The Old Problems of Glass and the Glass Transition, and the Many New Twists C

Total Page:16

File Type:pdf, Size:1020Kb

The Old Problems of Glass and the Glass Transition, and the Many New Twists C Proc. Natl. Acad. Sci. USA Vol. 92, pp. 6675-6682, July 1995 Colloquium Paper This paper was presented at a colloquium entitled "Physics: The Opening to Complexity, " organized by Philip W. Anderson, held June 26 and 27, 1994, at the National Academy of Sciences, in Irvine, CA. The old problems of glass and the glass transition, and the many new twists C. A. ANGELL Department of Chemistry, Arizona State University, Tempe, AZ 85287-1604 ABSTRACT In this paper I review the ways in which the mediate range order (4), has been found (5-7) to correlate with glassy state is obtained both in nature and in materials science the temperature dependence of the viscosity (i.e., with the and highlight a "new twist"-the recent recognition of poly- so-called "fragility" of the liquid or polymer). At the same morphism within the glassy state. The formation of glass by time, the notion that a given liquid on slow cooling at constant continuous cooling (viscous slowdown) is then examined, the pressure always tends toward the same conformational ground strong/fragile liquids classification is reviewed, and a new state has recently been overturned by the recognition of the twist-the possibility that the slowdown is a result of an existence of polymorphism in the glassy state (8-11) [called avoided critical point-is noted. The three canonical charac- "polyamorphism" (12)]. Thus the field is in a state of flux. It teristics of relaxing liquids are correlated through the fragil- is an exciting period, as Anderson has opined (13), that a ity. As a further new twist, the conversion of strong liquids to theory of the nature of glass and the glass transition is the fragile liquids by pressure-induced coordination number in- "deepest and most interesting unsolved problem in solid state creases is demonstrated. It is then shown that, for comparable theory." systems, it is possible to have the same conversion accom- Many of the problems in this field are encountered at such plished via a first-order transition within the liquid state long relaxation times as to be "safe" from resolution by the during quenching. This occurs in the systems in which "poly- method of molecular dynamics computer simulation (14), amorphism" (polymorphism in the glassy state) is observed, though the behavior of real systems near the critical temper- and the whole phenomenology is accounted for by Poole's ature (ideal dynamical glass transition temperature) of MCT is bond-modified van der Waals model. The sudden loss of some within range. This is certainly also true of the boson peak, liquid degrees of freedom through such weak first-order which is a short time scale phenomenon; hence, elucidation of transitions is then related to the polyamorphic transition the short time dynamics may be expected in the near future. between native and denatured hydrated proteins, since the Indeed some progress in this domain is being reported cur- latter are also glass-forming systems-water-plasticized, hy- rently (15-17) and will be briefly described herein. In this drogen bond-cross-linked chain polymers (and single mole- article, both old and new aspects of the problem are reviewed. cule glass formers). The circle is closed with a final new twist The transition between the configurationally labile liquid, or by noting that a short time scale phenomenon much studied rubbery, state and the configurationally rigid glassy state is a by protein physicists-namely, the onset of a sharp change in phenomenon of very broad importance in the physical and d<r2>/dT (<r2> is the Debye-Waller factor)-is general for materials sciences and in biology. It is, of course, the manner glass-forming liquids, including computer-simulated strong in which the optically isotropic materials of ubiquitous impor- and fragile ionic liquids, and is closely correlated with the tance in optics are prepared, but it is also, rather less obviously, experimental glass transition temperature. The latter thus the strategy by which nature protects vital organisms against originates in strong anharmonicity in certain components of harsh environmental conditions (seeds and desert insects the vibrational density of states, which permits the system to against drought, Arctic insects against deep freezing). It is also access the multiple minima of its configuration space. The the strategy mankind uses in the preservation of foodstuffs by connection between the anharmonicity in these modes, vibra- desiccation or freezing processes. tional localization, the Kauzmann temperature, and the fra- This article is condensed from a more detailed paper (16) for gility of the liquid is proposed as the key problem in glass the proceedings of the recent Conference on Scaling Concepts science. in Complex Systems.