Propositions 1. the Gut Commensal Akkermansia Muciniphila Expands Its Glycolytic Repertoire to Human Milk Oligosaccharides Util

Total Page:16

File Type:pdf, Size:1020Kb

Propositions 1. the Gut Commensal Akkermansia Muciniphila Expands Its Glycolytic Repertoire to Human Milk Oligosaccharides Util Propositions 1. The gut commensal Akkermansia muciniphila expands its glycolytic repertoire to human milk oligosaccharides utilization. (this thesis) 2. Mucolytic activity is essential for A. muciniphila to survive in the complex gut ecosystem. (this thesis) 3. Human gut microbiome is considered as “the invisible organ” (Li, et al. 2020), however its contribution to human’s health is not acknowledged the same as the visible ones. 4. Science is always playing with your sanity. 5. As a PhD student multi-tasking can be your best friend but also your worst enemy. 6. Humans should use learnings from bacterial collaborations in complex ecosystems to make this planet a better place. Belonging to the thesis entitled: “Mucin and Human milk oligosaccharides utilization: a strategy of Akkermansia muciniphila to ensure survival in the human gut” Ioannis Kostopoulos Wageningen, January 8th 2020 a strategy of of a strategy utilization: Milk Oligosaccharides Human Mucin and Mucin and Human Milk Oligosaccharides INVITATION utilization: a strategy of Akkermansia Akkermansia muciniphila Akkermansia muciniphila to ensure survival in the human gut You are kindly invited to attend the public defense of my PhD thesis Ioannis Kostopoulos Mucin and Human Milk Oligosaccharides utilization: a strategy of to ensure survival in the human gut human in the survival ensure to Akkermansia muciniphila to ensure survival in the human gut Friday, 8th January 2020 at 16:00 Aula of Wageningen University & Research General Foulkesweg 1A Wageningen Ioannis Kostopoulos [email protected] Paranymphs Prokopis Konstanti [email protected] Steven Aalvink [email protected] Ioannis Kostopoulos Ioannis Mucin and Human Milk Oligosaccharides utilization: a strategy of Akkermansia muciniphila to ensure survival in the human gut Ioannis Kostopoulos Thesis committee Promotor Prof. dr Jan Knol Special Chair Intestinal Microbiology of Early Life Laboratory of Microbiology Wageningen University & Research Co-Promotor Dr Clara Belzer Associate Professor, Microbiology Laboratory of Microbiology Wageningen University & Research Other members Prof. dr T. Abee, Wageningen University & Research Prof. dr D. van Sinderen, University College Cork, Ireland Dr W.T. Steegenga, Wageningen University & Research Dr K. Strijbis, Utrecht University This research was conducted under the auspices of the Graduate School VLAG (Advanced studies in Food Technology, Agrobiotechnology, Nutrition and Health Sciences) Mucin and Human Milk Oligosaccharides utilization: a strategy of Akkermansia muciniphila to ensure survival in the human gut Ioannis Kostopoulos Thesis submitted in fulfillment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr A. P. J. Mol, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Friday 8 January 2021 at 4 p.m. in the Aula Ioannis Kostopoulos Mucin and Human Milk Oligosaccharides utilization: a strategy of Akkermansia muciniphila to ensure survival in the human gut. 302 pages PhD thesis, Wageningen University, Wageningen, the Netherlands (2021) With references, with summaries in English and Dutch ISBN: 978-94-6395-552-2 DOI: https://doi.org/10.18174/531651 Table of contents Chapter 1 General introduction and Thesis outline 7 Chapter 2 Akkermansia muciniphila in the Human Gastrointestinal Tract: 31 When, Where and How? Chapter 3 Akkermansia muciniphila used Human Milk Oligosaccharides to 63 thrive in the early life conditions in vitro Chapter 4 A continuous battle for host-derived glycans in the gut between 101 a mucus specialist and a glycan generalist in vitro and in vivo Chapter 5 Minimalist Approach for Deciphering the Ecophysiology of 131 Human Gut Microbes Chapter 6 The main functions of key species Akkermansia muciniphila 177 remain stable across different microbial ecosystems Chapter 7 General discussion 199 Thesis Summary 213 Nederlandse Samenvatting 219 References 225 Appendices 287 Co-author affiliations 288 Acknowledgments 289 About the author 299 List of Publications 300 Overview of completed training activities 301 5 Chapter 1 General introduction and Thesis outline Chapter 1 General Introduction and Thesis Outline General Introduction This thesis describes the ability of Akkermansia muciniphila to survive in competitive ecological environments through its capacity to utilize and degrade host-derived glycans, such as mucins and Human Milk Oligosaccharides (HMOs). Furthermore, this thesis examines A. muciniphila’s capacity to survive in competitive environments by degrading mucin glycans. In this thesis, the microbe-to-microbe interaction between A. muciniphila and other glycan-degrading bacteria is also discussed. This