Genetic Diversity of Ornamental Allium Species and Cultivars Assessed with Isozymes

Total Page:16

File Type:pdf, Size:1020Kb

Genetic Diversity of Ornamental Allium Species and Cultivars Assessed with Isozymes J Appl Genet 49(3), 2008, pp. 213–220 Original article Genetic diversity of ornamental Allium species and cultivars assessed with isozymes Agnieszka Krzymiñska1, Magdalena Gaw³owska2, Bogdan Wolko2, Jan Bocianowski3 1Department of Ornamental Plants, University of Life Sciences, Poznañ, Poland 2Institute of Plant Genetics, Polish Academy of Sciences, Poznañ, Poland 3Department of Mathematical and Statistical Methods, University of Life Sciences, Poznañ, Poland Abstract. The aim of the study was to verify the similarity of 13 species and 5 cultivars of ornamental alliums and classify them into groups based on morphological and isozyme variation. The work embraced: Allium aflatunense, A. caeruleum, A. christophii, A. giganteum, A. karataviense, A. moly, A. nigrum, A. pyrenaicum, A. rosenbachianum, A. schubertii, A. siculum (syn. Nectaroscordum siculum), A. sphaerocephalon, A. strictum, A. stipitatum ‘Album’, A. ‘Ivory Queen’, A. ‘Lucy Ball’, A. ‘Mont Blanc’, and A. ‘Purple Sensation’. Scape length, inflorescence diameter, and flowering period were recorded. Isozyme marker polymorphism was assessed by starch gel electrophoresis. Eight polymorphic isozyme systems (AAT, GPI, PGM, ALAT, ACP, DIAP, ALDO, PGD) were selected from 16 analysed in the taxa. Besides the differences between the taxa, the isozymes revealed intraspecific polymorphism in 5 systems. A total of 37 markers were obtained and used for dendrogram construction. The most similar taxa were A. karataviense with A. ‘Ivory Queen’, and A. karataviense with A. christophii (similarity level 0.78). A high similarity of 11 taxa belonging to one group (A. aflatunense, A. christophii, A. giganteum, A. karataviense, A. nigrum, A. schubertii, A. ‘Ivory Queen’, A. ‘Lucy Ball’, A. stipitatum ‘Album’, A. ‘Mont Blanc’, A. ‘Purple Sensation’) suggested that this group could be identified with the subgenus Melanocrommyum. Keywords: genetic similarity, intraspecific polymorphism, isozyme variation, ornamental alliums, phylogenetic analysis Introduction morphism: apart from Allium and Amerallium also Caloscordum, Melanocrommyum and Rhizirideum The genus Allium encompasses 700 species and is (Samoylov et al. 1999). The subgenus Melano- distributed all over the Northern Hemisphere. crommyum was divided into 16 sections (Fritsch Apart from the familiar agricultural crops, many 1997). ornamental species belong to this genus, but its Three of the species of the subgenus taxonomy is uncertain (Hong et al. 1996). Melanocrommyum included in this study were Three subgenera were separated on the basis of classified earlier by using GISH and RAPD morphological and anatomical characters: Allium, (Friesen et al. 1997). The RAPD technique was Amerallium and Nectaroscordum (Traub 1968, applied also by Hong et al. (1996) in the analysis 1972). A closely related species, A. siculum (syn. of ornamental alliums, including 5 species from Nectaroscordum siculum), having a characteristic the set of taxa evaluated in this study. In 1997, smell, is in some classifications excluded from the Dubouzet et al. analysed alliums from the subge- genus Allium because of the leaf vascular bundle nus Rhizirideum (not present in our analysis) ac- pattern. Relatively recently, 5 subgenera were dis- cording to dot blot hybridization with randomly tinguished on the basis of chloroplast DNA poly- amplified DNA probes. Dubouzet and Shinoda Received: February 20, 2007. Accepted: February 15, 2008. Correspondence: A. Krzymiñska, Department of Ornamental Plants, University of Life Sciences, D¹browskiego 159, 60–594 Poznañ, Poland; e-mail: [email protected] 214 A. Krzymiñska et al. (1999) grouped Old and New World alliums ac- planted in rows in the first half of October. Each cording to ITS DNA sequence. Three species from taxon was planted in 3 rows, each containing this study were analysed in the above paper. 