* As in that case, I will mention the various routes to the glassy state of matter, highlighting the The study of viscous liquids and the glassy state has become evidence for polyamorphism. Then we will explore in more increasingly popular since Anderson's review of the field in detail the "normal" route to the glassy state (namely, the 1978 (1) and particularly since the mode-coupling theory cooling of an initially liquid state) and consider the variations (MCT) for viscosity divergence was presented in 1984 (2). It is in the way liquids slow down as the temperature decreases. In now recognized as one of the most significant unsolved the cases of substances where more than one major amorphous problems in condensed matter physics and consequently has form can be identified, it will be seen that, on cooling, the provoked increasingly sophisticated experimental study and transformation from one form to another may be observed as the involvement of an increasing number of theorists. In a liquid-state transition phenomenon. Since the origin of such addition to the existence of new theoretical predictions (3), an astonishing event is not obvious, its explanation by means new aspects of the phenomenology have recently come into of a recent simple thermodynamic model obtained by modi- focus. For instance the damping of the little understood fying the van der Waals equation, recently developed by Poole "boson peak", believed by many to originate in some inter- et al. (18), will be summarized. The publication costs of this article were defrayed in part by page charge Abbreviation: MCT, mode-coupling theory. payment. This article must therefore be hereby marked "advertisement" in *Conference on Scaling Concepts in Complex Systems, June 28-July accordance with 18 U.S.C. §1734 solely to indicate this fact. 6, 1994, Catanzano, Calabria, Italy. 6675 Downloaded by guest on September 26, 2021 6676 Colloquium Paper: Angell Proc. Natl. Acad. Sci. USA 92 (1995) I will refer briefly to the relation of this phenomenology to ered and are the subject of much interest in the recent the dynamics of hydrated proteins, and particularly the un- literature. folding transition, before closing with some notes relating the Later I will relate this phenomenon to the equally important very short-time dynamic features of proteins to similar features matter of liquid-liquid transformations, after first discussing in simple systems and identifying these as a basis for recon- the basic phenomenology of glass formation by viscous slow- sideration of the basic nature of the glass transition. down. Diverse Routes to the Glassy State and Polyamorphism Glass Formation by Viscous Slowdown: Strong and Fragile Liquids and Systems That Can Be Both While the glassy state is conventionally obtained by the cooling of a liquid, it is well known that many alternative routes, such Glasses are normally prepared by the steady cooling of an as vapor-phase deposition, desolvation, and in situ chemical initially liquid state, often followed by an annealing stage in reaction, are available and in most cases were practiced by which stresses induced during the vitrification are removed. It nature before materials science took over. The most recently is the viscous slowdown process that has been most intensively recognized method of amorphization is the least obvious- studied among the various routes to the glassy state and to amorphization by steady compression of open-structured crys- which I also give most attention. tals (8-12); a related method is by decompression of extremely The glassy state is entered when the cooling liquid passes compact high-pressure stable crystals (19, 20). The many through the "glass transition," which is actually a range of alternative processes are summarized in Fig. 1. temperatures over which the system "falls out of equilibrium." After a suitable annealing procedure, it is found that the It is manifested most directlyby the systematic decrease ofheat glassy state realized for a given substance by any one of a capacity from liquid-like to crystal-like values. This abrupt selection of these methods is remarkably close to that pro- change in the heat capacity, usually amounting to 40-100% of duced by any other, implying that the glassy state exists in a the vibrational heat capacity (i.e., the heat capacity below Tg), rather well-defined "pocket" in configurational space. How- is regarded by most workers as the primary signature of the ever, in certain cases, the glassy state may, in fact, occupy more transition between ergodic and nonergodic states. It is illus- than one distinct pocket, constituting an important "new trated in Fig. 2 for various representative systems. One ob- twist." It now seetns that polyamorphism (12) is a reality. serves in Fig. 2 that the relative change in heat capacity differs Mishima et al. (8-11), who first recognized the process of greatly among different systems. Interestingly enough, of the compression vitrification, also showed that the vitreous form primeval examples of the glassy state (16, 17), three key obtained in the initial is of members (glassy water, vitreous silica, and amber) lack any compression very high density pronounced thermal signature of the passage from glass to compared to the normal vitreous ice.
