Understanding Road Maintenance

Total Page:16

File Type:pdf, Size:1020Kb

Understanding Road Maintenance 2017 Authority for Road Maintenance Routine Maintenance Obligation and Responsibility These activities are routinely Under Michigan Public Act shoulders, the grading of done as cyclic or reactive work 283 of 1909, the Road gravel roads, the types. Cyclic maintenance examples include street Commission is charged with maintenance of roadside sweeping or shoulder grading providing reasonably safe drainage systems, and winter maintenance and reactive examples include county roads to the motoring pothole patching. operations. public through construction and maintenance efforts. In general, these road Preventative Maintenance For the most part, these duties maintenance activities are include the patching of hard broken down into routine, These activities are periodic surfaced roads, the grading preventative, emergency, inexpensive treatments of road and patching of roadside and planned maintenance. pavement which provide protection, decrease the rate of deterioration, and add service life to the pavement. Examples include crack Primary, Paved = 426 miles Subdivision = 419 miles sealing, seal coat surfacing, and skip paving. Local, Paved = 517 miles --------------------------- Local, Gravel = 325 miles Total = 1,687 miles Emergency Maintenance Local Road Maintenance Overview These activities cannot be Township Collaboration estimated with any certainty in advance. Examples include Commission to resurface or storm related damage or The Road Commission and culvert failures. reconstruct subdivision Townships have a unique relationship regarding local streets, pave local gravel road construction and roads, or apply dust control. Planned Maintenance maintenance. When possible, the These activities are identified The Road Commission Townships assist in funding through strategic planning. maintains all local streets these local road Examples include year-round. However, improvements as they reconstruction and resurfacing. funding constraints limit the primarily benefit residents in a specific area. ability of the Road Pothole Patching Gravel Road Preventative Maintenance is a more economical way of Method of Repair Maintenance Overview maintaining the road network by lengthening the time Gravel road maintenance Potholes become plentiful in between construction and activities include periodic the spring as frost comes out reconstruction. Methods of the ground. As a result, grading, the addition of include: Road Commission workers gravel at spot locations, and Crack Sealing shovel more than 1 million vegetation control. As funding allows, the Road The crack or joint is cleaned pounds of patching material and an overband layer of Commission will perform into potholes every year. rubberized asphalt is placed to gravel resurfacing and fill the area. As weather and resources drainage maintenance. allow, the Road Commission The Township will select will also use a long lasting Seal Coat Surfacing spray injection system that and purchase a dust control cleans the area, applies a tack material, and determine the A three-step process with a coat, and places the patch frequency and location of layer of asphalt emulsion, a layer of chip aggregates, and a material into the pothole. applications. The Road Commission will then grade fog sealant. What can you do? Work the gravel road prior to the crews constantly patrol for - placement of the dust and repair - potholes. Still, control. Cape Seal Surfacing you can help. If you see a A combination of a layer of Dust control materials are pothole, please report it by seal coat surfacing without a calling 616-842-5400 or go typically a man-made fog sealant that is covered with online at www.ottawacorc.com. Calcium Chloride solution a layer of micro-surfacing. or a Mineral Well Brine that is pumped from the ground. H Winter maintenance operations will be conducted in accordance with the established priority system based on traffic volumes, road classification, and location. It is the Road Commission’s objective to minimize the utilization of overtime, while achieving a primary goal of traversable roadways. The order of priority is as follows: Priority 1 – State Highways Priority 2 – Multi-lane Primary Roads Priority 3 – Primary Roads Priority 4 – Local Paved Roads Priority 5 – Subdivision Streets Priority 6 – Local Gravel Roads Priority 7 – Dead End Streets and Cul-de-sacs .
