JUNE 2018 on the Dry Side
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Crassulaceae, Eurytoma Bryophylli, Fire, Invasions, Madagascar, Osphilia Tenuipes, Rhembastus Sp., Soil
B I O L O G I C A L C O N T R O L O F B R Y O P H Y L L U M D E L A G O E N S E (C R A S S U L A C E A E) Arne Balder Roderich Witt A thesis submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfillment of the requirements for the degree of Doctor of Philosophy JOHANNESBURG, 2011 DECLARATION I declare that this thesis is my own, unaided work. It is being submitted for the Degree of Doctor of Philosophy in the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or any other examination in any other University. ______________________ ______ day of ______________________ 20_____ ii ABSTRACT Introduced plants will lose interactions with natural enemies, mutualists and competitors from their native ranges, and possibly gain interactions with new species, under new abiotic conditions in their new environment. The use of biocontrol agents is based on the premise that introduced species are liberated from their natural enemies, although in some cases introduced species may not become invasive because they acquire novel natural enemies. In this study I consider the potential for the biocontrol of Bryophyllum delagoense, a Madagascan endemic, and hypothesize as to why this plant is invasive in Australia and not in South Africa. Of the 33 species of insects collected on B. delagoense in Madagascar, three species, Osphilia tenuipes, Eurytoma bryophylli, and Rhembastus sp. showed potential as biocontrol agents in Australia. -
Prickly News South Coast Cactus & Succulent Society Newsletter | Feb 2021
PRICKLY NEWS SOUTH COAST CACTUS & SUCCULENT SOCIETY NEWSLETTER | FEB 2021 Guillermo ZOOM PRESENTATION SHARE YOUR GARDEN OR YOUR FAVORITE PLANT Rivera Sunday, February 14 @ 1:30 pm Cactus diversity in northwestern Argentina: a habitat approach I enjoyed Brian Kemble’s presentation on the Ruth Bancroft Garden in Walnut Creek. For those of you who missed the presentation, check out the website at https://www. ruthbancroftgarden.org for hints on growing, lectures and access to webinars that are available. Email me with photos of your garden and/or plants Brian graciously offered to answer any questions that we can publish as a way of staying connected. or inquiries on the garden by contacting him at [email protected] [email protected]. CALL FOR PHOTOS: The Mini Show genera for February are Cactus: Eriosyce (includes Neoporteria, Islaya and Neochilenia) and Succulent: Crassula. Photos will be published and you will be given To learn more visit southcoastcss.org one Mini-show point each for a submitted photo of your cactus, succulent or garden (up to 2 points). Please include your plant’s full name if you know it (and if you don’t, I will seek advice for you). Like us on our facebook page Let me know if you would prefer not to have your name published with the photos. The photos should be as high resolution as possible so they will publish well and should show off the plant as you would Follow us on Instagram, _sccss_ in a Mini Show. This will provide all of us with an opportunity to learn from one another and share plants and gardens. -
Implications of Leaf Anatomy and Stomatal Responses in the Clusia Genus for the Evolution of Crassulacean Acid Metabolism
Implications of leaf anatomy and stomatal responses in the Clusia genus for the evolution of Crassulacean Acid Metabolism 1 To those who believe in science as a tool for a better future 2 Declaration I hereby certify that this thesis is the result of my own investigations and that no part of it has been submitted for any degree other than the Doctor of Philosophy at the University of Newcastle upon Tyne. All references to the work of others are duly acknowledged. Victoria Andrea Barrera Zambrano 3 Table of Contents Acknowledgments ...................................................................................................... 11 Abbreviations ............................................................................................................. 