Overview Guide Networks/ Fieldbus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
NESO LT Core Block Diagram NESO LT CPU Type I.MX 257 Core Class ARM 926
TECHNICAL SPECIFICATION SOLUTIONS THAT COMPLETE! NESO LT Single Board Computer CPU RS-485 CAN NESO LT core Block Diagram NESO LT CPU Type i.MX 257 Core Class ARM 926 ARM 9 Single Board Computer Driver Core Clock 400 MHz 24V/Digital Out i.MX25 4-pole Molex Features 16 KB for Instruktion and data caches Step Down Converter RTC Accuracy: +/- 30 ppm at 25°C GPIO2 DISP0 DAT0 Display RGB Memory 40-pole FFC PMIC Power TSC NAND Flash 256MByte NAND Flash RAM Standard 128 MByte DDR-SDRAM PWM-1 Backlight Battery GPIO-2 Driver Micro SD Card Slot 4 bit MicroSD (HC) CR1220 Operating Systems Battery Supported OS Windows CE 6.0, Linux Yocto PCT Interface RTC RC 1 I2C-3 6-pole FFC Communication Interfaces Digital I/O 1x Digital Out (0.7 A) RS-232 UART-1 Transceiver USBPHY1 Internal USB Network 1x 10/100 Mbit/s Ethernet (RJ-45) 5-pole STL RS-232/RS-485 RS-485 / CAN Fieldbus 1x RS-485 (Half 1x CAN (ISO/DIS 12-pole Molex RS-485 UART-3 duplex) 11898) Transceiver USB-OTG USBPHY1 RS-232 1x RS-232 (RX/TX/CTS/RTS) Flex Type AB CAN CAN Synchronous SPI (10 MBit/s) up to 12 chip selects; I²C, Keypad Keypad USB Serial Interfaces Matrix keypad up to 8 x 8 USBPHY2 20-pole JST Port Type A High-Speed USB 2.0 1x 12 Mbit/s Full Speed Host Micro-SD-Card 1x 480 Mbit/s High Speed OTG ESDHC2 Internal Audio Connector 10-pole Molex Audio Speaker output 1x speaker (connector), 1.0 W RMS (8Ω) UART-4 Audio I2C-2 S/PDIF AUDMUX Expansion Audio Internal 1x speaker connectors parallel to external Codec SPI1 30-pole FFC ESDHC2 output, Line In, Line Out, MIC In owire_LINE Display and Touch Line Out Display Interface TTL up to 24 bit (RGB) Audio EIM SDRAM Touch Interface 4-wire analog resistive; PCAP I²C 2x Speaker Amplifier 2-pole JST NAND Backlight Interface 42.5 mA Backlight drives EMI NANDF Flash Device Dimensions RJ-45 Ethernet W x H x D 113.8 x 18.0 x 47.3 mm FEC Jack Phy Weight 51g Power Supply Supply Voltage Nom. -
Allgemeines Abkürzungsverzeichnis
Allgemeines Abkürzungsverzeichnis L. -
IO-Link Instead of Fieldbus
APPLICATIONS SENSOR TECHNOLOGY IO-Link Instead of Fieldbus Laempe Mössner Sinto GmbH uses IO-Link in a new core shooter machine and achieves shorter cycle times with Turck’s QR24-IOL IO-Link encoder “When I first read about it, I thought: please don’t add the few manufacturers of core shooters worldwide. The another fieldbus system. Today I know that IO-Link isn’t machines produce sand cores for metal casting. If, for a fieldbus but quite the opposite. In many areas, example, the casting of an engine block is required, IO-Link means for us the end of bus systems because it cores are placed inside the casting mold to later makes communication simple once again,” explains produce the cavities of the engine. The cores are “shot” Tobias Lipsdorf, controller programmer at foundry from a binder sand mixture with compressed air into a machinery manufacturer Laempe Mössner Sinto mold – the core box – at a high speed between 0.3 and GmbH. When the engineer talks about the IO-Link 0.5 seconds. The mold mixture is then hardened in the intelligent communication standard, you get a sense of closed core box using process gas or heat and can then genuine enthusiasm – so too with his colleague Andre be removed. After casting, the binder loses its hard- Klavehn, who is responsible for the electrical planning. ness due to the heat from the filled melt. The cores The two of them jointly redesigned the electrical disintegrate, the sand can be removed from the cast, planning of the new machine generation and imple- leaving behind the required internal contour. -
An Introduction to Integrated Process and Power Automation
Power Up Your Plant An introduction to integrated process and power automation Jeffrey Vasel ABB, Inc. June 30, 2010 Rev 1 Abstract This paper discusses how a single integrated system can increase energy efficiency, improve plant uptime, and lower life cycle costs. Often referred to as Electrical Integration, Integrated Process and Power Automation is a new system integration architecture and power strategy that addresses the needs of the process and power generation industries. The architecture is based on Industrial Ethernet standards such as IEC 61850 and Profinet as well as Fieldbus technologies. Emphasis is placed on tying the IEC 61850 substation automation standard with the process control system. The energy efficiency gains from integration are discussed in a power generation use case. In this use case, energy efficiency is explored with integrated variable frequency drives, improved visibility into power consumption, and energy efficiency