bacterium is the focus of this thesis. A. muciniphila is a mucin-degrading colonizer of the gastrointestinal (GI) tract and was first isolated at the Laboratory of Microbiology at Wageningen University (Derrien et al. 2004). Akkermansia’s name is named after Dr. Antoon Akkermans, who led the Microbial Ecology group of the Laboratory of Microbiology at Wageningen University at the time that A. muciniphila was isolated (Derrien et al. 2004). The establishment of the gut microbiota The human gut harbours a complex and diverse bacterial community known as the gut microbiota (Dethlefsen, McFall-Ngai, and Relman 2007), which plays an important role in the balance between health and disease. The intestinal microbiota consists of approximately 500 to 1000 species that belong to only few of the known bacteria phyla. The most abundant phyla in the human gut are Firmicutes and Bacteroidetes, but also include members of the phyla Proteobacteria, Verrucomicrobia, Actinobacteria, Fusobacteria, and Cyanobacteria (Huttenhower et al. 2012; Qin et al. 2010). The establishment of the human gut microbiota starts at birth, when microbes rapidly colonize the infant gut, although the composition and diversity only stabilize after seven years in humans (Bäckhed et al. 2015; Yatsunenko et al. 2012). The microbiota composition is influenced by numerous factors such as delivery mode, administration of antibiotics to the infant or the mother, mode of feeding (breastfeeding and/or formula) and the intake of dietary fibre (Bergström et al. 2014). The development of the microbiota in early life is important, as this period is critical in shaping the host’s long-term metabolic, immunological and neurological development (Kundu et al. 2017; Thompson 2012). The mode of delivery has a significant effect on the development of the microbial ecosystem in neonates (Van den Abbeele et al. 2019). Initial microbial exposure during vaginal delivery predominately originates from the maternal 8 Chapter 1 General Introduction and Thesis Outline microbiota, while exposure upon caesarean delivery is related to the environment (Lennox-King et al. 1976a, 1976b). The desirable transmission of vaginal and gut microbiota from mother to infant is observed in vaginally delivered infants during birth, but this is not the case in caesarean-delivered infants (Dominguez-Bello et al. 2016). In general, Escherichia coli and Streptococcus spp. are the first bacterial species to colonize the gastrointestinal tract of neonates. These facultative anaerobes create an optimal environment for the subsequent colonization by obligate anaerobes such as Bacteroides spp., Bifidobacterium spp., and Clostridium spp. Apart from the delivery mode, another factor that contributes significantly to the development of the gut microflora is the intake of dietary fibre (glycans) into the intestine, mostly from diet and host mucosal secretions (Koropatkin, Cameron, and Martens 2012). The dietary fibre passes undigested to the human intestine because of the lack of hydrolytic enzymes in the human genome (Koropatkin, Cameron, and Martens 2012). Gut bacteria utilise and transform these indigestible glycans into short- chain fatty acids (SCFAs), which serve as nutrients for colonocytes and other gut epithelial cells (Koropatkin, Cameron, and Martens 2012). Human intestinal microbiota, therefore, plays a significant symbiotic role in helping humans access and utilise the indigestible dietary fibre. Glycan-degrading bacteria in the intestine have various glycan preferences. Therefore, selective consumption of these nutrients can influence the composition and balance of the gut microbiota (Koropatkin, Cameron, and Martens 2012). Switching from HMOs to mucin glycans The acquisition of a stable intestinal microbial community during the first months of life constitutes a critical developmental window (L. M. Cox et al. 2014). Distinct faecal microbial compositions differ between infants fed with human milk and those fed with formula. The microbiota of breastfed infants, for example, is characterised by high levels of Actinobacteria (mainly bifidobacteria) and low microbial diversity (Koropatkin, Cameron, and Martens 2012). Mother’s milk is the only source of nutrients and dietary glycans for breastfed infants, and it is considered the best nourishment for the development of the new-born (Neville et al. 2012). The glycans in human milk are known as HMOs, and they have proven to influence infant intestinal microbiota composition (Koropatkin, Cameron, and Martens 2012). Human milk contains 5-15 g/L HMOs, with more than 200 different HMO structures reported, of 9 Chapter 1 General Introduction and Thesis Outline which 100 have been successfully described (Ninonuevo et al. 2006; Ruiz-Palacios et al. 2003; Stahl
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Gastrointestinal Status and Microbiota Shaping in Amyotrophic Lateral Sclerosis: a New Frontier for Targeting?