10 bulbs, so a total of 540 bulbs were planted. Isozymes were applied in Allium sativum L. by The bulbs originated from the Horticultural Farm Pooler and Simon (1993), Maass and Klaas of Mr Bogdan Królik (Poland), the Dutch com- (1995), and Ipek and Simon (2002). pany Toolen, and the Polish company Haubitz The aim of this study was to verify the similar- Polska. Cultivation conditions were equal for all ity of 13 species and 5 ornamental cultivars, and to plants. During the growing period, both morpho- classify them into particular groups based on mor- logical and phenological characters were ob- phological and isozyme variation. We report on served. The paper presents only selected the usefulness of isozymes for assessment of simi- characters, which are most important: scape larity of species and cultivars, in comparison to length, inflorescence diameter, and flowering morphological estimation. date. The first 2 characters were subjected to a one-way analysis of variance, while means were clustered by using Duncan’s test at a significance Materials and methods level of a = 0.05. GenStat software (GenStat 1993) was used for statistical analysis. Plant material Isozyme electrophoresis Our investigations covered 13 species and 5 cultivars of ornamental alliums: with purple flow- For the genetic analysis, 5 plants were chosen ran- ers, Allium aflatunense, A. christophii, A. giganteum, domly among the 30 plants of each taxon, which A. rosenbachianum, A. sphaerocephalon, A. ‘Lucy had been evaluated morphologically and Ball’, A ‘Purple Sensation’; with light pink flowers phenologically. The top sections (10-cm-long) of A. pyrenaicum, A. strictum, A. karataviense; with young leaves (2–4-week-old) were collected in pink-purple flowers A. schubertii; with blue flowers 2003. Electrophoresis was run on 11% starch gels A. caeruleum; with yellow flowers A. moly; with (Gottlieb 1973). Fresh leaf materials for AAT white flowers A. nigrum, A. stipitatum ‘Album’, (aspartate aminotransferase), ALAT (alanine amino- A. ‘Ivory Queen’, A. ‘Mont Blanc’; and with yel- transferase), EST (esterase), GPI (glucosephosphate Table 1. Taxonomic classification of evaluated Allium species and cultivars Species/cultivar Subgenus Section References A. aflatunense Melanocrommyum Megaloprason Linne von Berg et al. 1996 A. caeruleum Allium Caerulea Klass and Friesen 2002 A. christophii Melanocrommyum Kaloprason Linne von Berg et al. 1996 A. giganteum Melanocrommyum Megaloprason Dubouzet and Shinoda 1999 A. karataviense Melanocrommyum Miniprason Klass and Friesen 2002 A. moly Amerallium Molium Linne von Berg et al. 1996 A. nigrum Melanocrommyum Melanocrommyum Klass and Friesen 2002 A. pyrenaicum A. rosenbachianum Melanocrommyum Friesen et al. 1997 A. schubertii Melanocrommyum Kaloprason Hong et al. 1996 A. siculum Nectaroscordum Dubouzet and Shinoda 1996 A. sphaerocephalon Allium Allium Linne von Berg et al. 1996 A. strictum A. stipitatum 'Album' Melanocrommyum Megaloprason Linne von Berg et al. 1996 A. 'Ivory Queen' A. 'Lucy Ball' Melanocrommyum Friesen et al. 1997 A. 'Mont Blanc' A. 