Recommended publications
  • Predicting Polymers' Glass Transition Temperature by a Chemical
    polymers Article Predicting Polymers’ Glass Transition Temperature by a Chemical Language Processing Model Guang Chen 1 , Lei Tao 1 and Ying Li 1,2,* 1 Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA; [email protected] (G.C.); [email protected] (L.T.) 2 Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA * Correspondence: [email protected] Abstract: We propose a chemical language processing model to predict polymers’ glass transition temperature (Tg) through a polymer language (SMILES, Simplified Molecular Input Line Entry System) embedding and recurrent neural network. This model only receives the SMILES strings of a polymer’s repeat units as inputs and considers the SMILES strings as sequential data at the character level. Using this method, there is no need to calculate any additional molecular descriptors or fingerprints of polymers, and thereby, being very computationally efficient. More importantly, it avoids the difficulties to generate molecular descriptors for repeat units containing polymerization point ‘*’. Results show that the trained model demonstrates reasonable prediction performance on unseen polymer’s Tg. Besides, this model is further applied for high-throughput screening on an unlabeled polymer database to identify high-temperature polymers that are desired for applications in extreme environments. Our work demonstrates that the SMILES strings of polymer repeat units can be used as an effective feature representation to develop a chemical language processing model for predictions of polymer Tg. The framework of this model is general and can be used to construct structure–property relationships for other polymer properties. Citation: Chen, G.; Tao, L.; Li, Y.
    [Show full text]
  • Colorless and Transparent High – Temperature-Resistant Polymer Optical Films – Current Status and Potential Applications in Optoelectronic Fabrications
    Chapter 3 Colorless and Transparent high – Temperature-Resistant Polymer Optical Films – Current Status and Potential Applications in Optoelectronic Fabrications Jin-gang Liu, Hong-jiang Ni, Zhen-he Wang, Shi-yong Yang and Wei-feng Zhou Additional information is available at the end of the chapter http://dx.doi.org/10.5772/60432 Abstract Recent research and development of colorless and transparent high-temperature- resistant polymer optical films (CHTPFs) have been reviewed. CHTPF films possess the merits of both common polymer optical film and aromatic high-temperature- resistant polymer films and thus have been widely investigated as components for microelectronic and optoelectronic fabrications. The current paper reviews the latest research and development for CHTPF films, including their synthesis chemistry, manufacturing process, and engineering applications. Especially, this review focuses on the applications of CHTPF films as flexible substrates for optoelectrical devices, such as flexible active matrix organic light-emitting display devices (AMOLEDs), flexible printing circuit boards (FPCBs), and flexible solar cells. Keywords: colorless polymer films, high temperature, synthesis, flexible substrates 1. Introduction Various polymer optical films have been widely applied in the fabrication of optoelectronic devices [1]. Recently, with the ever-increasing demands of high reliability, high integration, high wiring density, and high signal transmission speed for optoelectronic fabrications, the service temperatures of polymer optical films have dramatically increased [2, 3]. For instance, © 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    [Show full text]
