Some Aspects of Glass-Ceramic Superconductors
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Effects of Thermal Annealing on Femtosecond Laser Micromachined Glass Surfaces
micromachines Article Effects of Thermal Annealing on Femtosecond Laser Micromachined Glass Surfaces Federico Sala 1,2 , Petra Paié 2,* , Rebeca Martínez Vázquez 2 , Roberto Osellame 1,2 and Francesca Bragheri 2 1 Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; [email protected] (F.S.); [email protected] (R.O.) 2 Istituto di Fotonica e Nanotecnologie, CNR, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; [email protected] (R.M.V.); [email protected] (F.B.) * Correspondence: [email protected] Abstract: Femtosecond laser micromachining (FLM) of fused silica allows for the realization of three- dimensional embedded optical elements and microchannels with micrometric feature size. The performances of these components are strongly affected by the machined surface quality and residual roughness. The polishing of 3D buried structures in glass was demonstrated using different thermal annealing processes, but precise control of the residual roughness obtained with this technique is still missing. In this work, we investigate how the FLM irradiation parameters affect surface roughness and we characterize the improvement of surface quality after thermal annealing. As a result, we achieved a strong roughness reduction, from an average value of 49 nm down to 19 nm. As a proof of concept, we studied the imaging performances of embedded mirrors before and after thermal polishing, showing the capacity to preserve a minimum feature size of the reflected image lower than 5 µm. These results allow for us to push forward the capabilities of this enabling fabrication technology, and they can Citation: Sala, F.; Paié, P.; Martínez be used as a starting point to improve the performances of more complex optical elements, such as Vázquez, R.; Osellame, R.; Bragheri, F. -
Predicting Polymers' Glass Transition Temperature by a Chemical
polymers Article Predicting Polymers’ Glass Transition Temperature by a Chemical Language Processing Model Guang Chen 1 , Lei Tao 1 and Ying Li 1,2,* 1 Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA; [email protected] (G.C.); [email protected] (L.T.) 2 Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA * Correspondence: [email protected] Abstract: We propose a chemical language processing model to predict polymers’ glass transition temperature (Tg) through a polymer language (SMILES, Simplified Molecular Input Line Entry System) embedding and recurrent neural network. This model only receives the SMILES strings of a polymer’s repeat units as inputs and considers the SMILES strings as sequential data at the character level. Using this method, there is no need to calculate any additional molecular descriptors or fingerprints of polymers, and thereby, being very computationally efficient. More importantly, it avoids the difficulties to generate molecular descriptors for repeat units containing polymerization point ‘*’. Results show that the trained model demonstrates reasonable prediction performance on unseen polymer’s Tg. Besides, this model is further applied for high-throughput screening on an unlabeled polymer database to identify high-temperature polymers that are desired for applications in extreme environments. Our work demonstrates that the SMILES strings of polymer repeat units can be used as an effective feature representation to develop a chemical language processing model for predictions of polymer Tg. The framework of this model is general and can be used to construct structure–property relationships for other polymer properties. Citation: Chen, G.; Tao, L.; Li, Y. -
Colorless and Transparent High – Temperature-Resistant Polymer Optical Films – Current Status and Potential Applications in Optoelectronic Fabrications