'Purple Sensation' Melanocrommyum Friesen et al. 1997 low-green flowers A. siculum. Table 1 presents their isomerase), LAP (leucine aminopeptidase), MDH classification according to published literature. (malate dehydrogenase), ME (malic enzyme), PGM Alliums were grown in the field in the (phosphoglucomutase), and PRX (peroxidase) anal- 2001/2002 and 2002/2003 seasons. Bulbs were yses were extracted in tris-maleate buffer. Isozymes in ornamental alliums 215 The potassium phosphate extraction buffer was used enzyme activity staining can be found at Wolko for ACP (acid phosphatase), ALDO (aldolase), and Œwiêcicki (1987). DIAP (diaphorase NADH), FUM (fumarase), IDH Polymorphism was interpreted as an absent or (isocitrate dehydrogenase), PGD (6-phospho- present band. The results were combined in a 0/1 gluconate dehydrogenase), and SKDH (shikimate data matrix and analysed by using GenStat soft- dehydrogenase). Fresh tissue was crushed, the crude ware (GenStat 1993). The coefficient of genetic extract was absorbed by filter paper wicks similarity was determined in the 18 ornamental (Whatman 31ET) and applied to the starch gel. Paper Allium taxa on the basis of the variability of 37 wicks were removed from the gel after 10 min of zones of enzymatic activity, defined as markers. electrophoresis. Four different buffer systems were The coefficients were calculated from the equation applied in order to optimise electrophoresis condi- (Nei and Li 1979): GAB =2NAB /(NA +NB), where tions for each analysed enzyme system. Samples N is the number of bands shared by objects A extracted by using tris-maleate buffer (Tris-amino- AB and B; N is the number of scored bands of object methane, maleic anhydride, polyvinylpyrrolidone A A; and N is the number of scored bands of b B (PVP-40), glycerol, TritonX-100, -merkapto- object B. The coefficients were used for hierarchi- ethanol) were placed on both A/B and T system. cal clustering by using the unweighted pair group The potassium phosphate extraction buffer method with arithmetic means (UPGMA). The re- (dipotassium hydrogen orthophosphate, hydro- lationships among species and cultivars were pre- chloric acid, contained the same components like sented in the form of a dendrogram. tris-maleate buffer) was used for samples sub- jected to electrophoresis on both H and C systems (Wolko 1995). System A/B was applied according Results to Selander et al. (1971), system T according to Weeden (1987), system C according to Clayton and Tretiak (1972), and system H according to The analysed Allium species and cultivars differed in Cardy et al. (1980). Electrophoresis
Recommended publications
  • UPDATED 18Th February 2013
    7th February 2015 Welcome to my new seed trade list for 2014-15. 12, 13 and 14 in brackets indicates the harvesting year for the seed. Concerning seed quantity: as I don't have many plants of each species, seed quantity is limited in most cases. Therefore, for some species you may only get a few seeds. Many species are harvested in my garden. Others are surplus from trade and purchase. OUT: Means out of stock. Sometimes I sell surplus seed (if time allows), although this is unlikely this season. NB! Cultivars do not always come true. I offer them anyway, but no guarantees to what you will get! Botanical Name (year of harvest) NB! Traditional vegetables are at the end of the list with (mostly) common English names first. Acanthopanax henryi (14) Achillea sibirica (13) Aconitum lamarckii (12) Achyranthes aspera (14, 13) Adenophora khasiana (13) Adenophora triphylla (13) Agastache anisata (14,13)N Agastache anisata alba (13)N Agastache rugosa (Ex-Japan) (13) (two varieties) Agrostemma githago (13)1 Alcea rosea “Nigra” (13) Allium albidum (13) Allium altissimum (Persian Shallot) (14) Allium atroviolaceum (13) Allium beesianum (14,12) Allium brevistylum (14) Allium caeruleum (14)E Allium carinatum ssp. pulchellum (14) Allium carinatum ssp. pulchellum album (14)E Allium carolinianum (13)N Allium cernuum mix (14) E/N Allium cernuum “Dark Scape” (14)E Allium cernuum ‘Dwarf White” (14)E Allium cernuum ‘Pink Giant’ (14)N Allium cernuum x stellatum (14)E (received as cernuum , but it looks like a hybrid with stellatum, from SSE, OR KA A) Allium cernuum x stellatum (14)E (received as cernuum from a local garden centre) Allium clathratum (13) Allium crenulatum (13) Wild coll.