  • 3 About the Nature of the Structural Glass Transition: an Experimental Approach
    3 About the Nature of the Structural Glass Transition: An Experimental Approach J. K. Kr¨uger1,2, P. Alnot1,3, J. Baller1,2, R. Bactavatchalou1,2,3,4, S. Dorosz1,3, M. Henkel1,3, M. Kolle1,4,S.P.Kr¨uger1,3,U.M¨uller1,2,4, M. Philipp1,2,4,W.Possart1,5, R. Sanctuary1,2, Ch. Vergnat1,4 1 Laboratoire Europ´een de Recherche, Universitaire Sarre-Lorraine-(Luxembourg) [email protected] 2 Universit´edu Luxembourg, Laboratoire de Physique des Mat´eriaux,162a, avenue de la Fa¨ıencerie, L-1511 Luxembourg, Luxembourg 3 Universit´eHenriPoincar´e, Nancy 1, Boulevard des Aiguillettes, Nancy, France 4 Universit¨atdes Saarlandes, Experimentalphysik, POB 151150, D-66041 Saarbr¨ucken, Germany 5 Universit¨at des Saarlandes, Werkstoffwissenschaften, POB 151150, D-66041 Saarbr¨ucken, Germany Abstract. The nature of the glassy state and of the glass transition of structural glasses is still a matter of debate. This debate stems predominantly from the kinetic features of the thermal glass transition. However the glass transition has at least two faces: the kinetic one which becomes apparent in the regime of low relaxation frequencies and a static one observed in static or frequency-clamped linear and non-linear susceptibilities. New results concerning the so-called α-relaxation process show that the historical view of an unavoidable cross-over of this relaxation time with the experimental time scale is probably wrong and support instead the existence of an intrinsic glass transition. In order to prove this, three different experimental strategies have been applied: studying the glass transition at extremely long time scales, the investigation of properties which are not sensitive to the kinetics of the glass transition and studying glass transitions which do not depend at all on a forced external time scale.
    [Show full text]
  • Structural Transformation in Supercooled Water Controls the Crystallization Rate of Ice
    Structural transformation in supercooled water controls the crystallization rate of ice. Emily B. Moore and Valeria Molinero* Department of Chemistry, University of Utah, Salt Lake City, UT 84112-0580, USA. Contact Information for the Corresponding Author: VALERIA MOLINERO Department of Chemistry, University of Utah 315 South 1400 East, Rm 2020 Salt Lake City, UT 84112-0850 Phone: (801) 585-9618; fax (801)-581-4353 Email: [email protected] 1 One of water’s unsolved puzzles is the question of what determines the lowest temperature to which it can be cooled before freezing to ice. The supercooled liquid has been probed experimentally to near the homogeneous nucleation temperature T H≈232 K, yet the mechanism of ice crystallization—including the size and structure of critical nuclei—has not yet been resolved. The heat capacity and compressibility of liquid water anomalously increase upon moving into the supercooled region according to a power law that would diverge at T s≈225 K,1,2 so there may be a link between water’s thermodynamic anomalies and the crystallization rate of ice. But probing this link is challenging because fast crystallization prevents experimental studies of the liquid below T H. And while atomistic studies have captured water crystallization3, the computational costs involved have so far prevented an assessment of the rates and mechanism involved. Here we report coarse-grained molecular simulations with the mW water model4 in the supercooled regime around T H, which reveal that a sharp increase in the fraction of four-coordinated molecules in supercooled liquid water explains its anomalous thermodynamics and also controls the rate and mechanism of ice formation.
