reproducereproduce for at least least 1212 years to replace themselves. From this we calculate a minimum maximalmaximal life-spanlife-span of 18-19 18-19 years.years. We conclude that the current high rate of unexplained juvenileju venile mortmortality,ality, combined withlate late aagege aatt fifirstrst reproduc tion and loloww fecundity,fecundity, placplacee thisthis sspeciespecies at veveryry hihighgh riskrisk to any ssortortof perturbatperturbation,ion, particularlparticularlyy any selective predation on adultadults.s. AMONGAMONGTTHEHE MOSTMOSTRAVAGEDRAVAGED BIOTAS in the theworld world and predatorypredatory animals;animals; probablyprobably introducedintroduced isisthat that of the Hawaiian Ha waiian IslandsIslands ((ZimmermanZimmerman pathogens (though(thoughessentially essentially unstudiedunstudied);); 1970).1970). -
9.0 Strategy for Stabilization of Koolau Achatinella Species
9-1 9.0 Strategy for Stabilization of Koolau Achatinella species General Description and Biology Achatinella species are arboreal and generally nocturnal, preferring cool and humid conditions. During the day, the snails seal themselves against leaf surfaces to avoid drying out. The snails graze on fungi growing on the surfaces of leaves and trunks. Achatinella are hermaphroditic though it is unclear whether or not individuals are capable of self-fertilization. All species in the endemic genus bear live young (USFWS 1993). Taxonomic background: The genus Achatinella is endemic to the island of Oahu and the subfamily Achatinellinae is endemic to the Hawaiian Islands. A total of 41 species were recognized by Pilsbry and Cooke in a monograph of the genus (1912-1913). This treatment is still recognized for the most part by the USFWS, although several genetic studies by Holland and Hadfield (2002, 2004) have further elucidated the relationships among species. Threats: Threats to Achatinella species in general are rats (Rattus rattus, R. norvegicus, and R. exulans), predatory snails (Euglandina rosea), terrestrial flatworms Geoplana septemlineata and Platydemis manokwari, and the small terrestrial snail Oxychilus alliarius. Lower elevation sites may be under more pressure from E. rosea and rats as human disturbed sites may have provide more ingress points for these threats. Threats in the Action Area: The decline of these species has not been attributed to threats from any Army training maneuvers either direct or indirect. Rather, the decline is likely due the loss of genetic variation caused by genetic drift in the remaining small populations and predation by rats (Rattus sp.) and the introduced predatory snail Euglandina rosea. -
Ecology and Population Trends in New Caledonian Placostylus Snails
Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. ECOLOGY AND POPULATION TRENDS IN NEW CALEDONIAN PLACOSTYLUS SNAILS (MOLLUSCA: GASTROPODA: BULIMULIDAE) A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Zoology at Massey University, Palmerston North, New Zealand Placostylus fibratus Placostylus porphyrostomus Fabrice Brescia 2011 Abstract This study focuses on two endemic New Caledonian land snails: Placostylus fibratus and Placostylus porphyrostomus (known locally as bulimes) which are in decline and listed as vulnerable by the IUCN. On the Isle of Pines, both species are highly-valued commercially and traditionally harvested species suffering from exploitation for human consumption. In the dry forests of the New Caledonian mainland, P. porphyrostomus, especially, is threatened due to habitat degradation and loss, and rodent predation. Prior to this study, the life histories, impact of human harvest, and population trends remained largely unknown for the New Caledonian Placostylus species and restoration trials for their conservation had not been undertaken. Addressing these deficiencies forms the foundation for the thesis, and the findings are used to formulate recommendations for management and conservation. On Isle of Pines, the extent and densities of P. fibratus are greater than the scattered and isolated populations of P. porphyrostomus found on the island and in the dry forests of the Mainland. Placostylus snails are long-lived (estimated at 19 to 39 years for P. -
Final IMPLEMENTATION PLAN OAHU TRAINING AREAS