    [Show full text]
  • Index Seminum Et Sporarum Quae Hortus Botanicus Universitatis Biarmiensis Pro Mutua Commutatione Offert
    INDEX SEMINUM ET SPORARUM QUAE HORTUS BOTANICUS UNIVERSITATIS BIARMIENSIS PRO MUTUA COMMUTATIONE OFFERT ИК Е И , я ии ии . .Г. Гя и и ии , ия Biarmiae 2017 Federal State Budgetary Educational Institution of Higher Education «Perm State University», Botanic Garden ______________________________________________________________________________________ , ! 1922 . . .. – .. , .. , .. , . .. , . : , , . 2,7 . 7 500 , , , . . , . , - . . , . . , . , . 1583 . , , , , . , , (--, 1992). ... .. Ш Index Seminum 2017 2 Federal State Budgetary Educational Institution of Higher Education «Perm State University», Botanic Garden ______________________________________________________________________________________ Dear friends of the Botanic Gardens, Dear colleagues! The Botanic Garden of Perm State National Research University was founded in 1922 on the initiative of Professor A.H. Henckel and under his supervision. Many famous botanists: P.A. Sabinin, V.I. Baranov, P.A. Henckel, E.A. Pavskiy made a great contribution to the development of the biological science in the Urals. The Botanic Garden named after Prof. A.H. Henckel is a member of the Regional Council of Botanic Gardens in the Urals and has got a status of the scientific institution with protected territory. Some
    [Show full text]
  • Biological Value and Morphological Traits of Pollen of Selected Garlic Species Allium L
    ACTA AGROBOTANICA Vol. 60 (1): 67 71 2007 BIOLOGICAL VALUE AND MORPHOLOGICAL TRAITS OF POLLEN OF SELECTED GARLIC SPECIES ALLIUM L. Beata Żuraw Department of Botany, Agricultural University, 20 950 Lublin, Akademicka str. 15 e mail: [email protected] Received: 20.04.2007 Summary (A. cernuum), violet (A. aflatunense) to purple (A. atro- This study was conducted in the years 1997 1999. From purpureum). Some species form blue (A. caeruleum) or the collection of the UMCS Botanical Garden, nine species of yellow flowers (A. moly, A. flavum). Most species are garlic were selected (A. aflatunense, A. atropurpureum, A. caeru- grown for cut flowers or as ornamentals on flower beds leum, A. cernuum, A. ledebourianum, A. lineare, A. sphaeroce- due to winter hardiness and low nutritional requirements phalon, A. victorialis, A. ursinum) and one subspecies (A. scoro- (K r z y m i ń s k a , 2003). Flower easily set seeds. Seeds doprasum subsp. jajlae). Pollen grain viability was evaluated on should be sown to the seed-bed in the autumn or directly microscopic slides stained with acetocarmine, germination abi to the soil in the spring (K amenetsky and Gutter- lity on the agar medium and measurements of grains were made m a n , 2000). The easiest way of propagation is the di- on glycerin jelly slides. The studied species were characterized vision of adventitious bulbs that should be set from the by high pollen viability (87 99%) what indicates the great value middle of September up to middle of November. of garlic flowers as a source of protein rich feed for honey bee Flowers of species from the genus L.