    8 Gastrointestinal Status and Microbiota Shaping in Amyotrophic Lateral Sclerosis: A New Frontier for Targeting? Letizia Mazzini1 • Fabiola De Marchi1 • Elena Niccolai2 • Jessica Mandrioli3, Amedeo Amedei2 1ALS Centre, Department of Neurology, Maggiore della Carità Hospital, University of Piemonte Orientale, Novara, Italy; 2Department of Experimental and clinical Medicine, University of Florence, Firenze, Italy; 3Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy Author for correspondence: Letizia Mazzini, ALS Centre, Department of Neurology, Maggiore della Carità Hospital, University of Piemonte Orientale, Novara, Italy. Email: [email protected] Doi: https://doi.org/10.36255/exonpublications.amyotrophiclateralsclerosis. microbiota.2021 Abstract: Amyotrophic lateral sclerosis (ALS) is a rare and severe neurodegenera- tive disease affecting the upper and lower motor neurons, causing diffuse muscle paralysis. Etiology and pathogenesis remain largely unclear, but several environ- mental, genetic, and molecular factors are thought to be involved in the disease process. Emerging data identify a relationship between gut microbiota dysbiosis and neurodegenerative diseases, such as Parkinson’s disease, Alzheimer’s disease, and ALS. In these disorders, neuroinflammation is being increasingly recognized as a driver for disease onset and progression. Gut bacteria play a crucial role in In: Amyotrophic Lateral Sclerosis. Araki T (Editor), Exon Publications, Brisbane, Australia. ISBN:
    [Show full text]
  • Diversity in the Extracellular Vesicle-Derived Microbiome of Tissues According to Tumor Progression in Pancreatic Cancer
    cancers Article Diversity in the Extracellular Vesicle-Derived Microbiome of Tissues According to Tumor Progression in Pancreatic Cancer Jin-Yong Jeong 1, Tae-Bum Kim 2 , Jinju Kim 1, Hwi Wan Choi 1, Eo Jin Kim 1, Hyun Ju Yoo 1 , Song Lee 3, Hye Ryeong Jun 3, Wonbeak Yoo 4 , Seokho Kim 5, Song Cheol Kim 3,6,* and Eunsung Jun 1,3,* 1 Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine and Asan Medical Center, Seoul 05505, Korea; [email protected] (J.-Y.J.); [email protected] (J.K.); [email protected] (H.W.C.); [email protected] (E.J.K.); [email protected] (H.J.Y.) 2 Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; [email protected] 3 Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; [email protected] (S.L.); [email protected] (H.R.J.) 4 Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; [email protected] 5 Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Korea; [email protected] 6 Biomedical Engineering Research Center, Asan Institute of Life Science, AMIST, Asan Medical Center, Seoul 05505, Korea * Correspondence: [email protected] (S.C.K.); [email protected] (E.J.); Tel.: +82-2-3010-3936 (S.C.K.); +82-2-3010-1696 (E.J.); Fax: +82-2-474-9027 (S.C.K.); +82-2-474-9027 (E.J.) Received: 13 July 2020; Accepted: 17 August 2020; Published: 19 August 2020 Abstract: This study was conducted to identify the composition and diversity of the microbiome in tissues of pancreatic cancer and to determine its role.
