Advanced Organic / Organic Synthesis – CH 621 Assisted Organic Synthesis (Sonochemistry) Bela Torok Department of Chemistry University of Massachusetts Boston Boston, MA

1 Ultrasonics/Sonochemistry - Historical Overwiev

Ultrasonics - (20-10 000 kHz) - 1880 (Curie brothers) - 1893 Galton - 1912 TITANIC - 1912 Behm (Echo technique) - 1917 Langevin (Ultrasonic variation, Icebergs, Submarines) - 1945 Application in chemistry

2 Ultrasonics/Sonochemistry –Basics

Frequency ranges of sound

3 Ultrasonics/Sonochemistry – Basics

Sound transmission through a medium

4 Ultrasonics/Sonochemistry – Acoustic Cavitation

Bubble size and cavitation dynamics

Formation of an acoustic bubble Transient cavitation

5 Ultrasonics/Sonochemistry – Acoustic Cavitation

Acoustic cavitation in a homogeneous liquid

Suslick - ~ 4-5000 K

6 Ultrasonics/Sonochemistry – Acoustic Cavitation

Acoustic cavitation in solid/liquid system

7 Ultrasonics/Sonochemistry – Acoustic Cavitation

Acoustic cavitation in solid/liquid system

8 Ultrasonics/Sonochemistry – Acoustic Cavitation

Acoustic cavitation in liquid/liquid system

9 Ultrasonics/Sonochemistry – Sonochemical Effect

Specific ultrasonic effect ? Yes and No

No - another internal heating approach

Yes - The temperature dependence of EA of different reactions could be significantly different – change in selectivities - Very effective mixing - Cavitation - Surface cleaning

10 Ultrasonics/Sonochemistry – Experimental Parameters

1. Acoustic frequency

Increasing frequency – increasing energy

Theory - usually higher reaction rate

Real life – optimum frequency as we have to balance reactivity/selectivity

The effect is different for every reaction and general rule can not be made.

11 Ultrasonics/Sonochemistry – Sonochemical Effect

2. Acoustic power

Similar as frequency, however, the extent of increase is limited

Optimum

12 Ultrasonics/Sonochemistry – Sonochemical Effect

3. Temperature

Cavitation bubbles – energy of collapse

Pressure inside the bubble

In general lower temperature is better, but again there is an optimum

as higher temperature increases the probability of the cavitation

13 Ultrasonics/Sonochemistry – Sonochemical Effect

4. External (static) pressure

Not quite clear, but in general higher pressure is better.

Role of particles (ultrafiltration)

14 Ultrasonics/Sonochemistry – Sonochemical Effect

5. Gas

Polytrop ratio (γ= Cp/Cv), thermal conductivity, and solubility

Usually inert gases are the best (noble gases)

15 Ultrasonics/Sonochemistry – Sonochemical Effect

6. Solvent

Should be as inert as possible, and stable toward ultrasounds

Sonolysis of the solvent

Usually high bioling point is preferred, but it is controversial as diethylether is a good solvent in many applications.

16 Ultrasonics/Sonochemistry – Experimental Parameters

Experimental parameter Physical parameter Effect Acoustic frequency Period of bubble collapse Change in the size of the bubbles Acoustic power Size of the reaction zone The number of cavitation phenomena in a unit volume Temperature Vapor pressure of liquid The content of bubbles, the Themal activation intensity of collapse Secondary reactions Static pressure Total pressure Intesity of collapse Solubility of gas The content of bubbles Gas Politrop ratio Intesity of collapse Thermal conductivity Primer and secondary reactions Chemical reactivity The content of bubbles solubility Solvent Vapor pressure Intesity of collapse Surface tension Limit of transient cavitation Viscosity Primer and secondary reactions Chemical reactivity

17 Ultrasonics/Sonochemistry – Transducers

Galton whistle (physical) Liquid whistle (physical)

Piezoelectric sandwich transcducer Magnetostrictive transcducer

18 Ultrasonics/Sonochemistry – Reactors

19 Ultrasonics/Sonochemistry – Applications

- Electronics industry (coating with metals) - Therapy (surgery with ultrasounds), diagnostics - Food industry - Materials () - Synthesis - Environmental applications