Final IMPLEMENTATION PLAN FOR OAHU TRAINING AREAS: Schofield Barracks Military Reservation, Schofield Barracks East Range, Kawailoa Training Area, Kahuku Training Area, and Dillingham Military Reservation October 2008 Prepared by: United States Army Garrison, Hawaii Directorate of Public Works Environmental Division Schofield Barracks, Hawaii 96857 i Final Oahu Implementation Plan 2008 Executive Summary USFWS Consultation and the Oahu Implementation Plan The Oahu Implementation Plan (OIP) was prepared to guide the U.S. Army Garrison Hawaii (Army) in the ongoing conservation and stabilization efforts for 23 endangered plant species, several endangered snail species, and one endangered bird species potentially affected by military training at all of the Army training installations on Oahu (except Makua). In 2003, the Army initiated formal Section 7 consultation with the U.S. Fish and Wildlife Service (USFWS) by providing a Biological Assessment (BA) for military training at Schofield Barracks Military Reservation (SBMR), Kahuku Training Area (KTA), Kawailoa Training Area (KLOA), Schofield Barracks East Range (SBER), South Range Acquisition Area (SRAA), and Dillingham Military Reservation (DMR). In October 2003, the USFWS issued a non jeopardy Biological Opinion (BO) with the condition that the Army prepare an Implementation Plan outlining the measures necessary to stabilize the listed species on these installations with less than three stable populations and/or more than 50 percent of known individuals occurring within the action area (AA). The consultation utilized an AA that encompasses all land potentially affected by military training (i.e. fire, invasive species introductions, etc.) and thus includes a small area outside the installation boundaries. Pursuant to the requirements of the 2003 BO, the Army prepared a draft OIP and submitted it to the USFWS in June 2005. -
Polynesia-Micronesia Biodiversity Hotspot
ECOSYSTEM PROFILE POLYNESIA-MICRONESIA BIODIVERSITY HOTSPOT FINAL VERSION MAY 2007 Prepared by: Conservation International-Melanesia Center for Biodiversity Conservation In collaboration with: Secretariat of the Pacific Regional Environment Program With the technical support of: The Bishop Museum- Honolulu Conservation International-Center for Applied Biodiversity Science The Nature Conservancy – Micronesia Program Societé d’Ornithologie de la Polynésie Wildlife Conservation Society – Pacific Islands And of the Ecosystem Profile Preparation Team: James Atherton Joanna Axford Nigel Dowdeswell Liz Farley Roger James Penny Langhammer François Martel Harley Manner David Olson Samuelu Sesega Assisted by the following experts and contributors: FIJI ISLANDS Timoci Gaunavinaka Willy Tetuanui Aaron Jenkins Vilikesa Masibalavu Yves Doudoute Alex Patrick Aliki Turagakula FRENCH POLYNESIA HAWAII & USA Alivereti Bogiva Claude Carlson Allen Allison Alumita Savabula Claude Serrat Ana Rodrigues Craig Morley Eli Poroi Art Whistler Dale Withington Francis Murphy Audrey Newman Dick Watling Georges Sanford Dieter Mueller-Dombois Etika Rupeni Hinano Murphy Jim Space Gunnar Keppel Isabelle Vahirua-Lechat John Pilgrim Guy Dutson Jacques Iltis Lucius Eldredge Jo Ceinaturaga Jean-François Butaud Mark Merlin Jone Niukula Jean-Yves Meyer Robert Cowie Kesaia Tabunakawai Maxime Chan Robert Waller Linda Farley Mehdi Adjeroud Tom Brooks Manoa Malani Neil Davies Marika Tuiwawa Olivier Babin MICRONESIA Philip Felstead Paula Meyer Anne Brook Randy Thaman Philippe Raust -
COA Supplement No. 1 a Review of National and International Regulations Concerned with Collection, Importation
Page 2 COA Supplement No. 1 In 1972, a group of shell collectors saw the need for a national organization devoted to the interests of shell collec- tors; to the beauty of shells, to their scientific aspects, and to the collecting and preservation of mollusks. This was the start of COA. Our member- AMERICAN CONCHOLOGIST, the official publication of the Conchol- ship includes novices, advanced collectors, scientists, and shell dealers ogists of America, Inc., and issued as part of membership dues, is published from around the world. In 1995, COA adopted a conservation resolution: quarterly in March, June, September, and December, printed by JOHNSON Whereas there are an estimated 100,000 species of living mollusks, many PRESS OF AMERICA, INC. (JPA), 800 N. Court St., P.O. Box 592, Pontiac, IL 61764. All correspondence should go to the Editor. ISSN 1072-2440. of great economic, ecological, and cultural importance to humans and Articles in AMERICAN CONCHOLOGIST may be reproduced with whereas habitat destruction and commercial fisheries have had serious ef- proper credit. We