    [Show full text]
  • Lecture #16 Glass-Ceramics: Nature, Properties and Processing Edgar Dutra Zanotto Federal University of São Carlos, Brazil [email protected] Spring 2015
    Glass Processing Lecture #16 Glass-ceramics: Nature, properties and processing Edgar Dutra Zanotto Federal University of São Carlos, Brazil [email protected] Spring 2015 Lectures available at: www.lehigh.edu/imi Sponsored by US National Science Foundation (DMR-0844014) 1 Glass-ceramics: nature, applications and processing (2.5 h) 1- High temperature reactions, melting, homogeneization and fining 2- Glass forming: previous lectures 3- Glass-ceramics: definition & applications (March 19) Today, March 24: 4- Composition and properties - examples 5- Thermal treatments – Sintering (of glass powder compactd) or -Controlled nucleation and growth in the glass bulk 6- Micro and nano structure development April 16 7- Sophisticated processing techniques 8- GC types and applications 9- Concluding remmarks 2 Review of Lecture 15 Glass-ceramics -Definition -History -Nature, main characteristics -Statistics on papers / patents - Properties, thermal treatments micro/ nanostructure design 3 Reading assignments E. D. Zanotto – Am. Ceram. Soc. Bull., October 2010 Zanotto 4 The discovery of GC Natural glass-ceramics, such as some types of obsidian “always” existed. René F. Réaumur – 1739 “porcelain” experiments… In 1953, Stanley D. Stookey, then a young researcher at Corning Glass Works, USA, made a serendipitous discovery ...… 5 <rms> 1nm Zanotto 6 Transparent GC for domestic uses Zanotto 7 Company Products Crystal type Applications Photosensitive and etched patterned Foturan® Lithium-silicate materials SCHOTT, Zerodur® β-quartz ss Telescope mirrors Germany
    [Show full text]
  • Movement Between Bonded Optics
    MOVEMENT BETWEEN BONDED OPTICS Andrew Bachmann, Dr. John Arnold and Nicole Langer DYMAX Corporation, September 13, 2001 INTRODUCTION Controlling the movement of bonded optical parts depends, in large measure, on the properties of the adhesives used. Common issues include both shrinkage during cure and expansion during thermal excursions. Designers have historically had to limit their designs to optics whose thermal range fell below the then-available “high” glass transition temperature (Tg) epoxies; i.e., operating below the adhesive’s Tg. However, many of today’s optical devices employ even higher operating temperatures and require greater resistance to environmental conditions. The common minus 50ºC to plus 200ºC microelectronic test operating range challenges even classical “High Tg” optical epoxies. The NO SHRINK™ family of Optical Positioning adhesives features low total movement between bonded parts either on cure or when the optical device is thermally cycled. NO SHRINK™ products are based on novel, patent- applied-for technology. This technology was incorporated into light curing urethane-acrylics to create products with thermal characteristics that are different from those of older technology adhesives. Table 1. Dimensional changes (measured at 25ºC) Adhesive OP-60-LS Adhesive OP-64-LS < 0.1% (during UV Cure) < 0.1% (during UV Cure) < 0.1% (after 24 hr, 120°C) < 0.1% (after 24 hr, 120°C) Tg ~ 50ºC Tg ~ 125ºC “Rules of thumb” for comparing epoxy resins are not accurate for comparing other resins or other resins with epoxies. Novel NO SHRINK™ UV and visible light curing adhesives exhibit less total movement over a temperature range regardless of the Tg.
    [Show full text]
  • Effect of Cladding Layer Glass Transition Temperature on Thermal Resistance of Graded-Index Plastic Optical fibers
    Polymer Journal (2014) 46, 823–826 & 2014 The Society of Polymer Science, Japan (SPSJ) All rights reserved 0032-3896/14 www.nature.com/pj NOTE Effect of cladding layer glass transition temperature on thermal resistance of graded-index plastic optical fibers Hirotsugu Yoshida1, Ryosuke Nakao1, Yuki Masabe1, Kotaro Koike2 and Yasuhiro Koike2 Polymer Journal (2014) 46, 823–826; doi:10.1038/pj.2014.75; published online 27 August 2014 INTRODUCTION maleimide (cHMI) doped with diphenyl sulfide, and the cladding and Graded-index plastic optical fibers (GI POFs)1 are a highly over-cladding polymers were poly(methyl mathacrylate) and competitive transmission medium for short-range communications poly(carbonate), respectively. In this study, we used two types of such as local area networks and interconnections. Because GI POFs commercial poly(methyl mathacrylate) resins with different Tg values have a parabolic refractive index profile in the core region, modal and compared the long-term thermal reliability of the GI POFs in dispersion is minimized and high-speed data transmission of over a terms of fiber attenuation. gigabit per second is possible. Currently, most suppliers produce GI 2 POFs via coextrusion and a dopant diffusion method; the core EXPERIMENTAL PROCEDURE polymer, which contains a diffusible dopant that has a higher Materials refractive index than that of the base polymer, and the cladding TClEMA and cHMI were purchased from Osaka Organic Chemical Industry polymer are concentrically extruded. The core and cladding (Osaka, Japan) and Nippon Shokubai (Osaka, Japan), respectively. Diphenyl polymers flow together into a diffusion zone, and the dopant from sulfide and lauryl mercaptan were purchased from Sigma-Aldrich Japan the core layer diffuses toward the cladding layer, forming the (Tokyo, Japan), and di-tert-hexyl peroxide was purchased from NOF Corpora- GI profile.