20 Ultrasonics/Sonochemistry – Synthesis

Applications in Organic Synthesis

1. Homogeneous Sonochemistry - Aqueous medium - Non-aqueous media

2. Heterogeneous Sonochemitsry - Phase Transfer - Reactions with metals - Heterogeneous Catalysis

3. Enzyme reactions

21 Ultrasonics/Sonochemistry – Synthesis

1. Homogeneous sonochemistry 1.1. Aqueous sonochemistry

COOH HOOC Br2 2 Br (2.8) H + OH H2O H O ))) H + OH 2 COOH COOH 2 H H2

2 OH H2O2 2 OH O + H2O 2 O O2 0,5 O + 2 H 2 H2O

COOH COOH (2.9) ))) OH

22 Ultrasonics/Sonochemistry – Synthesis

1. Homogeneous sonochemistry

1.2. Non-Aqueous sonochemistry

23 Ultrasonics/Sonochemistry – Synthesis

1.2. Non-Aqueous sonochemistry CCl3 R R

Cl CCOONa, CH CN 3 3 + R (2.14) + N ))) N I- N CCl3 R' R' R' 70-100 %

R R R tBuOK (2.15) + ))) N N OtBu N O I- Me Me Me 85-98 %

O

CCH3 CH2 R R CH COCH , NaOH 3 3 + R (2.16) ))) + N CH N N I- 2 Me Me C Me O CH3

91 - 98 % 24 Ultrasonics/Sonochemistry – Synthesis

1.2. Non-Aqueous sonochemistry

o O 90 C, toluene O P + EtO P H OEt EtO EtO NMe NHMe

Yield (%) 15 min 30 min 60 min 120 min stirring 0 0 <5 37 sonication 12 32 67 82

25 Ultrasonics/Sonochemistry – Synthesis

1.2. Non-Aqueous sonochemistry O O

O R R' R" O + +

R R' R" O

O

R R' R"

Yield (%)

stirring 10-53 57-93 26 Ultrasonics/Sonochemistry – Synthesis

1.2. Non-Aqueous sonochemistry

))) + H

OO + O2

OO + OOH +

Mo(CO) + 6 OH + OOH O

27 Ultrasonics/Sonochemistry – Synthesis

2. Heterogeneous sonochemistry 2.1. Phase transfer catalysis

28 Ultrasonics/Sonochemistry – Synthesis

2.1. Phase transfer catalysis

Cl NaOH + CHCl :CCl 3 2 Cl

0.7-5h 74-99%

NaOH + CHCl3 TEBA H CCl2H H CCl2H

4.3 1

stirring9h 15% sonication, 3h 83%

29 Ultrasonics/Sonochemistry – Synthesis

2.1. Phase transfer catalysis

30 Ultrasonics/Sonochemistry – Synthesis

2.2. Reactions with metals

R Li R O +R"-Cl R' OH R' ))) R"

10-40 min 68-99%

O Li, THF R R +R'-Cl O OLi ))) R'

72-99%

31 Ultrasonics/Sonochemistry – Synthesis

2.2. Reactions with metals

COOEt EtOOC K, toluene COOEt O ))), 5min

83% Zn, DMF RF-X + CO2 RF COOH ))) 35-77%

Me C8H17 Me C8H17

Me Me Zn, AcOH ))), 10 min O H H

32 Ultrasonics/Sonochemistry – Synthesis

2.3. Heterogeneous catalysis

33 Ultrasonics/Sonochemistry – Synthesis

2.3. Heterogeneous catalysis

34 Ultrasonics/Sonochemistry – Synthesis

2.3. Heterogeneous catalysis

35 Microwaves/Sonochemistry – References

- http://www.shiga-med.ac.jp/chemistry/sonochemRes.html - Luche, J. L., Synthetic Organic Sonochemistry, Plenum Press, 2001 - Suslick, K. S., Ultrasound: Its Chemical, Physical, and Biological Effects; VCH, 1988. - Mason, T. J., Sonochemistry: Current Uses and Future Prospect in Chemical and Industrial Processing, RSC, 1999

36