Chapter 3 Colorless and Transparent high – Temperature-Resistant Polymer Optical Films – Current Status and Potential Applications in Optoelectronic Fabrications Jin-gang Liu, Hong-jiang Ni, Zhen-he Wang, Shi-yong Yang and Wei-feng Zhou Additional information is available at the end of the chapter http://dx.doi.org/10.5772/60432 Abstract Recent research and development of colorless and transparent high-temperature- resistant polymer optical films (CHTPFs) have been reviewed. CHTPF films possess the merits of both common polymer optical film and aromatic high-temperature- resistant polymer films and thus have been widely investigated as components for microelectronic and optoelectronic fabrications. The current paper reviews the latest research and development for CHTPF films, including their synthesis chemistry, manufacturing process, and engineering applications. Especially, this review focuses on the applications of CHTPF films as flexible substrates for optoelectrical devices, such as flexible active matrix organic light-emitting display devices (AMOLEDs), flexible printing circuit boards (FPCBs), and flexible solar cells. Keywords: colorless polymer films, high temperature, synthesis, flexible substrates 1. Introduction Various polymer optical films have been widely applied in the fabrication of optoelectronic devices [1]. Recently, with the ever-increasing demands of high reliability, high integration, high wiring density, and high signal transmission speed for optoelectronic fabrications, the service temperatures of polymer optical films have dramatically increased [2, 3]. For instance, © 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. -
3 About the Nature of the Structural Glass Transition: an Experimental Approach
3 About the Nature of the Structural Glass Transition: An Experimental Approach J. K. Kr¨uger1,2, P. Alnot1,3, J. Baller1,2, R. Bactavatchalou1,2,3,4, S. Dorosz1,3, M. Henkel1,3, M. Kolle1,4,S.P.Kr¨uger1,3,U.M¨uller1,2,4, M. Philipp1,2,4,W.Possart1,5, R. Sanctuary1,2, Ch. Vergnat1,4 1 Laboratoire Europ´een de Recherche, Universitaire Sarre-Lorraine-(Luxembourg) [email protected] 2 Universit´edu Luxembourg, Laboratoire de Physique des Mat´eriaux,162a, avenue de la Fa¨ıencerie, L-1511 Luxembourg, Luxembourg 3 Universit´eHenriPoincar´e, Nancy 1, Boulevard des Aiguillettes, Nancy, France 4 Universit¨atdes Saarlandes, Experimentalphysik, POB 151150, D-66041 Saarbr¨ucken, Germany 5 Universit¨at des Saarlandes, Werkstoffwissenschaften, POB 151150, D-66041 Saarbr¨ucken, Germany Abstract. The nature of the glassy state and of the glass transition of structural glasses is still a matter of debate. This debate stems predominantly from the kinetic features of the thermal glass transition. However the glass transition has at least two faces: the kinetic one which becomes apparent in the regime of low relaxation frequencies and a static one observed in static or frequency-clamped linear and non-linear susceptibilities. New results concerning the so-called α-relaxation process show that the historical view of an unavoidable cross-over of this relaxation time with the experimental time scale is probably wrong and support instead the existence of an intrinsic glass transition. In order to prove this, three different experimental strategies have been applied: studying the glass transition at extremely long time scales, the investigation of properties which are not sensitive to the kinetics of the glass transition and studying glass transitions which do not depend at all on a forced external time scale. -
Lecture #16 Glass-Ceramics: Nature, Properties and Processing Edgar Dutra Zanotto Federal University of São Carlos, Brazil [email protected] Spring 2015
Glass Processing Lecture #16 Glass-ceramics: Nature, properties and processing Edgar Dutra Zanotto Federal University of São Carlos, Brazil [email protected] Spring 2015 Lectures available at: www.lehigh.edu/imi Sponsored by US National Science Foundation (DMR-0844014) 1 Glass-ceramics: nature, applications and processing (2.5 h) 1- High temperature reactions, melting, homogeneization and fining 2- Glass forming: previous lectures 3- Glass-ceramics: definition & applications (March 19) Today, March 24: 4- Composition and properties - examples 5- Thermal treatments – Sintering (of glass powder compactd) or -Controlled nucleation and growth in the glass bulk 6- Micro and nano structure development April 16 7- Sophisticated processing techniques 8- GC types and applications 9- Concluding remmarks 2 Review of Lecture 15 Glass-ceramics -Definition -History -Nature, main characteristics -Statistics on papers / patents - Properties, thermal treatments micro/ nanostructure design 3 Reading assignments E. D. Zanotto – Am. Ceram. Soc. Bull., October 2010 Zanotto 4 The discovery of GC Natural glass-ceramics, such as some types of obsidian “always” existed. René F. Réaumur – 1739 “porcelain” experiments… In 1953, Stanley D. Stookey, then a young researcher at Corning Glass Works, USA, made a serendipitous discovery ...… 5 <rms> 1nm Zanotto 6 Transparent GC for domestic uses Zanotto 7 Company Products Crystal type Applications Photosensitive and etched patterned Foturan® Lithium-silicate materials SCHOTT, Zerodur® β-quartz ss Telescope mirrors Germany -