solicit comments, letters, and articles of interest to shell fects on mollusk populations worldwide, and whereas modern conchology collectors, subject to editing. Opinions expressed in “signed” articles are continues the tradition of amateur naturalists exploring and documenting those of the authors, and are not necessarily the opinions of Conchologists the natural world, be it resolved that the Conchologists of America endors- of America. All correspondence pertaining to articles published herein es responsible scientific collecting as a means of monitoring the status of or generated by reproduction of said articles should be directed to the Edi- mollusk species and populations and promoting informed decision making tor. -
Demographic and Genetic Factors in the Recovery Or Demise of Ex Situ Populations Following a Severe Bottleneck in Fifteen Species of Hawaiian Tree Snails
Demographic and genetic factors in the recovery or demise of ex situ populations following a severe bottleneck in fifteen species of Hawaiian tree snails Melissa R. Price1,2 , David Sischo3, Mark-Anthony Pascua4 and Michael G. Hadfield1 1 Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawai‘i at Manoa,¯ Honolulu, HI, USA 2 Department of Natural Resources and Environmental Management, University of Hawai‘i at Manoa,¯ Honolulu, HI, USA 3 Division of Forestry and Wildlife, Department of Land and Natural Resources, Honolulu, HI, USA 4 Biology Department, University of Hawai‘i at Manoa,¯ Honolulu, HI, USA ABSTRACT Wild populations of endangered Hawaiian tree snails have declined precipitously over the last century due to introduced predators and other human impacts. Life history traits, such as very low fecundity (<5 oVspring per year across taxa) and maturity at approximately four years of age have made recovery diYcult. Conservation eVorts such as in situ predator-free enclosures may increase survival to maturity by protecting oVspring from predation, but no long-term data existed prior to this study demonstrating the demographic and genetic parameters necessary to maintain populations within those enclosures. We evaluated over 20 years of evidence for the dynamics of survival and extinction in captive ex situ populations of Hawaiian tree snails established from wild-collected individuals. From 1991 to 2006, small numbers of snails (<15) from fifteen species were collected from the wild to initiate captive-reared populations as a hedge against extinction. This small number of founders resulted in a severe bottleneck in each of the captive-reared Submitted 6 July 2015 Accepted 26 October 2015 populations. -
Worldwide Mollusc Species Data Base Family: ACHATINELLIDAE
WMSDB - Worldwide Mollusc Species Data Base Family: ACHATINELLIDAE Author: Claudio Galli - [email protected] (updated 07/set/2015) Class: GASTROPODA --- Clade: HETEROBRANCHIA-PULMONATA-EUPULMONATA-STYLOMMATOPHORA-ORTHURETHRA-ACHATINELLOIDEA ------ Family: ACHATINELLIDAE Gulick, 1873 (Land) - Alphabetic order - when first name is in bold the species has images Taxa=891, Genus=29, Subgenus=18, Species=337, Subspecies=241, Synonyms=265, Images=207 abbreviata, Tornatellaria abbreviata C.M.F. Ancey, 1903 abbreviata , Achatinella abbreviata L.A. Reeve, 1850 abbreviata bacca , Achatinella abbreviata bacca L.A. Reeve, 1850 abbreviata hawaiiensis, Tornatellaria abbreviata hawaiiensis H.A. Pilsbry & C.M. Cooke, 1916 accincta, Achatinella accincta A.A. Gould - syn of: Leptachatina ventulus A.E.J. Férussac, 1825 acicula, Tornatellides perkinsi acicula H.A. Pilsbry & C.M. Cooke, 1915 acicularis , Strobilus acicularis C.M. Cooke & Y. Kondo, 1960 acicularis raphi , Strobilus acicularis raphi C.M. Cooke & Y. Kondo, 1960 acuminata, Achatinella acuminata A.A. Gould, 1847 - syn of: Leptachatina acuminata (A.A. Gould, 1847) acuta , Pukunia acuta C.M. Cooke & Y. Kondo, 1960 acuta , Achatinella acuta W. Newcomb - syn of: Amastra elongata W. Newcomb, 1853 acuta , Achatinella acuta W.J. Swainson - syn of: Amastra spirizona A.E.J. Férussac, 1834 ada, Tornatellides macromphala ada H.A. Pilsbry & C.M. Cooke, 1915 adamsoni , Atea adamsoni H.A. Pilsbry & C.M. Cooke, 1933 adelinae, Tornatellaria adelinae H.A. Pilsbry & C.M. Cooke, 1915 adusta , Achatinella adusta L.A. Reeve, 1850 affinis , Tubuaia affinis (A. Garrett, 1879) affinis, Achatinella affinis W. Newcomb, 1854 - syn of: Amastra affinis W. Newcomb, 1854 alba, Achatinella apexfulva alba E.R. Sykes, 1900 albalabia, Achatinella bulimoides albalabia D.A.