    [Show full text]
  • Isolation and Identification of Plant Growth Promoting Rhizobacteria On
    Isolation and Identification of Plant Growth Promoting Rhizobacteria on Allium caeruleum Jordan Caine Lena Hunt S08 10 April 2013 Introduction Plant growth promoting rhizobacteria (PGPRs) are bacteria that live on the root and root hairs of plants. PGPRs either directly promote plant growth or provide protection against harmful environmental factors (Lugtenberg, et. al., 2009.) Some PGPRs are known as biofertilizers, and can increase the concentration of mineral nutrients and efficiency of nutrient uptake for plants (Vessey, 2002.) For limiting nutrients such as Nitrogen and Phosphorus, these bacteria can provide greater access to usable nutrients either by fixing nitrogen or solubilizing phosphorus (Orhan, et. al., 2006.) Other PGPRs help the plant by controlling pathogenic organisms such a fungi (Lugtenberg, et. al. 2009.) PGPRs also gain nutrients from the plant to survive, creating a symbiotic relationship. The Allium caeruleum plant was chosen to examine the PGPRs present on the root system. This plant was chosen because it is abundant on the Loyola Marymount campus, has an extensive root system and is relevant to the nearby habitat. A. caeruleum is a species of onion, commonly known as the blue globe onion; it is native to California and produces clusters of bright blue flowers. The blue globe onion is a perennial monocot. The techniques chosen to examine the PGPRs of the A. caeruleum included plating the isolated bacteria on certain medias that would indicate for specific PGPRs. The plates would test for plant growth promoting properties including phosphate solubilization, siderophore production, IAA production, cellulase production, and ACC deaminase activity. The sixteen initial isolates were narrowed down to three for continued study.
    [Show full text]
  • Van Zyverden's
    Van Zyverden’s ALLIUM KARATAVIENSE Allium are in the same family as garlic, onions, chives and shallots. This makes gardeners wonder if they should include them in their ornamental gardening plans, as it conjures up images of supermarket produce. But because good garden designs are often made up of different shapes, allium’s rounded blooms make for high drama and interest in the garden. The Allium group gets more popular annually, from over 300 species to choose. They amaze everyone, and few plants create this kind of wow in the garden. We will be adding many new varieties shortly. Leaves and bulbs Commonly called Turkistan onion Deer and rodent resistant have a mild onion-like aroma when cut or bruised. About This Variety: Allium Karataviense is a compact, bulbous perennial that is ornamentally grown for both its foliage and its flowers. It is native to the Karatau Mountains (hence the specific epithet) in Kazakhstan. Broad-elliptic, spreading, gray-green, basal leaves appear in pairs. Leaves are sometimes mottled with purple. In late spring, a short but sturdy flowering stem rises from the center of each leaf pair. Each flowering stem is topped with a large spherical flower head containing tiny, star-shaped, dull pink florets. Flowers bloom in early summer. Flowers have a mild fragrance. Growing Instructions: As Alliums do not like wet feet, find a sunny location where the soil drains well or try to improve the drainage. The bulbs will rot in wet areas. Aside from that, almost no maintenance is required. Care Tip: Dig, divide, and replant bulbs after a few years of decreasing flower production.
    [Show full text]
  • Van Zyverden's
    Van Zyverden’s ALLIUM COLLECTION Allium are in the same family as garlic, onions, chives and shallots. This makes gardeners wonder if they should include them in their ornamental gardening plans since it conjures up images of supermarket produce. Allium’s rounded blooms make for high drama and interest in the garden because good garden designs are often made up of different shapes. The allium group becomes more popular annually with over 300 species to choose from. They amaze everyone and few plants create this kind of wow in the garden. We will be adding many new varieties soon! Beautiful garden accent/ Best buy collection of alliums perfect as a dried flower Deer and rodent resistant About This Variety: This picture perfect blends consists of Allium Moly, Neapolitanum and Ostrowskianum. A real value for the buck as they will multiply and colonize rather quickly, yet not overly aggressive. Growing Instructions: Since allium do not like wet feet, find a sunny location where the soil drains well. The bulbs will rot in wet areas. Aside from that, almost no maintenance is required. Care Tip: Dig, divide and replant bulbs after a few years of decreasing flower production. Exposure: Full Sun to Partial Shade Height: Grows 6-15” tall Spacing: Plant 4-5” apart, 5” deep USDA Zones: hardy in USDA zones 7-9 ® Guaranteed to grow 1 year from purchase Let’s get social! if directions are followed. Any concerns related Van Zyverden, Inc. to quality and/or counts feel free to contact us. www.vanzyverden.com P.O. Box 550 • Meridian, MS 39302-0550 871449 F20 [email protected].