12 Abstract ...................................................................................................................... 15 Chapter 1: Introduction .............................................................................................. 16 1.1 The Clusia genus .................................................................................................. 17 1.2 CAM evolution ..................................................................................................... 22 1.2.1 Evolution of CAM in Clusia .......................................................... 23 1.3 Crassulacean Acid Metabolism ............................................................................ 25 1.3.1 Carbohydrate metabolism and enzyme control in the CAM pathway 29 1.3.2 Circadian -
Nymphaea Folia Naturae Bihariae Xli
https://biblioteca-digitala.ro MUZEUL ŢĂRII CRIŞURILOR NYMPHAEA FOLIA NATURAE BIHARIAE XLI Editura Muzeului Ţării Crişurilor Oradea 2014 https://biblioteca-digitala.ro 2 Orice corespondenţă se va adresa: Toute correspondence sera envoyée à l’adresse: Please send any mail to the Richten Sie bitte jedwelche following adress: Korrespondenz an die Addresse: MUZEUL ŢĂRII CRIŞURILOR RO-410464 Oradea, B-dul Dacia nr. 1-3 ROMÂNIA Redactor şef al publicațiilor M.T.C. Editor-in-chief of M.T.C. publications Prof. Univ. Dr. AUREL CHIRIAC Colegiu de redacţie Editorial board ADRIAN GAGIU ERIKA POSMOŞANU Dr. MÁRTON VENCZEL, redactor responsabil Comisia de referenţi Advisory board Prof. Dr. J. E. McPHERSON, Southern Illinois Univ. at Carbondale, USA Prof. Dr. VLAD CODREA, Universitatea Babeş-Bolyai, Cluj-Napoca Prof. Dr. MASSIMO OLMI, Universita degli Studi della Tuscia, Viterbo, Italy Dr. MIKLÓS SZEKERES Institute of Plant Biology, Szeged Lector Dr. IOAN SÎRBU Universitatea „Lucian Blaga”,Sibiu Prof. Dr. VASILE ŞOLDEA, Universitatea Oradea Prof. Univ. Dr. DAN COGÂLNICEANU, Universitatea Ovidius, Constanţa Lector Univ. Dr. IOAN GHIRA, Universitatea Babeş-Bolyai, Cluj-Napoca Prof. Univ. Dr. IOAN MĂHĂRA, Universitatea Oradea GABRIELA ANDREI, Muzeul Naţional de Ist. Naturală “Grigora Antipa”, Bucureşti Fondator Founded by Dr. SEVER DUMITRAŞCU, 1973 ISSN 0253-4649 https://biblioteca-digitala.ro 3 CUPRINS CONTENT Botanică Botany VASILE MAXIM DANCIU & DORINA GOLBAN: The Theodor Schreiber Herbarium in the Botanical Collection of the Ţării Crişurilor Museum in -
Succulents-Plant-List-2021.Pdf
Rutgers Gardens Spring Plant Sale 2021 ‐ SUCCULENTS (all plants available from May 1) Scientific name Cultivar name, notes Common name Adromischus cristatus crinkle‐leaf plant, key lime pie Aeonium percarneum kiwi aeonium Agave americana century plant Agave americana Marginata century plant Agave montana Agave schidigera (Agave filifera var. schidigera) Aloe Delta Lights Aloe arborescens Octopus Aloe Bulbine frutescens Hallmark Coprosma Evening Glow mirror plant Crassula Tom Thumb Crassula Small Red Carpet Crassula falcata propeller plant Crassula ovata Gollum jade tree Crassula ovata Hummel's Sunset golden jade tree Crassula pellucida Variegata calico kitten crassula Crassula perforata string of buttons Cremnosedum Little Gem Delosperma echinatum pickle plant Disocactus anguliger Epiphyllum anguliger fishbone cactus, zig zag cactus Echeveria Pearl Von Nurmberg Echeveria Elegans hens and chicks Echeveria Woolly Rose hens and chicks Echeveria gibbiflora Echeveria nodulosa Echeveria runyonii Topsy Turvy Echeveria setosa Euphorbia Sticks on Fire red pencil tree, fire sticks Euphorbia lactea f. cristata coral cactus Euphorbia mammillaris indian corn cob Euphorbia milii dwarf crown of thorns Euphorbia milii crown of thorns Faucaria tuberculosa tiger jaws Gasteria Little Warty Graptopetalum paraguayense mother‐of‐pearl‐plant, ghost plant Graptosedum Vera Higgins Graptosedum Darley Sunshine Haworthiopsis attenuata var. Big Band zebra plant Haworthiopsis tessellata (Haworthia t.) Haworthiopsis venosa (Haworthia v.) Kalanchoe Silver Spoons Kalanchoe -
C02-Opname Bij CAM Planten Bromelia's, Phalaenopsis, Kalanchoe En Andere