through faster plant startup times. Demonstrated capital expenditure (CAPEX) savings is discussed in a cost avoidance section where a real world example of wiring savings is described. Lastly, a power management success story from a major oil and gas company, Petrobras, is discussed. In this case, Petrobras utilized integrated process and power automation to lower CAPEX, operational expenditure (OPEX), and explore future energy saving opportunities. Executive Summary Document ID: 3BUS095060 Page 1 Date: 6/30/2010 © Copyright 2010 ABB. All rights reserved. Pictures, schematics and other graphics contained herein are published for illustration purposes only and do not represent product configurations or functionality. Executive Summary Document ID: 3BUS095060 Page 2 Date: 6/30/2010 © Copyright 2010 ABB. -
Installing Fieldbus Installing Fieldbus
Installing Fieldbus Installing Fieldbus Many automation engineers are coming face-to-face Figure 1. Standard FOUNDATION fi eldbus™ Segment. with fi eldbus applications for the fi rst time. Fieldbus (the use of digital communications for distributed Operator instrumentation and control networks) is an established Workstation technology with many benefi ts. However, fi eldbus installations require some additional considerations over and above traditional 4-20mA projects. High Speed Ethernet Choosing a “Fieldbus” Control System Fieldbus is a generic term for a variety of with H1/PA communications protocols using various media, but Interface all are simply a means to an end. What you want DC Power at commission of the project is a satisfactory and Input functional control system, and it is likely you will need Fieldbus DC to use multiple fi eldbuses to accomplish the many tasks Power Supply (Conditioner) required. For example, you may use FOUNDATION 350-500mA (Not Required for fi eldbus™ for process control, DeviceNet for discrete Fieldbus T PA Systems; May Be I/O, and PROFIBUS DP for motor drives. Every DCS Terminator with the Control System Interface) can easily integrate all of these functional plant buses into the control room Ethernet-based network. FOUNDATION fieldbus H1 or PROFIBUS PA In the process control world, “fi eldbus” usually Network (Twisted Wire Pair) 1,900m (6,233 ft) Maximum means FOUNDATION fi eldbus H1 or PROFIBUS PA. Segment Length Including Both are widely used around the world in refi neries Spur Lengths and process plants as modern day enhancements to Fieldbus Trunk Out traditional 4-20mA designs. -
Field Networking Solutions
Field Networking Solutions Courtesy of Steven Engineering, Inc. ! 230 Ryan Way, South San Francisco, CA 94080-6370 ! Main Office: (650) 588-9200 ! Outside Local Area: (800) 258-9200 ! www.stevenengineering.com TYPES OF FIELDBUS NETWORKS* Field Networking 101 Features and Benefits of Fieldbus Networks The combination of intelligent field devices, digital bus networks, and various open communications protocols Fieldbus networks provide an array of features and benefits that make them an excellent choice is producing extraordinary results at process plants in nearly all process control environments. around the world. Compared to conventional technology, fieldbus networks deliver the following benefits: Just as our ability to retrieve, share, and analyze data Reduced field wiring costs has increased tremendously by use of the Internet and - Two wires from the control room to many devices PC network technology in our homes and at our desk- Reduced commissioning costs tops, so has our ability to control and manage our - Less time and personnel needed to perform process plants improved. Digital connectivity in process I/O wiring checkouts - No time spent calibrating intermediate signals manufacturing plants provides an infrastructure for the (such as 4-20mA signals) - Digital values are delivered directly from field flow of real-time data from the process level, making it devices, increasing accuracy available throughout our enterprise networks. This data Reduced engineering/operating costs is being used at all levels of the enterprise to provide - Much smaller space required for panels, I/O racks, and connectivity boxes increased process monitoring and control, inventory and - Fewer I/O cards and termination panels for materials planning, advanced diagnostics, maintenance control system equipment - Lower power consumption by control system planning, and asset management. -
Kbox Tech Spac Sheet