    [Show full text]
  • Aksu-Zhabagly BIOSPHERE RESERVE National Commission Republic of Kazakhstan
    Aksu-Zhabagly BIOSPHERE RESERVE National Commission Republic of Kazakhstan Kazakhstan National Committee Kazakhstan National Committee for the UNESCO Programme “Man and Biosphere” MAB, Institute of Zoology, 93 al-Farabi Str. Almaty, 050060 KAZAKHSTAN Kazakhstan National Committee Aksu-Zhabagly Biosphere Reserve NominatioN PART I: SUMMARY 1. PROPOSED NAME OF THE BIOSPHERE RESERVE: Aksu-Zhabagly Biosphere Reserve 2. COUNTRY: Kazakhstan Aksu-Zhabagly 4 FULFILLMENT OF THE THREE FUNCTIONS OF BIOSPHERE RESERVES 3. «Conservation — contribute to the conservation of landscapes, ecosystems, species and genetic variation» 3. 1 Aksu-Zhabagly biosphere reserve is located in the Western end of Talasskiy Alatau and Southern part of Karatau in the West Tien Shan. The whole region of the West Tien Shan is an Eastern outpost of Mediterranean atmospheric circulation, therefore it has a winter-spring rainfall. The mountain range of the West Tien Shan is a barrier that catches the moisture in the Western transport of air masses; in addition, this region is situated within the zone of the Southern deserts, where the annual temperature sum is high and about 4000-5000o C. As a result, this area is the most favorable for vegetation and preservation of many ancient relict species and plant communities. Moreover, the reserve’s ecosystems have a very close relationship with the natural systems of the Near East and the Mediterranean than to the rest of the ecosystems of the Tien Shan. The territory of Aksu Zhabagly has a high degree of representativeness at regional level. For example, it has almost all landscape types and sub-types of the West Tien Shan, except for deserts and gypsophilous subshrub communities, which are well below the reserve in altitude.
    [Show full text]
  • ISTA List of Stabilized Plant Names 7Th Edition
    ISTA List of Stabilized Plant Names th 7 Edition ISTA Nomenclature Committee Chair: Dr. M. Schori Published by All rights reserved. No part of this publication may be The Internation Seed Testing Association (ISTA) reproduced, stored in any retrieval system or transmitted Zürichstr. 50, CH-8303 Bassersdorf, Switzerland in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior ©2020 International Seed Testing Association (ISTA) permission in writing from ISTA. ISBN 978-3-906549-77-4 ISTA List of Stabilized Plant Names 1st Edition 1966 ISTA Nomenclature Committee Chair: Prof P. A. Linehan 2nd Edition 1983 ISTA Nomenclature Committee Chair: Dr. H. Pirson 3rd Edition 1988 ISTA Nomenclature Committee Chair: Dr. W. A. Brandenburg 4th Edition 2001 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 5th Edition 2007 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 6th Edition 2013 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 7th Edition 2019 ISTA Nomenclature Committee Chair: Dr. M. Schori 2 7th Edition ISTA List of Stabilized Plant Names Content Preface .......................................................................................................................................................... 4 Acknowledgements ....................................................................................................................................... 6 Symbols and Abbreviations ..........................................................................................................................