    [Show full text]
  • Analyse Bibliographique Sur Le Microbiote Intestinal Et Son Etude Dans Des Modeles Animaux De Maladies Metaboliques, En Particulier Chez Le Primate Non Humain These
    VETAGRO SUP CAMPUS VETERINAIRE DE LYON Année 2019 - Thèse n°111 ANALYSE BIBLIOGRAPHIQUE SUR LE MICROBIOTE INTESTINAL ET SON ETUDE DANS DES MODELES ANIMAUX DE MALADIES METABOLIQUES, EN PARTICULIER CHEZ LE PRIMATE NON HUMAIN THESE Présentée à l’UNIVERSITE CLAUDE-BERNARD - LYON I (Médecine - Pharmacie) et soutenue publiquement le 6 décembre 2019 pour obtenir le grade de Docteur Vétérinaire par SCHUTZ Charlotte Née le 5 mars 1994 à Zürich (Suisse) VETAGRO SUP CAMPUS VETERINAIRE DE LYON Année 2019 - Thèse n°111 ANALYSE BIBLIOGRAPHIQUE SUR LE MICROBIOTE INTESTINAL ET SON ETUDE DANS DES MODELES ANIMAUX DE MALADIES METABOLIQUES, EN PARTICULIER CHEZ LE PRIMATE NON HUMAIN THESE Présentée à l’UNIVERSITE CLAUDE-BERNARD - LYON I (Médecine - Pharmacie) et soutenue publiquement le 6 décembre 2019 pour obtenir le grade de Docteur Vétérinaire par SCHUTZ Charlotte Née le 5 mars 1994 à Zürich (Suisse) Liste du corps enseignant Liste des Enseignants du Campus Vétérinaire de Lyon (01-09-2019) ABITBOL Marie DEPT-BASIC-SCIENCES Professeur ALVES-DE-OLIVEIRA Laurent DEPT-BASIC-SCIENCES Maître de conférences ARCANGIOLI Marie-Anne DEPT-ELEVAGE-SPV Professeur AYRAL Florence DEPT-ELEVAGE-SPV Maître de conférences BECKER Claire DEPT-ELEVAGE-SPV Maître de conférences BELLUCO Sara DEPT-AC-LOISIR-SPORT Maître de conférences BENAMOU-SMITH Agnès DEPT-AC-LOISIR-SPORT Maître de conférences BENOIT Etienne DEPT-BASIC-SCIENCES Professeur BERNY Philippe DEPT-BASIC-SCIENCES Professeur BONNET-GARIN Jeanne-Marie DEPT-BASIC-SCIENCES Professeur BOULOCHER Caroline DEPT-BASIC-SCIENCES
    [Show full text]
  • Complete Genome Sequence of Akkermansia Glycaniphila Strain Pytt, a Mucin-Degrading Specialist of the Reticulated Python Gut
    PROKARYOTES crossm Complete Genome Sequence of Akkermansia glycaniphila Strain PytT,a Mucin-Degrading Specialist of the Reticulated Python Gut Downloaded from Janneke P. Ouwerkerk,a Jasper J. Koehorst,b Peter J. Schaap,b Jarmo Ritari,d Lars Paulin,c Clara Belzer,a Willem M. de Vosa,d,e Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlandsa; Systems and Synthetic Biology, Wageningen University, Wageningen, The Netherlandsb; Institute of Biotechnology, University of Helsinki, Helsinki, Finlandc; Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finlandd; RPU Immunobiology, Department of Bacteriology & Immunology, University of Helsinki, Helsinki, Finlande ABSTRACT Akkermansia glycaniphila is a novel Akkermansia species that was iso- http://mra.asm.org/ lated from the intestine of the reticulated python and shares the capacity to de- Received 16 August 2016 Accepted 1 grade mucin with the human strain Akkermansia muciniphila MucT. Here, we report November 2016 Published 5 January 2017 Citation Ouwerkerk JP, Koehorst JJ, Schaap PJ, T the complete genome sequence of strain Pyt of 3,074,121 bp. The genomic analysis Ritari J, Paulin L, Belzer C, de Vos WM. 2017. reveals genes for mucin degradation and aerobic respiration. Complete genome sequence of Akkermansia glycaniphila strain PytT, a mucin-degrading specialist of the reticulated python gut. he ability to grow on mucin as a sole carbon and nitrogen source is a distinctive Genome Announc 5:e01098-16. https:// doi.org/10.1128/genomeA.01098-16. Tfeature of the human isolate Akkermansia muciniphila MucT (1). A. glycaniphila strain Copyright © 2017 Ouwerkerk et al. This is an T on February 21, 2019 by guest Pyt is the second Akkermansia species described to be mucolytic in pure culture (2).