KBox Family IOT GATEWAYS/ EMBEDDED BOX PC About Kontron – Member of the S&T Group IOT GATEWAYS/EMBEDDED BOX PC The KBox A-series is designed for a variety of applications in The KBox B-Series is based on Kontron’s mini-ITX mother- Kontron’s KBox C-Series is designed for the industrial control The KBox E-Series provides rugged, fanless, sealed and the industrial environment. It comprises intelligent IoT gate- cabinet environment. Based on COMe modules the KBox compact design for easy embedded into a custom housing or Kontron is a global leader in IoT/Embedded Computing Technology ways for edge analytics or remote monitoring as well as CPUs. Kontron’s KBox B-Series can be used for various C-Series is highly scalable and ensures simple upgrades as a stand-alone device, to fulfill requirements for fog portfolio of secure hardware, middleware and services for Internet of systems for control and process optimization. All systems applications such as medical, gaming, process control, - computing, edge analytics and real time control in a variety of Things (IoT) and Industry 4.0 applications. With its standard products feature a fanless design which ensures a significantly pro- wherever high performance is needed. tions guarantees mounting even when space is limited. industrial applications. and tailor-made solutions based on highly reliable state-of-the-art . embedded technologies, Kontron provides secure and innovative d e ; z i e t longed lifespan and high system availability. With its broad range of interfaces, various storage capabili- n a g applications for a variety of industries. -
Foundation Fieldbus Overview
FOUNDATIONTM Fieldbus Overview Foundation Fieldbus Overview January 2014 370729D-01 Support Worldwide Technical Support and Product Information ni.com Worldwide Offices Visit ni.com/niglobal to access the branch office Web sites, which provide up-to-date contact information, support phone numbers, email addresses, and current events. National Instruments Corporate Headquarters 11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100 For further support information, refer to the Technical Support and Professional Services appendix. To comment on National Instruments documentation, refer to the National Instruments website at ni.com/info and enter the Info Code feedback. © 2003–2014 National Instruments. All rights reserved. Legal Information Warranty NI devices are warranted against defects in materials and workmanship for a period of one year from the invoice date, as evidenced by receipts or other documentation. National Instruments will, at its option, repair or replace equipment that proves to be defective during the warranty period. This warranty includes parts and labor. The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects in materials and workmanship, for a period of 90 days from the invoice date, as evidenced by receipts or other documentation. National Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be uninterrupted or error free. A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before any equipment will be accepted for warranty work. -
Hacking the Industrial Network
Hacking the industrial network A White Paper presented by: Phoenix Contact P.O. Box 4100 Harrisburg, PA 17111-0100 Phone: 717-944-1300 Fax: 717-944-1625 Website: www.phoenixcontact.com © PHOENIX CONTACT 1 Hacking the Industrial Network Is Your Production Line or Process Management System at Risk? The Problem Malicious code, a Trojan program deliberately inserted into SCADA system software, manipulated valve positions and compressor outputs to cause a massive natural gas explosion along the Trans-Siberian pipeline, according to 2005 testimony before a U.S. House of Representatives subcommittee by a Director from Sandia National Laboratories.1 According to the Washington Post, the resulting fireball yielded “the most monumental non-nuclear explosion and fire ever seen from space.”2 The explosion was subsequently estimated at the equivalent of 3 kilotons.3 (In comparison, the 9/11 explosions at the World Trade Center were roughly 0.1 kiloton.) According to Internet blogs and reports, hackers have begun to discover that SCADA (Supervisory Control and Data Acquisition) and DCS (Distributed Control Systems) are “cool” to hack.4 The interest of hackers has increased since reports of successful attacks began to emerge after 2001. A security consultant interviewed by the in-depth news program, PBS Frontline, told them “Penetrating a SCADA system that is running a Microsoft operating system takes less than two minutes.”5 DCS, SCADA, PLCs (Programmable Logic Controllers) and other legacy control systems have been used for decades in power plants and grids, oil and gas refineries, air traffic and railroad management, pipeline pumping stations, pharmaceutical plants, chemical plants, automated food and beverage lines, industrial processes, automotive assembly lines, and water treatment plants. -
FOUNDATION Fieldbus Design Considerations Reference Manual