    [Show full text]
  • Crystalline Phase Characterization of Glass-Ceramic Glazes M.G
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Estudo Geral Ceramics International 33 (2007) 345–354 www.elsevier.com/locate/ceramint Crystalline phase characterization of glass-ceramic glazes M.G. Rasteiro a,*, Tiago Gassman b, R. Santos c, E. Antunes a a Chemical Engineering Department, Coimbra University, Po´lo II, Pinhal de Marrocos, 3030-290 Coimbra, Portugal b Colorobbia Portugal, Anadia, Portugal c Centro Tecnolo´gico da Ceraˆmica e do Vidro, Coimbra, Portugal Received 6 May 2005; received in revised form 2 September 2005; accepted 3 October 2005 Available online 18 January 2006 Abstract The firing process of five raw crystalline frits was investigated by means of DTA, XRD, heating microscopy and dilatometry. The chemical composition of the frits was determined by FAAS, to define the main glass-ceramic system of each frit. The final crystalline structure detected for the sintered frits conformed to the temperatures for which transformations were obtained during heating. The existence of a relationship between the crystallization process and sintering behaviour was confirmed. During devitrification, the sintering process stops, confirming that crystalline formation affects the sintering behaviour of the frits. In this case, the thermal properties of the final product are not only dependent on oxide composition but also on the crystalline phases. It was established that the addition of adequate compounds could induce the formation of crystalline phases on some glass-ceramic frits. # 2005 Elsevier Ltd and Techna Group S.r.l. All rights reserved. Keywords: A. Sintering; D. Glass-ceramics; D. Glass; Crystallization 1. Introduction Glazes are commonly applied on surfaces as aqueous suspensions of frits and other additives, also called enamels [2].
    [Show full text]
  • Makrolon Product Range Typical Values 2 ® Important Economic Regionsimportant Are the World
    ® Product range Typical values Makrolon ® Makrolon® is the brand name of our polycarbonate, which we produce in all the major economic regions of the world. For Makrolon®, the most important economic regions are Asia­Pacific (APAC), Europe, Middle East, Africa and Latin America (EMEA/LA), and North America and Mexico (NAFTA). Makrolon 2 Characterization Compared with other thermoplastics, the amor- dimensional stability coupled with a high creep phous material Makrolon® has a very unique modulus and good electrical insulation properties. property profile. It is noted above all for its high Glass fiber reinforced Makrolon® has particularly transparency, heat resistance, toughness and high stiffness and outstanding dimensional stability. Makrolon® is available in: Grades for special applications Optical storage media General purpose grades Optical lenses Food contact grades Light guides Impact modified grades Lighting Flame retardant grades Automotive lighting Glass fiber reinforced (milled fiber) grades Automotive glazing Blow molding Glass fiber reinforced (normal fiber) grades Furniture Extrusion Structural foam Medical devices Nomenclature ..06 So-called “food contact“ grades that The non-reinforced, general purpose and food comply with the regulations of the EU and contact grades of Makrolon® are available in its member states with regard to plastics different viscosity classes. The first two digits in contact with foodstuffs, conform to the in the type designation usually characterize the relevant FDA regulations and also meet the
    [Show full text]
  • A Review of Liquid-Glass Transitions
    A Review of Liquid-Glass Transitions Anne C. Hanna∗ December 14, 2006 Abstract Supercooling of almost any liquid can induce a transition to an amorphous solid phase. This does not appear to be a phase transition in the usual sense — it does not involved sharp discontinuities in any system parameters and does not occur at a well-defined temperature — instead, it is due to a rapid increase in the relaxation time of the material, which prevents it from reaching equilibrium on timescales accessible to experimentation. I will examine various models of this transition, including elastic, mode-coupling, and frustration-based explanations, and discuss some of the problems and apparent paradoxes found in these models. ∗University of Illinois at Urbana-Champaign, Department of Physics, email: [email protected] 1 Introduction While silicate glasses have been a part of human technology for millenia, it has only been known since the 1920s that any supercooled liquid can in fact be caused to enter an amor- phous solid “glass” phase by further reduction of its temperature. In addition to silicates, materials ranging from metallic alloys to organic liquids and salt solutions, and having widely varying types of intramolecular interactions, can also be good glass-formers. Also, the glass transition can be characterized in terms of a small dimensionless parameter which is different on either side of the transition: γ = Dρ/η, where D is the molecular diffusion constant, ρ is the liquid density, and η is the viscosity. This all seems to suggest that there may be some universal aspect to the glass transition which does not depend on the specific microscopic properties of the material in question, and a significant amount of research has been done to determine what an appropriate universal model might be.