Recommended publications
  • Roundabout Planning, Design, and Operations Manual
    Roundabout Planning, Design, and Operations Manual December 2015 Alabama Department of Transportation ROUNDABOUT PLANNING, DESIGN, AND OPERATIONS MANUAL December 2015 Prepared by: The University Transportation Center for of Alabama Steven L. Jones, Ph.D. Abdulai Abdul Majeed Steering Committee Tim Barnett, P.E., ALDOT Office of Safety Operations Stuart Manson, P.E., ALDOT Office of Safety Operations Sonya Baker, ALDOT Office of Safety Operations Stacey Glass, P.E., ALDOT Maintenance Stan Biddick, ALDOT Design Bryan Fair, ALDOT Planning Steve Walker, P.E., ALDOT R.O.W. Vince Calametti, P.E., ALDOT 9th Division James Brown, P.E., ALDOT 2nd Division James Foster, P.E., Mobile County Clint Andrews, Federal Highway Administration Blair Perry, P.E., Gresham Smith & Partners Howard McCulloch, P.E., NE Roundabouts DISCLAIMER This manual provides guidelines and recommended practices for planning and designing roundabouts in the State of Alabama. This manual cannot address or anticipate all possible field conditions that will affect a roundabout design. It remains the ultimate responsibility of the design engineer to ensure that a design is appropriate for prevailing traffic and field conditions. TABLE OF CONTENTS 1. Introduction 1.1. Purpose ...................................................................................................... 1-5 1.2. Scope and Organization ............................................................................... 1-7 1.3. Limitations ...................................................................................................
    [Show full text]
  • PAVEMENT MANAGEMENT STUDY Templeton, MA
    PAVEMENT MANAGEMENT STUDY Templeton, MA Prepared by Stantec Date: September 2018 2 Stantec TABLE OF CONTENTS 1. INTRODUCTION 1 BACKGROUND 2 PAVEMENT MANAGEMENT CONCEPTS 3 STUDY APPROACH 5 2. METHODOLOGY 7 Pavement Management Software 8 The Pavement Condition Index (PCI) Defined 10 The Five Treatment Repair Bands 10 Priority Ranking and Future Projection 12 3. EXISTING CONDITIONS 15 Road Mileage and Current Pavement Condition Index (PCI) 16 Distribution of Pavement Conditions 21 Current Roadway Backlog 22 4. MODEL/PLANNING PROCESS 25 Budget Analysis 26 Scenario Findings 27 Zero Budget 28 Historical Budget (Worst-First) 29 Historical Budget (Pavement Management Strategy) 30 Equilibrium Funding Scenario 32 Progressive Funding Scenario 34 5. CONCLUSION 37 Recommended Plan of Action 38 Future Pavement Management 40 APPENDIX A. Templeton’s Public Roadway Backlog B. Repair Alternatives And Unit Costs C. Glossary D. Town-wide Pavement Conditions Map PAVEMENT MANAGEMENT STUDY Templeton, MA 3 TABLES 1. (PCI) Treatment Band Ranges 11 2. Zero Budget 28 3. Historical Budget (Worst First) 29 4. Historical Budget (Pavement Management Strategy) 31 5. Maintain PCI Funding Scenario 33 6. Progressive Funding Scenario 34 4 Stantec FIGURES 1. Pavement Deterioration Curve 4 2. PCI Distribution in Miles by Treatment Band 21 3. Dollar Backlog of Outstanding Repairs 22 4. Dollar Backlog Distribution vs. Dollar Budget Allocation 30 5. PCI Histogram of Network Conditions 32 6. Average PCI of Roadway Funding Scenarios 35 7. Dollar Backlog of Roadway Funding Scenarios 35 PAVEMENT MANAGEMENT STUDY Templeton, MA 5 SECTION NAME INTRODUCTION 1 BACKGROUND The Town of Templeton is located in Worcester County, Massachusetts which straddles Route 2 and comprises four main villages: Templeton Center, East Templeton, Baldwinville, and Otter River.