PRAKTIJ KDNDERZDEK PLANT & DMGEVING C02-opname bijCA Mplante n Bromelia's, Phalaenopsis, Kalanchoe enander e Literatuurstudie M.G.Warmenhove n Tj. Blacquière Praktijkonderzoek Plant &Omgevin g B.V. Sector Glastuinbouw September 2001 Publicatienummer 255 WAB E N I N G E N r Inhoudsopgave pagina 1 SAMENVATTING 5 2 INLEIDING 7 3 METHODE 9 4 CRASSULACEANACI DMETABOLIS M(CAM ) 11 4.1 WATi sCAM ? 11 4.1.1 Welke vormen vanfotosynthes e zijner ? 11 4.1.2 CAM - fotosynthese nader bekeken 13 4.2 INVLOEDOMGEVINGSFACTORE N 16 4.2.1 C02 16 4.2.2 Temperatuur 18 4.2.3 Licht 19 4.2.4 Water(stress)/ zoutstress 20 4.2.5 Diverse invloeden 21 4.3 WELKEPLANTE NZIJ NCAM ? 22 4.4 WELKE METHODENZIJ NE RO MNIEUW ESOORTE NE NCULTIVAR ST ESCREENE NO PEVENTUEL ECA M - FOTOSYNTHESE 23 5 DISCUSSIE 25 6 LITERATUUR " 27 1 Samenvatting Indi t rapport wordt ingegaan op devolgend e vragen: 1)wa t isCA M2 )welk e soorten/cultivars zijnCA Me n 31ho eku nj e hetCA Mmechanism e aantonen.Voo r deopnam eva nC0 2 (viad e huidmondjes) zijni nhe t plantenrijk een drietal mechanisme aanwezig,C 3 -,C 4 -e nCA M-fotosynthese . BijC 3-fotosyntheseword t C02 door Rubisco direct aanee nC 5suikergebonde nwaarn a C3suikersworde n gevormd. Rubisco bindt echter ook vaak- per ongeluk - zuurstof (fotorespiratie) waardoor energie verloren gaat. Inwarmer e klimaten zal defotorespirati e toenemen eni s het dus belangrijk dat de opname van C02 wordt aangepast. Door het C02 specifieke enzym PEP-carboxylaseword t geen zuurstof gebonden.C 4-fotosynthesebind t C02 met PEP-carboxylase waarna hetvi a eentransportmolecuu l (meestal malaat) naar cellen vand e vaatbundelschede wordt getransporteerd. -
Crassula Catalog
SucculentShop.co.za Page: 2 CAMPFIRE CRASSULA - CRASSULA CAPITELLA The Campfire Crassula is a branching succulent with fleshy propeller-like leaves that mature from bright lime green to bright red. Leaves turn bright red if not over-watered and the plant receives direct sun for SucculentShop.co.za Page: 3 most of the day, during drought or in cold temperatures. It has a prostrate habit, forming mats about 15 cm tall and up to a meter wide. It does best in partial sun and requires more shade in hotter inland sites When grown in shade, the leaves are bright apple green for most of the year. Although fairly drought tolerant, it requires occasional watering. Spikes of insignificant white, star-shaped flowers are borne in summer and attract bees, butterflies and other tiny insects. Works very well for hanging basket gardens. Plant in full sun or partial shade. Well-drained soil. Prune after flowering. Size: up to 20cm Read More SucculentShop.co.za Page: 4 FAIRY CRASSULA - CRASSULA MULTICAVA 15 - 20 cm cutting The Fairy Crassula or Crassula multicava is a succulent herbaceous plant native to the mountainous regions of KwaZulu-Natal (South Africa). It is frequently used as a hedge plant because its stems branch off a lot of forming quite compact foliage agglomerations. It is also appreciated for its resistance to periods of drought and extreme temperatures and the beauty of its flowering. It is currently marketed as an ornamental plant in numerous nurseries worldwide. This species is characterized by forming stems erect low (generally nor exceed 25 cm) very branched and thin of green-red. -
Buy Kalanchoe Beharensis Felt Bush, Kalanchoe Beharensis Maltese Cross - Succulent Plant Online at Nurserylive | Best Plants at Lowest Price
Buy kalanchoe beharensis felt bush, kalanchoe beharensis maltese cross - succulent plant online at nurserylive | Best plants at lowest price Kalanchoe beharensis felt bush, Kalanchoe beharensis maltese cross - Succulent Plant It is a slow growing succulent tree-like shrub. Rating: Not Rated Yet Price Variant price modifier: Base price with tax Price with discount ?499 Salesprice with discount Sales price ?499 Sales price without tax ?499 Discount Tax amount Ask a question about this product Description With this purchase you will get: 01 Kalanchoe beharensis felt bush, Kalanchoe beharensis maltese cross Plant 01 3 inch Grower Round Plastic Pot (Black) Description for Kalanchoe beharensis felt bush, Kalanchoe beharensis maltese cross 1 / 3 Buy kalanchoe beharensis felt bush, kalanchoe beharensis maltese cross - succulent plant online at nurserylive | Best