Movement Between Bonded Optics
MOVEMENT BETWEEN BONDED OPTICS Andrew Bachmann, Dr. John Arnold and Nicole Langer DYMAX Corporation, September 13, 2001 INTRODUCTION Controlling the movement of bonded optical parts depends, in large measure, on the properties of the adhesives used. Common issues include both shrinkage during cure and expansion during thermal excursions. Designers have historically had to limit their designs to optics whose thermal range fell below the then-available “high” glass transition temperature (Tg) epoxies; i.e., operating below the adhesive’s Tg. However, many of today’s optical devices employ even higher operating temperatures and require greater resistance to environmental conditions. The common minus 50ºC to plus 200ºC microelectronic test operating range challenges even classical “High Tg” optical epoxies. The NO SHRINK™ family of Optical Positioning adhesives features low total movement between bonded parts either on cure or when the optical device is thermally cycled. NO SHRINK™ products are based on novel, patent- applied-for technology. This technology was incorporated into light curing urethane-acrylics to create products with thermal characteristics that are different from those of older technology adhesives. Table 1. Dimensional changes (measured at 25ºC) Adhesive OP-60-LS Adhesive OP-64-LS < 0.1% (during UV Cure) < 0.1% (during UV Cure) < 0.1% (after 24 hr, 120°C) < 0.1% (after 24 hr, 120°C) Tg ~ 50ºC Tg ~ 125ºC “Rules of thumb” for comparing epoxy resins are not accurate for comparing other resins or other resins with epoxies. Novel NO SHRINK™ UV and visible light curing adhesives exhibit less total movement over a temperature range regardless of the Tg. -
Effect of Cladding Layer Glass Transition Temperature on Thermal Resistance of Graded-Index Plastic Optical fibers
Polymer Journal (2014) 46, 823–826 & 2014 The Society of Polymer Science, Japan (SPSJ) All rights reserved 0032-3896/14 www.nature.com/pj NOTE Effect of cladding layer glass transition temperature on thermal resistance of graded-index plastic optical fibers Hirotsugu Yoshida1, Ryosuke Nakao1, Yuki Masabe1, Kotaro Koike2 and Yasuhiro Koike2 Polymer Journal (2014) 46, 823–826; doi:10.1038/pj.2014.75; published online 27 August 2014 INTRODUCTION maleimide (cHMI) doped with diphenyl sulfide, and the cladding and Graded-index plastic optical fibers (GI POFs)1 are a highly over-cladding polymers were poly(methyl mathacrylate) and competitive transmission medium for short-range communications poly(carbonate), respectively. In this study, we used two types of such as local area networks and interconnections. Because GI POFs commercial poly(methyl mathacrylate) resins with different Tg values have a parabolic refractive index profile in the core region, modal and compared the long-term thermal reliability of the GI POFs in dispersion is minimized and high-speed data transmission of over a terms of fiber attenuation. gigabit per second is possible. Currently, most suppliers produce GI 2 POFs via coextrusion and a dopant diffusion method; the core EXPERIMENTAL PROCEDURE polymer, which contains a diffusible dopant that has a higher Materials refractive index than that of the base polymer, and the cladding TClEMA and cHMI were purchased from Osaka Organic Chemical Industry polymer are concentrically extruded. The core and cladding (Osaka, Japan) and Nippon Shokubai (Osaka, Japan), respectively. Diphenyl polymers flow together into a diffusion zone, and the dopant from sulfide and lauryl mercaptan were purchased from Sigma-Aldrich Japan the core layer diffuses toward the cladding layer, forming the (Tokyo, Japan), and di-tert-hexyl peroxide was purchased from NOF Corpora- GI profile. -
Crystalline Phase Characterization of Glass-Ceramic Glazes M.G