    [Show full text]
  • City Maintained Street Inventory
    City Maintained Streets Inventory DATE APPROX. AVG. STREET NAME ACCEPTED BEGINNING AT ENDING AT LENGTH WIDTH ACADEMYText0: ST Text6: HENDERSONVLText8: RD BROOKSHIREText10: ST T0.13 Tex20 ACADEMYText0: ST EXT Text6: FERNText8: ST MARIETTAText10: ST T0.06 Tex17 ACTONText0: WOODS RD Text6:9/1/1994 ACTONText8: CIRCLE DEADText10: END T0.24 Tex19 ADAMSText0: HILL RD Text6: BINGHAMText8: RD LOUISANAText10: AVE T0.17 Tex18 ADAMSText0: ST Text6: BARTLETText8: ST CHOCTAWText10: ST T0.16 Tex27 ADAMSWOODText0: RD Text6: CARIBOUText8: RD ENDText10: OF PAVEMENT T0.16 Tex26 AIKENText0: ALLEY Text6: TACOMAText8: CIR WESTOVERText10: ALLEY T0.05 Tex12 ALABAMAText0: AVE Text6: HANOVERText8: ST SWANNANOAText10: AVE T0.33 Tex24 ALBEMARLEText0: PL Text6: BAIRDText8: ST ENDText10: MAINT T0.09 Tex18 ALBEMARLEText0: RD Text6: BAIRDText8: ST ORCHARDText10: RD T0.2 Tex20 ALCLAREText0: CT Text6: ENDText8: C&G ENDText10: PVMT T0.06 Tex22 ALCLAREText0: DR Text6: CHANGEText8: IN WIDTH ENDText10: C&G T0.17 Tex18 ALCLAREText0: DR Text6: SAREVAText8: AVE CHANGEText10: IN WIDTH T0.18 Tex26 ALEXANDERText0: DR Text6: ARDIMONText8: PK WINDSWEPTText10: DR T0.37 Tex24 ALEXANDERText0: DR Text6: MARTINText8: LUTHER KING WEAVERText10: ST T0.02 Tex33 ALEXANDERText0: DR Text6: CURVEText8: ST ARDMIONText10: PK T0.42 Tex24 ALLENText0: AVE 0Text6:/18/1988 U.S.Text8: 25 ENDText10: PAV'T T0.23 Tex19 ALLENText0: ST Text6: STATEText8: ST HAYWOODText10: RD T0.19 Tex23 ALLESARNText0: RD Text6: ELKWOODText8: AVE ENDText10: PVMT T0.11 Tex22 ALLIANCEText0: CT 4Text6:/14/2009 RIDGEFIELDText8:
    [Show full text]
  • Road to Resilience Delivering a Robust Local Roads Network
    Road to resilience Delivering a robust local roads network December 2018 Road to resilience | Delivering a robust local roads network 3 Foreword Local roads are often, rightly, described as the lifeblood of local Balfour Beatty has a proud history of working on roads of all sizes, economies across the country, keeping transport flowing around across the country. The local authorities we work with are doing towns and cities and supporting local supply chains. their utmost to ensure the resilience of their local roads and to repair the damage caused by the harsh winter. Indeed, according Unfortunately, they also bear the brunt of congestion, which can to the Local Government Association (LGA), local authorities fix a have a significant impact on the productivity – or otherwise – of pothole every 21 seconds1. Where our local authority partners have those local economies, and on air quality, due to the needless secured additional capital investment for their roads, we have emissions from vehicles waiting in queues. The difference seen a reduction on revenue expenditure, and public satisfaction between the condition of local roads and the Strategic Roads improving. The money announced at the Autumn Budget will Network (SRN) is now significant in some areas, and is noticeable therefore be extremely welcome. to motorists. It will of course be important to ensure that this much-needed The backlog of maintenance on these roads, due to years of extra money is made to go as far as it can – that advances in underinvestment, is made worse by pothole problems which technology are capitalised on and that local authorities and the arise after harsh winters, further squeezing already constrained industry work together as closely as possible to drive efficiencies.
    [Show full text]
  • Pavements and Surface Materials
    N O N P O I N T E D U C A T I O N F O R M U N I C I P A L O F F I C I A L S TECHNICAL PAPER NUMBER 8 Pavements and Surface Materials By Jim Gibbons, UConn Extension Land Use Educator, 1999 Introduction Traffic Class Type of Road Pavements are composite materials that bear the weight of 1 Parking Lots, Driveways, Rural pedestrian and vehicular loads. Pavement thickness, width and Roads type should vary based on the intended function of the paved area. 2 Residential Streets 3 Collector Roads Pavement Thickness 4 Arterial roads 5 Freeways, Expressways, Interstates Pavement thickness is determined by four factors: environment, traffic, base characteristics and the pavement material used. Based on the above classes, pavement thickness ranges from 3" for a Class 1 parking lot, to 10" or more for Class 5 freeways. Environmental factors such as moisture and temperature significantly affect pavement. For example, as soil moisture Sub grade strength has the greatest effect in determining increases the load bearing capacity of the soil decreases and the pavement thickness. As a general rule, weaker sub grades require soil can heave and swell. Temperature also effects the load thicker asphalt layers to adequately bear different loads associated bearing capacity of pavements. When the moisture in pavement with different uses. The bearing capacity and permeability of the freezes and thaws, it creates stress leading to pavement heaving. sub grade influences total pavement thickness. There are actually The detrimental effects of moisture can be reduced or eliminated two or three separate layers or courses below the paved wearing by: keeping it from entering the pavement base, removing it before surface including: the sub grade, sub base and base.