plants at lowest price Plant height: 5 - 8 inches (12 - 21 cm) Plant spread: It has folded, olive-green, slightly-triangular leaves with small brown hairs. Common name(s): Kalanchoe felt bush, Kalanchoe maltese cross, Elephant Ear Kalanchoe, Velvet Elephant Ear Flower colours: Greenish yellow Bloom time: Winter Max reachable height: Up to 12 feet Difficulty to grow: Easy to grow Planting and care During the winter, keep at a south-facing window. Re-pot when the plant performs clump and goes beyond the pot size. It should be done before or after the rainy season and in the spring season. Re-pot with the following proportions: 3 parts of potting soil, 1 part of grit (pumice), 1 part of the horticultural-grade sand, 1/2 part of the compost etc. Sunlight: Full sun, partial sun, at least 4 to 6 hours of sunlight per day. -
Inventory of Vascular Plants of the Kahuku Addition, Hawai'i
CORE Metadata, citation and similar papers at core.ac.uk Provided by ScholarSpace at University of Hawai'i at Manoa PACIFIC COOPERATIVE STUDIES UNIT UNIVERSITY OF HAWAI`I AT MĀNOA David C. Duffy, Unit Leader Department of Botany 3190 Maile Way, St. John #408 Honolulu, Hawai’i 96822 Technical Report 157 INVENTORY OF VASCULAR PLANTS OF THE KAHUKU ADDITION, HAWAI`I VOLCANOES NATIONAL PARK June 2008 David M. Benitez1, Thomas Belfield1, Rhonda Loh2, Linda Pratt3 and Andrew D. Christie1 1 Pacific Cooperative Studies Unit (University of Hawai`i at Mānoa), Hawai`i Volcanoes National Park, Resources Management Division, PO Box 52, Hawai`i National Park, HI 96718 2 National Park Service, Hawai`i Volcanoes National Park, Resources Management Division, PO Box 52, Hawai`i National Park, HI 96718 3 U.S. Geological Survey, Pacific Island Ecosystems Research Center, PO Box 44, Hawai`i National Park, HI 96718 TABLE OF CONTENTS ABSTRACT.......................................................................................................................1 INTRODUCTION...............................................................................................................1 THE SURVEY AREA ........................................................................................................2 Recent History- Ranching and Resource Extraction .....................................................3 Recent History- Introduced Ungulates...........................................................................4 Climate ..........................................................................................................................4 -
C Values of Crassulacean Acid Metabolism Plants Reflect the Proportion of CO2 Fixed During Day and Night?1
How Closely Do the ␦13C Values of Crassulacean Acid Metabolism Plants Reflect the Proportion of CO2 Fixed during Day and Night?1 Klaus Winter* and Joseph A.M. Holtum Smithsonian Tropical Research Institute, P.O. Box 2072, Balboa, Ancon, Republic of Panama (K.W.); and Department of Tropical Plant Sciences, School of Tropical Biology, James Cook University, Townsville, Queensland 4811, Australia (J.A.M.H.) ␦13 The extent to which Crassulacean acid metabolism (CAM) plant C values provide an index of the proportions of CO2 fixed during daytime and nighttime was assessed. Shoots of seven CAM species (Aloe vera, Hylocereus monocanthus, Kalanchoe beharensis, Kalanchoe daigremontiana, Kalanchoe pinnata, Vanilla pauciflora, and Xerosicyos danguyi) and two C3 species (teak [Tectona grandis] and Clusia sp.) were grown in a cuvette, and net CO2 exchange was monitored for up to 51 d. In species ␦13 exhibiting net dark CO2 fixation, between 14% and 73.3% of the carbon gain occurred in the dark. C values of tissues formed inside the cuvette ranged between Ϫ28.7‰ and Ϫ11.6‰, and correlated linearly with the percentages of carbon gained in the light and in the dark. The ␦13C values for new biomass obtained solely during the dark and light were Ϫ Ϫ estimated as 8.7‰ and 26.9‰, respectively. For each 10% contribution of dark CO2 fixation integrated over the entire experiment, the ␦13C content of the tissue was, thus, approximately 1.8‰ less negative. Extrapolation of the observations to plants previously surveyed under natural conditions suggests that the most commonly expressed version of CAM in the field, “the typical CAM plant,” involves plants that gain about 71% to 77% of their carbon by dark fixation, and that the isotopic signals of plants that obtain one-third or less of their carbon in the dark may be confused with C3 plants when identified on the basis of carbon isotope content alone. -