    [Show full text]
  • Microbes Inside&Mdash;From Diversity to Function: the Case of Akkermansia
    The ISME Journal (2012) 6, 1449–1458 & 2012 International Society for Microbial Ecology All rights reserved 1751-7362/12 www.nature.com/ismej WINOGRADSKY REVIEW Microbes inside—from diversity to function: the case of Akkermansia Clara Belzer1 and Willem M de Vos1,2,3 1Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands; 2Department of Veterinary Biosciences, Helsinki University, Helsinki, Finland; 3Department of Bacteriology and Immunology, Helsinki University, Helsinki, Finland The human intestinal tract is colonized by a myriad of microbes that have developed intimate interactions with the host. In healthy individuals, this complex ecosystem remains stable and resilient to stressors. There is significant attention on the understanding of the composition and function of this intestinal microbiota in health and disease. Current developments in metaomics and systems biology approaches allow to probe the functional potential and activity of the intestinal microbiota. However, all these approaches inherently suffer from the fact that the information on macromolecules (DNA, RNA and protein) is collected at the ecosystem level. Similarly, all physiological and other information collected from isolated strains relates to pure cultures grown in vitro or in gnotobiotic systems. It is essential to integrate these two worlds of predominantly chemistry and biology by linking the molecules to the cells. Here, we will address the integration of omics- and culture-based approaches with the complexity of the human intestinal
    [Show full text]
  • Akkermansia Muciniphila Ameliorates the Age-Related Decline in Colonic
    van der Lugt et al. Immunity & Ageing (2019) 16:6 https://doi.org/10.1186/s12979-019-0145-z RESEARCH Open Access Akkermansia muciniphila ameliorates the age-related decline in colonic mucus thickness and attenuates immune activation in accelerated aging Ercc1−/Δ7 mice Benthe van der Lugt1*†, Adriaan A. van Beek2,3†, Steven Aalvink4, Ben Meijer3, Bruno Sovran5, Wilbert P. Vermeij6,7, Renata M. C. Brandt6, Willem M. de Vos4,8, Huub F. J. Savelkoul3, Wilma T. Steegenga1 and Clara Belzer4* Abstract Background: The use of Akkermansia muciniphila as potential therapeutic intervention is receiving increasing attention. Health benefits attributed to this bacterium include an improvement of metabolic disorders and exerting anti-inflammatory effects. The abundance of A. muciniphila is associated with a healthy gut in early mid- and later life. However, the effects of A. muciniphila on a decline in intestinal health during the aging process are not investigated yet. We supplemented accelerated aging Ercc1−/Δ7 mice with A. muciniphila for 10 weeks and investigated histological, transcriptional and immunological aspects of intestinal health. Results: The thickness of the colonic mucus layer increased about 3-fold after long-term A. muciniphila supplementation and was even significantly thicker compared to mice supplemented with Lactobacillus plantarum WCFS1. Colonic gene expression profiles pointed towards a decreased expression of genes and pathways related to inflammation and immune function, and suggested a decreased presence of B cells in colon. Total B cell frequencies in spleen and mesenteric lymph nodes were not altered after A. muciniphila supplementation. Mature and immature B cell frequencies in bone marrow were increased, whereas B cell precursors were unaffected.