    [Show full text]
  • Listado De Todas Las Plantas Que Tengo Fotografiadas Ordenado Por Familias Según El Sistema APG III (Última Actualización: 2 De Septiembre De 2021)
    Listado de todas las plantas que tengo fotografiadas ordenado por familias según el sistema APG III (última actualización: 2 de Septiembre de 2021) GÉNERO Y ESPECIE FAMILIA SUBFAMILIA GÉNERO Y ESPECIE FAMILIA SUBFAMILIA Acanthus hungaricus Acanthaceae Acanthoideae Metarungia longistrobus Acanthaceae Acanthoideae Acanthus mollis Acanthaceae Acanthoideae Odontonema callistachyum Acanthaceae Acanthoideae Acanthus spinosus Acanthaceae Acanthoideae Odontonema cuspidatum Acanthaceae Acanthoideae Aphelandra flava Acanthaceae Acanthoideae Odontonema tubaeforme Acanthaceae Acanthoideae Aphelandra sinclairiana Acanthaceae Acanthoideae Pachystachys lutea Acanthaceae Acanthoideae Aphelandra squarrosa Acanthaceae Acanthoideae Pachystachys spicata Acanthaceae Acanthoideae Asystasia gangetica Acanthaceae Acanthoideae Peristrophe speciosa Acanthaceae Acanthoideae Barleria cristata Acanthaceae Acanthoideae Phaulopsis pulchella Acanthaceae Acanthoideae Barleria obtusa Acanthaceae Acanthoideae Pseuderanthemum carruthersii ‘Rubrum’ Acanthaceae Acanthoideae Barleria repens Acanthaceae Acanthoideae Pseuderanthemum carruthersii var. atropurpureum Acanthaceae Acanthoideae Brillantaisia lamium Acanthaceae Acanthoideae Pseuderanthemum carruthersii var. reticulatum Acanthaceae Acanthoideae Brillantaisia owariensis Acanthaceae Acanthoideae Pseuderanthemum laxiflorum Acanthaceae Acanthoideae Brillantaisia ulugurica Acanthaceae Acanthoideae Pseuderanthemum laxiflorum ‘Purple Dazzler’ Acanthaceae Acanthoideae Crossandra infundibuliformis Acanthaceae Acanthoideae Ruellia
    [Show full text]
  • Abbotsford Water Efficient Plant List Minimum Soil Depth Botanical Name Common Name Type (Mm)
    Abbotsford Water Efficient Plant List Minimum Soil Depth Botanical name Common name type (mm) ANNUALS Argemone grandifolia Statice/Sea Lavendar A Begonia x hybrida 'Dragon Wings' Dragon Wing begonia A 150 Bracteantha species Strawflower Calendula officinalis Calendula A 150 Coleus ssp. Coleus A 150 Cosmos bipinnatus Garden cosmos A 150 Cuphea llavea Cuphea A 150 Dyssocua tenuiloba Dahlberg Daisey A Eschscholzia californica California poppy A 150 Gazania spendens Gazania A Lantana camara Lantana A 150 Lobularia maritima Sweet alyssum A 150 Nigella damascena Love-in-the-mist A 150 Oesteopermum African daisy A 150 Pelargonium species Geranium A Portulaca oleracea Portulaca A Salvia guaranitica Anise-scented sage A 150 Scaevola aemula Fan flower A 150 Targetes erecta Marogold A Targetes erecta Marogold A Viola x wittrockiana Pansy A 150 Zinnia ssp. Zinnia A 150 Verbascum bombyciferum 'Arctic Summer' Broussa mullein A 150 Verbascum phlomoides 'Spica' Orange mullein A 150 BULBS Allium christophii Star of Persia B 150 Allium karataviense Turkestan onion B 150 Chionodoxa forbesii 'Pink Giant' Glory of the snow B 150 Colchicum autumnale Autumn crocus B 150 Crocus ssp. Crocus B 150 Eranthis hyemalis Winter aconite B 150 Erythronium ssp. Fawn lily B 150 Eucomis Pineapple lily B 150 Fritillaria meleagris Checkered lily B 150 Galanthus ssp. Snowdrop B 150 Iris reticulata Dwarf iris B 150 Muscari ssp. Grape hyacinth B 150 Narcissus Daffodil B 150 Nerine bowdenii Bowden lily B 150 Ornithogalum nutans Drooping Star of Bethlehem/Silverbells B 150 Scilla
    [Show full text]
  • Alliums of All Shapes & Sizes’
    Tips From Trecanna Trecanna Nursery is a family-run plant nursery owned by Mark & Karen Wash and set on the Cornish slopes of the Tamar Valley, specialising in unusual bulbs & perennials, Crocosmias and other South African plants. Each month Mark will write a feature on some of his very favourite plants. Trecanna Nursery is now open from Wednesday to Saturday throughout the year, from 10am to 5pm, (or phone to arrange a visit at other times). There is a wide range of unusual bulbs, herbaceous plants and hardy South African plants including the largest selection of Crocosmia in the South. We are located approx. 2 miles north of Gunnislake. Follow the brown tourist signs from the A390, Callington to Gunnislake road. Tel: 01822 834680. Email: [email protected] Talks to garden clubs and societies. ‘Alliums Of All Shapes & Sizes’ Last year I covered a number of fabulous Alliums that you plant and enjoy in your garden, however as there are so many excellent varieties to choose from, I have decided to look at some more - particularly as May & June is when the vast majority of them burst into flower. The main displays of spring flowering bulbs, including narcissi and most tulips, are just coming to an end in May. The Alliums fulfil a valuable task, bridging the gap between Spring & Summer before many of our herbaceous plants come into their prime. There are a vast array of wild Alliums in existence coming from areas such as Asia, North America and Europe – in fact the wild species number over 700 and with all the hybrids that have been bred over the years the choice is now literally thousands.
