The Selective Oxidation of Beta-Cyclodextrin on the Secondary Face
Total Page:16
File Type:pdf, Size:1020Kb
W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 1997 The Selective Oxidation of beta-Cyclodextrin on the Secondary Face Christine Evelyn Heath College of William & Mary - Arts & Sciences Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Physical Chemistry Commons Recommended Citation Heath, Christine Evelyn, "The Selective Oxidation of beta-Cyclodextrin on the Secondary Face" (1997). Dissertations, Theses, and Masters Projects. Paper 1539626108. https://dx.doi.org/doi:10.21220/s2-j6cv-jt95 This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. The Selective Oxidation of {3-CycIodextrin on the Secondary Face A Thesis Presented to The Faculty of the Department of Chemistry The College of William and Mary In Partial Fulfillment of the Requirements for the Degree of Master of Arts by Christine Evelyn Heath August 1997 APPROVAL SHEET This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Arts aUwAki , C hristine E. H eath Approved, August 1997 Christopher J. Ab^it, Ph. D. CL. C.^R&st Deborah C. Bebout, Ph. D. Robert J. Hinkle, Ph. D. TABLE OF CONTENTS ACKNOWLEDGMENTS...........................................................................................................iv LIST OF FIGURES.............................. v ABSTRACT...................................................................................................................................vi INTRODUCTION........................................................................................................................ 2 BACKGROUND.................................................................................................................... 6 Cydodextrins .....................................................................................................................6 p-Cyclodextrin in Photocatalysis ....................................................................................9 Benzylidene Methyl Glucoside ..................................................................................... 14 Epoxides ............................................................................................................................16 Phenyl Selenide ............................................................................................................... 19 Wittig Reaction................................................................................................................ 21 EXPERIMENTAL........................................................................................................................24 4,6-O-Benzylidene-a-D-methyl glucopyranoside .................................................... 24 Methyl-2,3-anhydro-4,6-0-benzylidene-a-D-mannopyranoside .........................25 Methyl-3-deoxy-3-phenylseleno-4,6-0-benzylidene-a-D-altropyranoside... .25 Methyl-3-deoxy-3-phenylselenoxy-4,6-0-benzylidene-a-D-altropyranoside. .26 Methyl-4,6-0-benzylidene-3-deoxy-a-D-eri/f/zro-hexopyranosid-2-ulose 26 2-0-(p-Toluenesulfonyl)-p-cycIodextrin ................................................................... 27 2-0-(p-T oluenesulfonyl)-p-cydodextrin .......................... 28 2A,3A-Anhydro-p-cyclodextrin man no epoxide .............................................:... 28 S^Deoxy-S^phenylseleno-p-cydodextrin ............................................................... 29 SA-Deoxy-S^phenylselenoxy -p-cyclodextrin.......................................................... 29 3A-Deoxy-p-cydodextrin-2A-ulose ...............................................................................30 S^Deoxy-p-cydodextrin^A-p-nitrophenylhydrazone ............................................30 RESULTS....................................................................................................................................32 DISCUSSION............................................................................................................................ 38 CONCLUSION.......................................................................................................................... 43 APPENDIX OF SPECTRA............................ 44 REFERENCES............................................................................................................................54 VITA 57 ACKNOWLEDGMENTS The author wishes to express her gratitude to Dr. Christopher J. Abelt for allowing her to partake in this exploration of chemistry and all its wonders, especially for his patience in answering her many questions, and for his unfailing sense of humor. She would also like to thank Dr. Robert J. Hinkle and Dr. Deborah C. Bebout for their critique of this manuscript. She is especially grateful to everyone in Dr. Abelt's research group for their help and companionship. Last, she would like to acknowledge her friends and family for their support throughout this year. LIST OF FIGURES 1. General properties of cyclodextrins ............................................................................... 3 2. Targeted modified cyclodextrin .......................................................................................5 3 . a-, p-, and y- cyclodextrins ................................................................................................ 6 4. Hydrogen bonding stabilization of p-CD C-2 alkoxide ..............................................7 5. Previous oxidations of p-CD on the primary face ..................................................... 9 6 . 9,10-Dicyanoanthracene .................................................................................................. 11 7. The 2-O-ether tether of DCA with p-CD ...................................................................13 8 . p-CD tethered with DCA using the Wittig reaction on the secondary face . .14 9. A one-glucose model for oxidation of the secondary face of p-CD .....................15 10. General scheme for ring epoxidation ............................................................................ 17 11. Dipole interactions for nucleophilic attack of epoxides ............................................18 1 2 . Syn-elimination of phenyl selenoxide to form allylic alcohols ............................ 2 0 13. General mechanism for the Wittig reaction ............................................................... 22 14. Resonance stabilization of the phosphorus ylide of DCA ...................................... 23 15. Proposed derivatization of p-CD on the secondary face using the Wittig reaction .............................................................................................................................23 16. Mechanism of attachment of the benzylidene group to methyl glucoside . .38 17. Mechanism for the Sn 2 tosylation of p-CD at the 2 position ................................39 18. Mechanism for the epoxidation of p-CD .................................................................. 40 19. Mechanism for the ring opening of p-CD manno epoxide ...................................40 2 0 . Mechanism of the sy«-elimination of the phenyl selenoxide of p-CD to form the 2-ulose........................................................................................................................ 42 21. 1H NMR spectrum of 4,6-O-benzylidene methyl glucoside in CDCI 3 ............... 45 22. NMR spectrum of methyl-2,3-anhydro-4,6-0-benzylidene-a-D- mannopyranoside in CDCI 3 .......................................................................................46 23. NMR spectrum of methyl-3-deoxy-3-phenylseleno-4,6-0-benzylidene-a-D- altropyranoside in CDCI 3 ........................................................................................... 47 24. 1H NMR spectrum of methyl-3-deoxy-4,6-0-benzylidene-a-D-eryf/zro- hexopyranosid-2-ulose in CDCI 3 ...............................................................................48 25. 'H NMR spectrum of 2-0-(p-toluenesulfonyl)-p-cydodextrin in DMSO .... 49 26. NMR spectrum of 2A,3A-anhydro-p-cydodextrin manno epoxide in D 2O.5 O 27. NMR spectrum of SA-deoxy-S^phenylseleno-p-cydodextrin in DMSO .. 51 28. *H NMR spectrum of crude S^deoxy-p-cyclodextrin^-^-ulose in D 2O ............ 52 29. *H NMR spectrum of the possible SA-deoxy-p-cyclodextrin^A-p- nitrophenylhydrazone in D 2 O ...................................................................................53 v ABSTRACT The selective oxidation of p-cydodextrin at C-2 on one glucose residue was attempted. The oxidation pathway involved forming the 2,3 -manno epoxide, opening the epoxide with phenyl selenide anion selectively at the 3-position, oxidizing to the phenyl selenoxide, and finally, eliminating to the enol, which tautomerizes to the desired ketone. Due to the size and complexity of the cyclodextrin molecule, the proposed pathway was first attempted on a model compound, benzylidene methyl glucoside, and then applied to p-cyclodextrin. Data from thin-layer chromatography and proton NMR are consistent with successful oxidation to the 3-deoxy-2-uIose of both the model compound and the cyclodextrin. The oxidized cyclodextrin is a useful precursor for the Wittig reaction. This procedure is of interest in tethering p-cydodextrin to dicyanoanthracene with the intent