CORE Metadata, citation and similar papers at core.ac.uk Provided by Estudo Geral Ceramics International 33 (2007) 345–354 www.elsevier.com/locate/ceramint Crystalline phase characterization of glass-ceramic glazes M.G. Rasteiro a,*, Tiago Gassman b, R. Santos c, E. Antunes a a Chemical Engineering Department, Coimbra University, Po´lo II, Pinhal de Marrocos, 3030-290 Coimbra, Portugal b Colorobbia Portugal, Anadia, Portugal c Centro Tecnolo´gico da Ceraˆmica e do Vidro, Coimbra, Portugal Received 6 May 2005; received in revised form 2 September 2005; accepted 3 October 2005 Available online 18 January 2006 Abstract The firing process of five raw crystalline frits was investigated by means of DTA, XRD, heating microscopy and dilatometry. The chemical composition of the frits was determined by FAAS, to define the main glass-ceramic system of each frit. The final crystalline structure detected for the sintered frits conformed to the temperatures for which transformations were obtained during heating. The existence of a relationship between the crystallization process and sintering behaviour was confirmed. During devitrification, the sintering process stops, confirming that crystalline formation affects the sintering behaviour of the frits. In this case, the thermal properties of the final product are not only dependent on oxide composition but also on the crystalline phases. It was established that the addition of adequate compounds could induce the formation of crystalline phases on some glass-ceramic frits. # 2005 Elsevier Ltd and Techna Group S.r.l. All rights reserved. Keywords: A. Sintering; D. Glass-ceramics; D. Glass; Crystallization 1. Introduction Glazes are commonly applied on surfaces as aqueous suspensions of frits and other additives, also called enamels [2]. -
Makrolon Product Range Typical Values 2 ® Important Economic Regionsimportant Are the World
® Product range Typical values Makrolon ® Makrolon® is the brand name of our polycarbonate, which we produce in all the major economic regions of the world. For Makrolon®, the most important economic regions are AsiaPacific (APAC), Europe, Middle East, Africa and Latin America (EMEA/LA), and North America and Mexico (NAFTA). Makrolon 2 Characterization Compared with other thermoplastics, the amor- dimensional stability coupled with a high creep phous material Makrolon® has a very unique modulus and good electrical insulation properties. property profile. It is noted above all for its high Glass fiber reinforced Makrolon® has particularly transparency, heat resistance, toughness and high stiffness and outstanding dimensional stability. Makrolon® is available in: Grades for special applications Optical storage media General purpose grades Optical lenses Food contact grades Light guides Impact modified grades Lighting Flame retardant grades Automotive lighting Glass fiber reinforced (milled fiber) grades Automotive glazing Blow molding Glass fiber reinforced (normal fiber) grades Furniture Extrusion Structural foam Medical devices Nomenclature ..06 So-called “food contact“ grades that The non-reinforced, general purpose and food comply with the regulations of the EU and contact grades of Makrolon® are available in its member states with regard to plastics different viscosity classes. The first two digits in contact with foodstuffs, conform to the in the type designation usually characterize the relevant FDA regulations and also meet the -
SCHOTT Technical Glasses
SCHOTT Technical Glasses Physical and technical properties Foreword part from its application in optics, glass as a technical material exerted a A formative influence on the development of important technological fields such as chemistry, pharmaceutics, automotive, optoelectronics and renewable energy such as solar thermal or photovoltaics. Traditional areas of technical application for glass, such as laboratory apparatus, flat panel displays and light sources with their various requirements on chemicophysical properties, led to the development of a great variety of special glass types. By new fields of application, particularly in optoelectronics, this variety of glass types and their modes of application have been continually enhanced, and new forming processes have been developed. The hermetic encapsulation of electronic components gave decisive impetus to development activities. Finally, the manufacture of high-quality glass ceramics from glass has opened entirely new dimensions, setting new standards for various technical applications. To continuously optimize all commercial glasses and glass articles for