    [Show full text]
  • 5: Viscosity of Glass
    MIT 3.071 Amorphous Materials 5: Viscosity of Glass Juejun (JJ) Hu 1 After-class reading list Fundamentals of Inorganic Glasses Ch. 9 Introduction to Glass Science and Technology Ch. 6 2 The pitch drop experiment The pitch drop experiment is a long-term experiment which measures the flow of a piece of pitch (asphalt) The most famous version of the experiment was started in 1927 by Professor Thomas Parnell of the University of Queensland in Brisbane, Australia. The eighth drop fell on 28 November 2000, allowing the experimenters to calculate that pitch has a viscosity approximately 230 Courtesy the University of Queensland on Wikimedia billion times that of water. Commons. License: CC BY-SA. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. 3 Is glass a solid or a viscous liquid? “Successful read/write of digital data in fused silica glass with a recording density equivalent to Blu-ray Disc™, enabling both greater capacity using 100 recording layers and long storage life of 300 million years.” Hitachi Ltd. Press Release 2014 Image is in the public domain. Source: Wikimedia Commons. “It is well known that panes of stained glass in old European churches are thicker at the bottom because glass is a slow-moving liquid that flows downward over centuries.” Silica data storage disc © unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. 4 Is glass a solid or a viscous
    [Show full text]
  • An Experimental Investigation of Glass Transition Temperature of Composite Materials Using Bending Test
    Journal of Energy and Power Engineering 10 (2016) 39-44 doi: 10.17265/1934-8975/2016.01.005 D DAVID PUBLISHING An Experimental Investigation of Glass Transition Temperature of Composite Materials Using Bending Test Noori Hassoon Mohammed Al-Saadi1 and Ammar Fadhil Hussein Al-Maliki2 1. Building and Construction Engineering Department, Dijlah University College, Baghdad 10001, Iraq 2. Mechanical Engineering Department, Al-Mustansiriyah University, Baghdad 10001, Iraq Received: October 29, 2015 / Accepted: November 27, 2015 / Published: January 31, 2016. Abstract: In this study, the bending test is used to investigate the glass transition temperature for epoxy reinforced with three types of fibers, fiberglass, Kevlar and synthetic wool, these materials have a wide used in many application which they are used composite materials. The glass transition temperature can be measured at the point of inflection for the curve of variation of the deflection and temperature. The results show that, the glass transition temperature is affected by the type of the reinforcement of the composites. On the other hand, the glass transition temperature of the wool composite is higher than the other. Key words: Glass transition, composite materials, bending test. 1. Introduction transition temperature (Tg), but since the transition often occurs over a broad temperature range, the use of The glass transition of a polymer matrix composite is a single temperature to characterize it may give rise to a temperature-induced change in the matrix material some confusion. The experimental technique used to from the glassy to the rubbery state during heating or obtain the T must be described in detail, especially from a rubber to a glass during cooling.
    [Show full text]