    [Show full text]
  • Toxicological Safety Evaluation of Pasteurized Akkermansia Muciniphila
    Received: 6 July 2020 Revised: 10 July 2020 Accepted: 10 July 2020 DOI: 10.1002/jat.4044 RESEARCH ARTICLE Toxicological safety evaluation of pasteurized Akkermansia muciniphila Céline Druart1 | Hubert Plovier1 | Matthias Van Hul2 | Alizée Brient3 | Kirt R. Phipps4 | Willem M. de Vos5,6 | Patrice D. Cani2 1A-Mansia Biotech SA, Mont-Saint-Guibert, Belgium Abstract 2Walloon Excellence in Life Sciences and Gut microorganisms are vital for many aspects of human health, and the commensal BIOtechnology (WELBIO), Metabolism and bacterium Akkermansia muciniphila has repeatedly been identified as a key compo- Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université nent of intestinal microbiota. Reductions in A. muciniphila abundance are associated catholique de Louvain, Brussels, Belgium with increased prevalence of metabolic disorders such as obesity and type 2 diabetes. 3Citoxlab France, Evreux, France It was recently discovered that administration of A. muciniphila has beneficial effects 4Intertek Health Sciences Inc., Farnborough, Hampshire, UK and that these are not diminished, but rather enhanced after pasteurization. Pasteur- 5Laboratory of Microbiology, Wageningen ized A. muciniphila is proposed for use as a food ingredient, and was therefore sub- University, Wageningen, the Netherlands jected to a nonclinical safety assessment, comprising genotoxicity assays (bacterial 6Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, reverse mutation and in vitro mammalian cell micronucleus tests) and a 90-day toxic- Helsinki, Finland ity study. For the latter, Han Wistar rats were administered with the vehicle or pas- Correspondence teurized A. muciniphila at doses of 75, 375 or 1500 mg/kg body weight/day Patrice D. Cani, UCLouvain, Université (equivalent to 4.8 × 109, 2.4 × 1010, or 9.6 × 1010 A.
    [Show full text]
  • Experimental Evaluation of Ecological Principles to Understand and Modulate the Outcome of Bacterial Strain Competition in Gut Microbiomes
    Experimental evaluation of ecological principles to understand and modulate the outcome of bacterial strain competition in gut microbiomes Rafael R. Segura Munoz University of Nebraska-Lincoln Sara Mantz University of Nebraska-Lincoln Ines Martinez University of Alberta Robert J. Schmaltz University of Nebraska-Lincoln Jens Walter ( [email protected] ) APC Microbiome Ireland; University College Cork Amanda E. Ramer-Tait ( [email protected] ) University of Nebraska-Lincoln Research Article Keywords: Microbiome, niche, competitive exclusion, coexistence theory, gut ecosystems, engraftment, live biotherapeutics, intraspecic interactions, priority effects Posted Date: December 8th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-123088/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/33 Abstract It is unclear if coexistence theory can be applied to gut microbiomes to understand their characteristics and modulate their composition. Through strictly controlled colonization experiments in mice, we demonstrated that strains of Akkermansia muciniphila and Bacteroides vulgatus could only be established if microbiomes were devoid of exactly these species. Strains of A. muciniphila showed strict competitive exclusion, while B. vulgates strains coexistedbut populations were still inuenced by competitive interactions. Priority effects were detected for both species as strains’ competitive tness increased when colonizing rst. Based on these observations, we devised a subtractive strategy for A. muciniphila using antibiotics and demonstrated that a strain from an assembled community can be stably replaced by another strain. Altogether, these results suggest that aspects of coexistence theory, e.g., niche partitioning and the impact of priority effects on tness differences, can be applied to explain ecological characteristics of gut microbiomes and modulate their composition.