existing applications and to develop glasses and processes for new applications is the constant endeavor of SCHOTT research. For such dynamic development it is mandatory to be in close contact with the customers and to keep them as well informed as possible about glass. SCHOTT Technical Glasses offers pertinent information in concise form. It contains general information for the determination and evaluation of important glass properties and also informs about specific chemical and physical characteristics and possible applications of the commercial technical glasses produced by SCHOTT. With this brochure we intend to assist scientists, engineers, and design- ers in making the appropriate choice and optimum use of SCHOTT products. -
A Review of Liquid-Glass Transitions
A Review of Liquid-Glass Transitions Anne C. Hanna∗ December 14, 2006 Abstract Supercooling of almost any liquid can induce a transition to an amorphous solid phase. This does not appear to be a phase transition in the usual sense — it does not involved sharp discontinuities in any system parameters and does not occur at a well-defined temperature — instead, it is due to a rapid increase in the relaxation time of the material, which prevents it from reaching equilibrium on timescales accessible to experimentation. I will examine various models of this transition, including elastic, mode-coupling, and frustration-based explanations, and discuss some of the problems and apparent paradoxes found in these models. ∗University of Illinois at Urbana-Champaign, Department of Physics, email: [email protected] 1 Introduction While silicate glasses have been a part of human technology for millenia, it has only been known since the 1920s that any supercooled liquid can in fact be caused to enter an amor- phous solid “glass” phase by further reduction of its temperature. In addition to silicates, materials ranging from metallic alloys to organic liquids and salt solutions, and having widely varying types of intramolecular interactions, can also be good glass-formers. Also, the glass transition can be characterized in terms of a small dimensionless parameter which is different on either side of the transition: γ = Dρ/η, where D is the molecular diffusion constant, ρ is the liquid density, and η is the viscosity. This all seems to suggest that there may be some universal aspect to the glass transition which does not depend on the specific microscopic properties of the material in question, and a significant amount of research has been done to determine what an appropriate universal model might be. -
Annealing and N2 Plasma Treatment to Minimize Corrosion of Sic-Coated Glass-Ceramics
materials Article Annealing and N2 Plasma Treatment to Minimize Corrosion of SiC-Coated Glass-Ceramics Chaker Fares 1 , Randy Elhassani 1, Jessica Partain 1, Shu-Min Hsu 2, Valentin Craciun 3, Fan Ren 1 and Josephine F. Esquivel-Upshaw 2,* 1 Chemical Engineering Department, University of Florida College of Engineering, Gainesville, FL 32611, USA; [email protected] (C.F.); [email protected] (R.E.); [email protected] (J.P.); [email protected] (F.R.) 2 Department of Restorative Dental Sciences, University of Florida College of Dentistry, Gainesville, FL 32610, USA; shuminhsu@ufl.edu 3 Plasma and Radiation Physics, National Institute for Laser, Laser Department, RO-077125 Bucharest, Romania; [email protected] * Correspondence: [email protected]fl.edu Received: 25 April 2020; Accepted: 19 May 2020; Published: 21 May 2020 Abstract: To improve the chemical durability of SiC-based coatings on glass-ceramics, the effects of annealing and N2 plasma treatment were investigated. Fluorapatite glass-ceramic disks were coated with SiC via plasma-enhanced chemical vapor deposition (PECVD), treated with N2 plasma followed by an annealing step, characterized, and then immersed in a pH 10 buffer solution for 30 days to study coating delamination. Post-deposition annealing was found to densify the deposited SiC and lessen SiC delamination during the pH 10 immersion. When the SiC was treated with a N2 plasma for 10 min, the bulk properties of the SiC coating were not affected but surface pores were sealed, slightly improving the SiC’s chemical durability. By combining N2 plasma-treatment with a post-deposition annealing step, film delamination was reduced from 94% to 2.9% after immersion in a pH 10 solution for 30 days.