The Marineterrein Bathhouse
Total Page:16
File Type:pdf, Size:1020Kb
The Marineterrein Bathhouse, Bridging the flows of waste, energy & water in Amsterdam Fallon Walton 4503899 Technical Research Paper Tutors: Roel van der Pas & Jan Jongert January 2017 ABSTRACT This year the City of Amsterdam commissioned the report, ‘Circular Amsterdam,’ which highlights the untapped potential of food waste as a valuable source of energy and a link to a more circular economy. Concurrently, Amsterdam’s Marineterrein is transitioning from a restricted naval site to public space. The city is looking for ways to connect the Marineterrein to the urban fabric, draw on its historical identity and connection to water, and include smart energy infrastructure and a ‘circular city’ approach. My objective is to combine the management of food waste and public water leisure program of a bathhouse as a way to reimagine energy production as contributing to valuable urban social space on the Marineterrein. The subject of this report investigates the existing flow of (food) waste, energy and water in Amsterdam. Using the knowledge and criticisms of the existing situation, innovative and alternative techniques are explored to better integrate and optimize the flows of food waste, energy, and water into the design of a bathhouse. The proposed techniques to manage waste, energy, and water flows along with the size of the bathhouse programs and user capacity are combined to determine the spatial implications as well as the larger urban impact of the results. CONTENT Introduction Background........................................................................................................................ 1 Relevance........................................................................................................................... 1 Technical Research Question............................................................................................ 2 Method............................................................................................................................................ 3 Results 1. Existing flow of waste, energy & water in Amsterdam 1.1 Waste................................................................................................................ 4 1.2 Energy............................................................................................................... 6 1.3 Water................................................................................................................ 7 2. Integration of flows into Marineterrein bathhouse 2.1 Integration of municipal food waste to energy production........................ 10 2.2 Energy types, consumption & optimization in a bathhouse....................... 13 2.3 Integrated alternative sources & sinks of bathhouse water........................ 17 3. Spatial implications & large scale impact.................................................................... 22 Conclusion....................................................................................................................................... 23 References....................................................................................................................................... 30 Appendices Appendix A: Marineterrein Plan...................................................................................... 32 Appendix B: Program Inventory....................................................................................... 36 Appendix C: Calculations................................................................................................. 44 List of Abbreviations: AD anaerobic digestion MSFW municipal solid food waste CHP combined heat and power HFCW horizontal flow constructed wetland CW constructed wetland WWTP waste water treatment plant MSW municipal solid waste INTRO INTRODUCTION BACKGROUND Since Amsterdam’s establishment over seven hundred years ago, the city has witnessed multiple urban expansions to accommodate population growth, its booming economy and infrastructure (Minkjan, 2013). Especially since the industrial revolution, the energy demand of large city has created the need for energy infrastructure. In the early years of public power infrastructure, electrical plants were placed within the city centre due to the inability to transmit high voltage over long distances. Consequently, the aesthetic responsibility and public space of this energy infrastructure was important. However, in recent decades conventional energy plants, along with waste management facilities, have required large areas of land and were often noisy and polluting, and were thus pushed to the periphery of urban centres (Fig. 1). By distancing this infrastructure from the public sphere, architectural responsibility and the relationship to public space was lost (LAGI, 2011). Amsterdam is witnessing an influx of people, its borders are expanding rapidly, and space must be made use of efficiently. There is an opportunity to re-integrate energy and waste infrastructure into the city centre as it transitions from polluting to renewable sources so as to contribute, once again, to urban public space and as a way to showcase innovation in sustainability and design. RELEVANCE This year (2016) the City of Amsterdam commissioned a report, titled ‘Circular Amsterdam’. The report investigated the potential of transitioning to a circular economy in Amsterdam. Circular economy differs from a traditional linear economy because it focuses on extending the lifespan of resources by recovering and regenerating products, often transgressing many industries and demands (WRAP, n.d). The document highlights two neglected waste streams that have the potential to contribute to a more circular process; construction materials and food waste. The report, and its focus on food waste, became a guiding inspiration in my own research because it explores the untapped potential of food waste as energy, a source that everyone can contribute to. Figure 1: Waste & energy plant in Westpoort, Amsterdam 1 INTRO METHOD The specific context in which this research takes place is Amsterdam’s Marineterrein (Fig. 2). The Marineterrein was established in 1655 by the Admiralty of Amsterdam, later known as the Dutch Royal Navy. The location of the site was chosen to allow access to prominent waterways, as well as occupying a central location in the city, enabling easy exchange of trades and labour. Over the centuries, the use of the site shifted from a ship-building wharf to an administrative centre, and the morphology of the site reflects this shift (Appendix A). The original 17th century architecture, such as the gatehouse that separates the site from the rest of the city, are still visible. However, the majority of existing buildings were erected between noord 1960-1980 (Gemeente Amsterdam, 2012). Currently, the Marineterrein is transitioning from a restricted naval site to open public space. The City of Amsterdam is looking for ways to connect the Marineterrein to the urban fabric, draw on its historical identity and connection west to water, and include smart energy infrastructure. The City is encouraging a ‘circular city’ approach and stresses that interventions should consider the adaptive and flexible needs of nieuw-west Centre society. My objective is to combine the management of food waste with the public water leisure program of a bathhouse as a way to re-imagine energy production as contributing to valuable urban social space on the Marineterrein and the greater urban fabric. This paper attempts to understand the flows of waste, energy, but also water as it is strongly related to oost the theme of the bathhouse and the Marineterrein. The report builds upon innovative and 1 km alternative techniques that can be integrated, from the beginning, as part of the design. TECHNICAL RESEARCH QUESTION zuid How can the flows of food waste, energy, and water be locally managed and integrated into the design of a public bathhouse? Sub-Questions: 1. What are the existing flows of waste, energy & water in Amsterdam? 2. How can these three flows be integrated into a bathhouse on the Marineterrein? 3. What are spatial implications of the processes and the large scale urban impact of the implemented research? METHOD The primary method used during this research included literature and case studies. Recently published scientific literature provided significant information on the anaerobic digestion of food waste, as well as decentralized waste water infrastructure and sustainable swimming pool design. Government documents were useful in understanding existing flows, future goals and current statistics for Amsterdam. Case studies were used for comparative analyses in order to make educated assumptions in regards to energy, waste & water consumption. Email interviews and inquiries were performed with the City of Amsterdam and Hitachi Zosen Inova, a manufacturer of anaerobic digesters, to acquire further information about waste infrastructure and energy calculations for the anaerobic digestion process. The result of the research is structured so that Part 1 & 2 clearly delineate the three flows of focus; waste, energy and water, and analyses the existing systems and best practice design guidelines that meet the needs of the Marineterrein bathhouse. Part 3 combines the research of Part 1, Part 2, the desired sizes of the bathhouse programs and user capacity in order to understand the spatial implications of the results. Various initial combinations are explored based on the aforementioned results, and external design requirements