    [Show full text]
  • A Study of Occurrence of Potholes and Washboards on Soil-Aggregate Roads EUGENE Y
    A Study of Occurrence of Potholes and Washboards on Soil-Aggregate Roads EUGENE Y. HUANG, Associate Professor of Civil Engineering, University of Illinois This report presents the results of a study aimed at determining some of the circumstances associated with the occurrence of potholes and washboards on soil-aggregate roads. The study consisted of a statistical analysis of the qualitative data obtained from a road condition survey involving road surfaces of the coarse-graded aggregate type composed of mineral aggregate such as gravel or crushed stone and some binder material. Results of the study indicate that the occurrence of potholes and washboards was definitely associated with the volume of traffic, the type of surface material, and the drainage condition of the road surface. Although the findings are admittedly limited to the types and conditions of the roads studied, it is hoped that the data may be of value in further understanding the formation of potholes and washboards. • THE OCCURRENCE of potholes and washboards has long been a serious problem in soil-aggregate surfaces. These formations, however, have not been fully explained. Potholes on road surfaces are irregularly occurring, well-defined holes consisting of fairly deep cavities up to about 5 in. (Fig. 1). Washboards are transverse or nearly transverse waves on road surfaces, generally about 1 to 1/4 in. in amplitude andspaced about 2 or 3 ft apart (Fig. 2), regardless of the nature of material in which they occur. (Although typical formations of potholes and washboards are readily distinguishable, there are, however, numerous possibilities of transitional forms between these two typical forms.) Both potholes and washboards are conducive to surface impact and vibration, which contribute in a great measure to the rapid deterioration of the road surface as well as the vehicle itself.
    [Show full text]
  • Viscosity Resin for Reinforcing Pothole Patching Materials
    NIST Civil Infrastructure Showcase 3-14-14 Gaithersburg, MD Development of High-Toughness, Low- Viscosity Resin for Reinforcing Pothole Patching Materials BruinPatch, Inc. A UCLA Startup for Improving National Infrastructure Larry Carlson UCLA Institute for Technology Advancement President, Bruinpatch, Inc. [email protected] (818) 970-5532 Engineering Institute for Technology Advancement Product Product: A long lasting pothole repair method that utilizes a low viscosity resin, a patented catalyst and UCLA’s patented approach Integrated Dual Phase Approach Porous asphalt with Top Phase: infiltrated DCPD layer • Moisture resistant • High toughness Interface • Durable, rutting resistant Densely compacted Bottom Phase: asphalt layer • Compacted standard materials • Low Cost Cross-section DCPD Resin Curing Schematic illustration of aggregate-asphalt mix Ring-opening Metathesis Polymerization infiltrated with DCPD and formed a hardened continuous network within • Capable of infiltrating into the voids, and Reduction of continuous and interconnected voids • Reinforce the continuous phase of the aggregate composites Curing Profile cold mix 160 'C Interface of cold mix and D2 mix 120 D2 160 'C 1.5 min 100 4 min 80 60 Surface of cold mix Temperature 'C 40 Resin added 20 0 2 4 6 8 10 12 Time Minute Curing profiles were recorded by measuring temperature profile on the surface and at the interface of the porous mix and dense mix. Catalyst Development 180 160 180 C831 0 TPP 140 C831 160 -20'C to RT C727 0.03% TPP -11'C -3'C 140 120 0 TPP -5'C 120
    [Show full text]
  • Cornell Local Roads Program Town of Ticonderoga, NY 2016