    [Show full text]
  • MAPEAMENTO DOS SÍTIOS DE Dnar 5S E 45S E ORGANIZAÇÃO DA CROMATINA EM REPRESENTANTES DA FAMÍLIA AMARYLLIDACEAE JAUME ST.-HIL
    EMMANUELLY CALINA XAVIER RODRIGUES DOS SANTOS MAPEAMENTO DOS SÍTIOS DE DNAr 5S E 45S E ORGANIZAÇÃO DA CROMATINA EM REPRESENTANTES DA FAMÍLIA AMARYLLIDACEAE JAUME ST.-HIL. RECIFE-PE 2015 i EMMANUELLY CALINA XAVIER RODRIGUES DOS SANTOS MAPEAMENTO DOS SÍTIOS DE DNAr 5S E 45S E ORGANIZAÇÃO DA CROMATINA EM REPRESENTANTES DA FAMÍLIA AMARYLLIDACEAE JAUME ST.-HIL. Tese apresentada ao Programa de Pós-Graduação em Botânica da Universidade Federal Rural de Pernambuco como parte dos requisitos para obtenção do título de Doutora em Botânica. Orientador: Prof. Dr. Reginaldo de Carvalho Dept° de Genética/Biologia, Área de Genética/UFRPE Co-orientador: Prof. Dr. Leonardo Pessoa Felix Dept° de Fitotecnia, UFPB RECIFE-PE 2015 ii MAPEAMENTO DOS SÍTIOS DE DNAr 5S E 45S E ORGANIZAÇÃO DA CROMATINA EM REPRESENTANTES DA FAMÍLIA AMARYLLIDACEAE JAUME ST.-HIL. Emmanuelly Calina Xavier Rodrigues dos Santos Tese defendida e _________________ pela banca examinadora em ___/___/___ Presidente da Banca/Orientador: ______________________________________________ Dr. Reginaldo de Carvalho (Universidade Federal Rural de Pernambuco – UFRPE) Comissão Examinadora: Membros titulares: ______________________________________________ Dra. Ana Emília de Barros e Silva (Universidade Federal da Paraíba – UFPB) ______________________________________________ Dra. Andrea Pedrosa Harand (Universidade Federal de Pernambuco – UFPE) ______________________________________________ Dr. Felipe Nollet Medeiros de Assis (Universidade Federal da Paraíba – UFPB) ______________________________________________ Dr. Marcelo Guerra (Universidade Federal de Pernambuco – UFPE) Suplentes: ______________________________________________ Dra. Lânia Isis Ferreira Alves (Universidade Federal da Paraíba – UFPB) ______________________________________________ Dra. Sônia Maria Pereira Barreto (Universidade Federal de Pernambuco – UFRPE) iii A minha família, em especial ao meu pai José Geraldo Rodrigues dos Santos que sempre foi o meu maior incentivador e a quem responsabilizo o meu amor pela docência.
    [Show full text]