Zimbabwe-Mozambique)
A peer-reviewed open-access journal PhytoKeys 145: 93–129 (2020) Plant checklist for the Bvumba Mountains 93 doi: 10.3897/phytokeys.145.49257 RESEARCH ARTICLE http://phytokeys.pensoft.net Launched to accelerate biodiversity research Mountains of the Mist: A first plant checklist for the Bvumba Mountains, Manica Highlands (Zimbabwe-Mozambique) Jonathan Timberlake1, Petra Ballings2,3, João de Deus Vidal Jr4, Bart Wursten2, Mark Hyde2, Anthony Mapaura4,5, Susan Childes6, Meg Coates Palgrave2, Vincent Ralph Clark4 1 Biodiversity Foundation for Africa, 30 Warren Lane, East Dean, E. Sussex, BN20 0EW, UK 2 Flora of Zimbabwe & Flora of Mozambique projects, 29 Harry Pichanick Drive, Alexandra Park, Harare, Zimbabwe 3 Meise Botanic Garden, Bouchout Domain, Nieuwelaan 38, 1860, Meise, Belgium 4 Afromontane Research Unit & Department of Geography, University of the Free State, Phuthaditjhaba, South Africa 5 National Her- barium of Zimbabwe, Box A889, Avondale, Harare, Zimbabwe 6 Box BW53 Borrowdale, Harare, Zimbabwe Corresponding author: Vincent Ralph Clark ([email protected]) Academic editor: R. Riina | Received 10 December 2019 | Accepted 18 February 2020 | Published 10 April 2020 Citation: Timberlake J, Ballings P, Vidal Jr JD, Wursten B, Hyde M, Mapaura A, Childes S, Palgrave MC, Clark VR (2020) Mountains of the Mist: A first plant checklist for the Bvumba Mountains, Manica Highlands (Zimbabwe- Mozambique). PhytoKeys 145: 93–129. https://doi.org/10.3897/phytokeys.145.49257 Abstract The first comprehensive plant checklist for the Bvumba massif, situated in the Manica Highlands along the Zimbabwe-Mozambique border, is presented. Although covering only 276 km2, the flora is rich with 1250 taxa (1127 native taxa and 123 naturalised introductions). -
Kalanchoe Species Poisoning in Pets Geof Smith, DVM, Phd, DACVIM
Toxicology Brief managing common poisonings in companion animals PEER-REVIEWED Kalanchoe species poisoning in pets Geof Smith, DVM, PhD, DACVIM alanchoe is a genus of 150 to TABLE 1 Common Kalanchoe Species Found in North America 200 plant species, most of K which are native to southern Scientific Name Common Names Africa, Madagascar, and Australia. In Kalanchoe blossfeldiana Florist’s kalanchoe, Madagascar widow’s-thrill the past, the genus was divided into three genera: Kalanchoe, Bryo- Kalanchoe daigremontiana Devil’s backbone, mother of millions, Mexican hat plant phyllum, and Kitchingia. But today Kalanchoe beharensis Feltbush, velvetleaf most botanists recognize it as one Kalanchoe delagoensis Mother of millions, chandelier plant genus.1 In the United States, Kalan- choe species are primarily ornamentals Kalanchoe fedtschenkoi South American air plant, lavender scallops and houseplants, but some have es- Kalanchoe pinnata Air plant, Mexican love plant, cathedral bells caped cultivation and can be found in Kalanchoe gastonis-bonnieri Palm beachbells, donkey ears the wild, especially in Florida and Hawaii. Table 1 lists the most common Kalanchoe beauverdii Sotre-Sotry Kalanchoe species found in North Kalanchoe prolifera Blooming boxes America. Kalanchoe laciniata Christmastree plant Plant characteristics long; flower clusters can last FIGURE 1 Although the plants vary, most Kalan- for weeks to months. Most choe species are erect, growing shrubs Kalanchoe species are easy to (Figure 1). These perennial plants gen- propagate from leaf or stem erally have thick, green, succulent fo- cuttings. Many species have liage and clusters of small flowers (Fig- plantlets (miniature plants at ures 2 & 3). The plants are popular with the end of flowering stems) florists because they can be forced to growing in the notches of the bloom at any time of the year, including leaf margins; these plantlets holidays.