Reference Manual PlantPAx Process Automation System: FOUNDATION Fieldbus Design Considerations Catalog Numbers 1757-FFLDx, 1757-FFLDCx Important User Information Solid-state equipment has operational characteristics differing from those of electromechanical equipment. Safety Guidelines for the Application, Installation and Maintenance of Solid State Controls (publication SGI-1.1 available from your local Rockwell Automation sales office or online at http://www.rockwellautomation.com/literature/) describes some important differences between solid-state equipment and hard-wired electromechanical devices. Because of this difference, and also because of the wide variety of uses for solid-state equipment, all persons responsible for applying this equipment must satisfy themselves that each intended application of this equipment is acceptable. In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment. The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams. No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual. Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc., is prohibited. Throughout this manual, when necessary, we use notes to make you aware of safety considerations. WARNING: Identifies information about practices or circumstances that can cause an explosion in a hazardous environment, which may lead to personal injury or death, property damage, or economic loss. -
FSU Technical Manual
PROGRAMMABLE CONTROLLER FPS/FP2 Fieldbus Slave Units Technical Manual BEFORE BEGINNING Liability and Copyright for the Hardware This manual and everything described in it are copyrighted. You may not copy this manual, in whole or part, without written consent of Panasonic Electric Works Europe AG (PEWEU). PEWEU pursues a policy of continuous improvement of the design and performance of its products. Therefore we reserve the right to change the manual/product without notice. In no event will PEWEU be liable for direct, special, incidental, or consequential damage resulting from any defect in the product or its documentation, even if advised of the possibility of such damages. We invite your comments on this manual. Please e-mail us at: [email protected]. Please direct support matters and technical questions to your local Panasonic representative. LIMITED WARRANTY If physical defects caused by distribution are found, PEWEU will replace/repair the product free of charge. Exceptions include: When physical defects are due to different usage/treatment of the product other than described in the manual. When physical defects are due to defective equipment other than the distributed product. When physical defects are due to modifications/repairs by someone other than PEWEU. When physical defects are due to natural disasters. Important symbols One or more of the following symbols may be used in this documentation: DANGER! The warning triangle indicates especially important safety instructions. If they are not adhered to, the results could be fatal or critical injury. Indicates that you should proceed with caution. Failure to do so may result in injury or significant damage to instruments or their contents, e.g. -
Foundation Fieldbus Physical Medium, Cabling and Installation
smarwww.smar.com Specifications and information are subject to change without notice. Up-to-date address information is available on our website. web: www.smar.com/contactus.asp Introduction INTRODUCTION FOUNDATION™ fieldbus (FF) is an open architecture to integrate information, whose main objective is to interconnect control devices and industrial automation, distributing the control functions for the network and supplying information to all the layers of the system. The FOUNDATION™ fieldbus technology substitutes with advantages the 4-20mA + HART traditional, technology making possible the bi-directional communication among the devices in a more efficient way. This technology is much more than a protocol of digital communication or a local network to field instruments. It includes several technologies, such as distributed processing, advanced diagnosis and redundancy. A FOUNDATION™ fieldbus system is heterogeneous and distributed, composed by field devices, configuration and supervision software, communication interfaces, power supply and by its own physical network that interconnects them. One of the functions of the field devices is to execute the user application of control and supervision distributed by the network. This is the big difference between FOUNDATION™ fieldbus and other technologies that depend on a central controller to execute the algorithms. Compared to other systems, FOUNDATION™ fieldbus allows the access to many variables, not only related to the process, but also diagnostics of sensor and actuator, electronic components,