A Family of Complex Nilmanifolds with in Nitely Many Real Homotopy Types
Complex Manifolds 2018; 5: 89–102 Complex Manifolds Research Article Adela Latorre*, Luis Ugarte, and Raquel Villacampa A family of complex nilmanifolds with innitely many real homotopy types https://doi.org/10.1515/coma-2018-0004 Received December 14, 2017; accepted January 30, 2018. Abstract: We nd a one-parameter family of non-isomorphic nilpotent Lie algebras ga, with a ∈ [0, ∞), of real dimension eight with (strongly non-nilpotent) complex structures. By restricting a to take rational values, we arrive at the existence of innitely many real homotopy types of 8-dimensional nilmanifolds admitting a complex structure. Moreover, balanced Hermitian metrics and generalized Gauduchon metrics on such nilmanifolds are constructed. Keywords: Nilmanifold, Nilpotent Lie algebra, Complex structure, Hermitian metric, Homotopy theory, Minimal model MSC: 55P62, 17B30, 53C55 1 Introduction Let g be an even-dimensional real nilpotent Lie algebra. A complex structure on g is an endomorphism J∶ g Ð→ g satisfying J2 = −Id and the integrability condition given by the vanishing of the Nijenhuis tensor, i.e. NJ(X, Y) ∶= [X, Y] + J[JX, Y] + J[X, JY] − [JX, JY] = 0, (1) for all X, Y ∈ g. The classication of nilpotent Lie algebras endowed with such structures has interesting geometrical applications; for instance, it allows to construct complex nilmanifolds and study their geometric properties. Let us recall that a nilmanifold is a compact quotient Γ G of a connected, simply connected, nilpotent Lie group G by a lattice Γ of maximal rank in G. If the Lie algebra g of G has a complex structure J, then a compact complex manifold X = (Γ G, J) is dened in a natural way.
[Show full text]