    Cornell Local Roads Program Town of Ticonderoga, NY 2016 Colvin Chapman and Samuel Shelmidine Ticonderoga Highway Department 138 Racetrack Rd. Ticonderoga, NY 12883 Table of Contents I. Introduction………………………………………...………………....3 A. Background of Roads………………………………………....3 B. Fundamentals of good roads………………………………….6 II. CAMP­RS Process …………………………………………………..9 A. CAMP­RS Training…………………………………..……....9 B. Road Surveying ……………………………………………...9 C. Pavement Distresses………………………………………….10 D. Roads by Rank……………………………………………….15 E. Assign Repairs……………………………………………….16 III. Assessment Results…………………………………………………..18 IV. Recommendation…………………………………………………......19 V. Sources……………………………………………………………….19 Appendix A: Ticonderoga Local Roads Assessment Appendix B: Ticonderoga Map of Local Roads. Appendix C: CAMP­RS Asphalt Pavement Condition Survey Appendix D: CAMP­RS Unpaved Condition Survey 2 I. Introduction The Cornell Local Roads Program Center provides training, technical assistance, and information to municipal officials and employees responsible for the maintenance, construction, and management of local highways and bridges in New York State. This educational service has been widely used throughout New York State by many municipalities who wish to run their highway departments more effectively and efficiently. Part of the Cornell Local Roads Program (CLRP) is a cost analysis tool developed by Civil Engineers from Cornell University. The purpose of this tool is to generate a road database for prioritizing and recommending various repairs objectively. The basis of the program is to collect road condition data and catalog a detailed list of information through software known as the Cornell Asset Management Program ­ Roads & Streets (CAMP­RS). CAMP­RS functions chiefly by “Keeping good roads good” and consistently improving the conditions of subpar roads within the constraints of a limited budget. CAMP­RS outputs a prioritized list of repairs in order to efficiently raise the condition of all roads to an acceptable level.
    [Show full text]
  • Inventory and Condition Assessment of Road Surfaces
    INVENTORY AND CONDITION ASSESSMENT OF ROAD SURFACES _____________________________ Town of Boulder Junction August 2017 Table of Contents 1. Introduction 2. Road Condition Survey 2.1 Inventory of Town Roads 2.2 Identifying Deficiencies 2.3 Condition Assessment 3. Selection of Repair Alternatives 3.1 Baseline Improvements 3.2 Repair Alternatives 4. Prioritizing the Town of Boulder Junction’s Road Repair Needs 4.1 Priority Setting Factors 4.2 Estimated Costs 4.3 Priorities of Roads Appendices Appendix A – Chip Seal Maintenance Prioritized by Year (1-5) Appendix B – Estimated Costs by Road Appendix C – Improvements (All Roads) Prioritized by Year (1-15) Appendix D – Improvements (Excluding Gravel Road Upgrades) Prioritized by Year (1-15) Appendix E – Improvements (Excluding Gravel Road Upgrades) Prioritized by Year (1-3) TOWN & COUNTRY ENGINEERING, INC. Madison Rhinelander Kenosha 2912 Marketplace Drive, Suite 103 • Madison, WI 53719 • (608) 273-3350 • [email protected] 1. Introduction Town & Country Engineering, Inc. has conducted a windshield level road surface condition survey of the Town of Boulder Junction’s 93 miles of roadway during six separate site visits. The survey was conducted along with the Town Board Chairman and a Road Improvement Committee member who provided information on each road based on historical observations concerning drainage, plowing, maintenance and other miscellaneous issues specific to each roadway. The purpose of the survey was to note observable deficiencies and areas of potential improvement, including structural and road bed improvements, safety related changes and drainage. Deficiencies vary from general drainage issues (lack of ditching) to specific areas of interest including particularly acute issues that may be able to be corrected with focused effort.