    [Show full text]
  • Akkermansia Muciniphila Adheres to Enterocytes and Strengthens the Integrity of the Epithelial Cell Layer Downloaded From
    Akkermansia muciniphila Adheres to Enterocytes and Strengthens the Integrity of the Epithelial Cell Layer Downloaded from Justus Reunanen,a Veera Kainulainen,a Laura Huuskonen,a Noora Ottman,b Clara Belzer,b Heikki Huhtinen,c Willem M. de Vos,a,b,d Reetta Satokaria,e Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finlanda; Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlandsb; Division of Digestive Surgery and Urology, Turku University Hospital, Turku, Finlandc; Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finlandd; Functional Foods Forum, University of Turku, Turku, Finlande http://aem.asm.org/ Akkermansia muciniphila is a Gram-negative mucin-degrading bacterium that resides in the gastrointestinal tracts of humans and animals. A. muciniphila has been linked with intestinal health and improved metabolic status in obese and type 2 diabetic subjects. Specifically, A. muciniphila has been shown to reduce high-fat-diet-induced endotoxemia, which develops as a result of an impaired gut barrier. Despite the accumulating evidence of the health-promoting effects of A. muciniphila, the mechanisms of interaction of the bacterium with the host have received little attention. In this study, we used several in vitro models to inves- tigate the adhesion of A. muciniphila to the intestinal epithelium and its interaction with the host mucosa. We found that A. muciniphila adheres strongly to the Caco-2 and HT-29 human colonic cell lines but not to human colonic mucus. In addition, A. muciniphila showed binding to the extracellular matrix protein laminin but not to collagen I or IV, fibronectin, or fetuin. Im- on March 20, 2018 by TERKKO NATIONAL LIBRARY OF HEALTH SCIENCES portantly, A.
    [Show full text]
  • Akkermansia Muciniphila
    Intestinal Immunity to the Commensal Bacterium Akkermansia muciniphila By Eduardo Ansaldo Gine A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Molecular and Cell Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Gregory Barton, Chair Professor Ellen Robey Professor Sarah Stanley Professor Michael Shapira Summer 2019 Abstract Intestinal Immunity to the Commensal Bacterium Akkermansia muciniphila By Eduardo Ansaldo Gine Doctor of Philosophy in Molecular and Cell Biology University of California, Berkeley Professor Gregory Barton, Chair Intestinal immunity plays critical roles in maintaining host health. Despite the abundance of foreign antigens and activated lymphocytes in the intestine, only a few commensal bacteria that induce cognate adaptive immune responses during homeostasis have been identified. In this dissertation, I reveal that Akkermansia muciniphila, an intestinal bacterium associated with beneficial effects on host metabolism and cancer immunotherapy, induces cognate T-dependent immunoglobulin G1 (IgG1) and IgA antibody responses and antigen-specific T cell responses during homeostasis. In contrast to the select few examples of previously characterized mucosal responses to commensal bacteria, T cell responses to A. muciniphila are limited to T follicular helper cells in the Peyer’s patches in a gnotobiotic setting, without appreciable induction of other T helper fates or migration to the lamina propria. However, A. muciniphila-specific responses are context-dependent, and adopt other T helper fates in the setting of a conventional microbiota. These findings suggest that contextual signals influence T cell immunity to the microbiota and modulate host immune function during homeostasis. Interestingly, T cells specific to A.
    [Show full text]
  • Akkermansia Muciniphila for Its Future Application Paranymphs Steven Aalvink E a P L I C [email protected]
    M e t a b Invitation o l i c c h You are kindly invited to a r a attend the public defense c t e of my PhD thesis r i z a t i o n a Metabolic n d v characterization i a b l e and viable delivery of d e l Akkermansia i v e r y muciniphila o f A for its future application k k e r m Monday, January 22, 2018 a n at 4 pm in the Aula of s i a Wageningen University m Generaal Foulkesweg 1A, u c Metabolic characterization Wageningen i n i p h and viable delivery of i Kees C. H. van der Ark l a f [email protected] o r Akkermansia muciniphila i t s f u Paranymphs t for its future application u r Steven Aalvink e a [email protected] p p l i c a Hugo de Vries t i o [email protected] n 2 0 Kees C. H. van der Ark 1 8 Metabolic characterization and viable delivery of Akkermansia muciniphila for its future application Kees C.H. van der Ark Metabolic characterization and viable delivery of Akkermansia muciniphila for its future application Kees C.H. van der Ark Thesis committee Promotor Prof. Dr Willem M. de Vos Professor of Microbiology Wageningen University & Research Thesis Co-promotor Dr Clara Belzer submitted in fulfilment of the requirements for the degree of doctor Assistant professor, Laboratory of Microbiology at Wageningen University Wageningen University & Research by the authority of the Rector Magnificus, Other members Prof.
    [Show full text]