    [Show full text]
  • Gravel Roads Maintenance & Frontrunner Training Workshop
    A Ditch In Time Gravel Roads Maintenance Workshop 1 So you think you’ve got a wicked driveway 2 1600’ driveway with four switchbacks and 175’ of elevation change (11% grade) 3 Rockhouse Development, Conway 4 5 6 Swift River (left) through National Forest into Saco River that drains the MWV Valley’s developments 7 The best material starts as solid rock that is drilled & blasted… 8 Then crushed into smaller pieces and screened to produce specific size aggregate 9 How strong should it be? One big truck = 10,000 cars! 10 11 The road surface… • Lots of small aggregate (stones) to provide strength with a shape that will lock stones together to support wheels • Sufficient “fines,” the binder that will lock the stones together, to keep the stones from moving around 12 • The stone: hard and uniform in size and more angular than that made just from screening bank run gravel 13 • A proper combination of correctly sized broken rock, sand and silt/clay soil materials will produce a road surface that hardens into a strong and stable crust that forms a reasonably impervious “roof” to our road • An improper balance- a surface that is loose, soft & greasy when wet, or excessively dusty when dry (see samples) 14 One way to judge whether gravel will pack or not… 15 Here’s another way… 16 Or: The VeryFine test The sticky palm test As shown in the Camp Roads manual 17 • “Dirty” gravel packs but does not drain • “Clean” gravel drains but does not pack 18 Other road surfacing materials: • Rotten Rock- traditional surfacing material in the Mt Washington Valley
    [Show full text]
  • Johnson Survey Comments
    5. Please share any other comments or concerns you have about the johnson Road Full Improvements Project. Response I favor the three lane option with one very la rge drainage pipe (along with other utilities) beneath 1. the center (turn) lane. Seems to me that such an arrangement might facilitate maintenance without ~ Respons~ the necessity of closing down the whole road. I don't understand how pedestrians are able too safely cross the roundabout. I don't see it planned here and I watched the presentation and didn't hear it addressed. Living east of keller Smithfield we had 4 stops signs to stop traffic to allow pedestrians to pass. how does this work with a 2. roundabout? Given children are to walk to high school within the 2 m ile limits they are going to [VieW Response] have to cross at johnson across Keller Smithfield to get to the high school. Were studies done to evaluate pedestrian and bicycle traffic across the round about? The round about near Walmart Is quite frightening as there are folks who don't know how a roundabout wor ks I can't see them slowing down for bike or walkers. 3. The best option is to keep continuity on johnson Rd from 377 to Keller Smithfield Rd. Three lanes ~Response] with closed drainage is safer & w ill a llow traffic to flow most efficiently. Do it right the first time. Our property currently sits at 1650 johnson Road. Big Bear Creek runs directly t hrough the middle of our property. Our concern after attending the meeting is that if all water is being moved to Big Bear Creek.
    [Show full text]
  • Cycling Infrastructure Version 1
    Cycling VERSION 1 infrastructure Cycling infrastructure In this chapter 01 Introduction 5 Kerbside activity 33 07 02 Choosing the right facility 6 General Design 35 08 2.1 Design parameters 6 8.1 Design controls 35 2.2 Types of cycle facility 8 8.2 Horizontal and vertical alignment 39 8.3 Widths and clearances 41 03 Approved facilities within the road reserve 11 8.4 Construction 45 3.1 Separated cycleway (busy, fast, or heavy traffic) 11 8.5 Drainage 46 3.2 Separated cycleway (low volume and slow traffic) 14 8.6 Signs and markings 47 3.3 Alternatives requiring specific approval 15 8.7 Lighting 48 3.4 Mixed traffic streets 16 3.5 Cycle streets 16 Ancillary features 49 09 3.6 Pedestrian priority areas (cycling and pedestrians) 17 3.7 Interim facilities 20 Design for maintenance 52 10 Appendix A 04 Other infrastructure 22 Cycle parking 53 4.1 Buffered cycle lanes 22 A.1 Introduction 53 4.2 Cycle lanes 23 A.2 Bicycle Parking General principles 54 4.3 Cycle lanes between other traffic lanes 23 A.3 Categories of bicycle parking 56 4.4 Shared paths 24 A.4 Types of bicycle parking 58 A.5 Types of bicycle stands 64 05 Off road cycle paths 25 A.6 Bicycle parking placement 67 A.7 Bicycle parking access 68 06 Intersections 26 A.8 Bicycle stand materials 68 6.1 Cycleway intersections 27 A.9 Signage and wayfinding for bicycle parking 68 6.2 Roundabouts 27 A.10 Bicycle parking demand 69 6.3 Signalised intersections 28 A.11 Bicycle parking at public transport terminals 70 6.4 Unsignalised intersections 30 A.12 Bicycle parking provisioning process 71 6.5 Midblock crossing 31 A.13 Building and installation 72 6.6 Vehicle crossings 32 A.14 Operation and maintenance 72 5794_20.04.21 2 TDM | ENGINEERING DESIGN CODE 3 Cycling infrastructure 01 Introduction PURPOSE Cycling infrastructure includes facilities that are dedicated for cycle use, as well as specific standards for general infrastructure to meet the needs of cycle users.
    [Show full text]