Bangbook.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Synchronous Programming in Audio Processing Karim Barkati, Pierre Jouvelot
Synchronous programming in audio processing Karim Barkati, Pierre Jouvelot To cite this version: Karim Barkati, Pierre Jouvelot. Synchronous programming in audio processing. ACM Computing Surveys, Association for Computing Machinery, 2013, 46 (2), pp.24. 10.1145/2543581.2543591. hal- 01540047 HAL Id: hal-01540047 https://hal-mines-paristech.archives-ouvertes.fr/hal-01540047 Submitted on 15 Jun 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A Synchronous Programming in Audio Processing: A Lookup Table Oscillator Case Study KARIM BARKATI and PIERRE JOUVELOT, CRI, Mathématiques et systèmes, MINES ParisTech, France The adequacy of a programming language to a given software project or application domain is often con- sidered a key factor of success in software development and engineering, even though little theoretical or practical information is readily available to help make an informed decision. In this paper, we address a particular version of this issue by comparing the adequacy of general-purpose synchronous programming languages to more domain-specific -
Tosca: an OSC Communication Plugin for Object-Oriented Spatialization Authoring
ICMC 2015 – Sept. 25 - Oct. 1, 2015 – CEMI, University of North Texas ToscA: An OSC Communication Plugin for Object-Oriented Spatialization Authoring Thibaut Carpentier UMR 9912 STMS IRCAM-CNRS-UPMC 1, place Igor Stravinsky, 75004 Paris [email protected] ABSTRACT or consensus on the representation of spatialization metadata (in spite of several initiatives [11, 12]) complicates the inter- The paper presents ToscA, a plugin that uses the OSC proto- exchange between applications. col to transmit automation parameters between a digital audio This paper introduces ToscA, a plugin that allows to commu- workstation and a remote application. A typical use case is the nicate automation parameters between a digital audio work- production of an object-oriented spatialized mix independently station and a remote application. The main use case is the of the limitations of the host applications. production of massively multichannel object-oriented spatial- ized mixes. 1. INTRODUCTION There is today a growing interest in sound spatialization. The 2. WORKFLOW movie industry seems to be shifting towards “3D” sound sys- We propose a workflow where the spatialization rendering tems; mobile devices have radically changed our listening engine lies outside of the workstation (Figure 1). This archi- habits and multimedia broadcast companies are evolving ac- tecture requires (bi-directional) communication between the cordingly, showing substantial interest in binaural techniques DAW and the remote renderer, and both the audio streams and and interactive content; massively multichannel equipments the automation data shall be conveyed. After being processed and transmission protocols are available and they facilitate the by the remote renderer, the spatialized signals could either installation of ambitious speaker setups in concert halls [1] or feed the reproduction setup (loudspeakers or headphones), be exhibition venues. -
Peter Blasser CV
Peter Blasser – [email protected] - 410 362 8364 Experience Ten years running a synthesizer business, ciat-lonbarde, with a focus on touch, gesture, and spatial expression into audio. All the while, documenting inventions and creations in digital video, audio, and still image. Disseminating this information via HTML web page design and YouTube. Leading workshops at various skill levels, through manual labor exploring how synthesizers work hand and hand with acoustics, culminating in montage of participants’ pieces. Performance as touring musician, conceptual lecturer, or anything in between. As an undergraduate, served as apprentice to guild pipe organ builders. Experience as racquetball coach. Low brass wind instrumentalist. Fluent in Java, Max/MSP, Supercollider, CSound, ProTools, C++, Sketchup, Osmond PCB, Dreamweaver, and Javascript. Education/Awards • 2002 Oberlin College, BA in Chinese, BM in TIMARA (Technology in Music and Related Arts), minors in Computer Science and Classics. • 2004 Fondation Daniel Langlois, Art and Technology Grant for the project “Shinths” • 2007 Baltimore City Grant for Artists, Craft Category • 2008 Baltimore City Grant for Community Arts Projects, Urban Gardening List of Appearances "Visiting Professor, TIMARA dep't, Environmental Studies dep't", Oberlin College, Oberlin, Ohio, Spring 2011 “Babier, piece for Dancer, Elasticity Transducer, and Max/MSP”, High Zero Festival of Experimental Improvised Music, Theatre Project, Baltimore, September 2010. "Sejayno:Cezanno (Opera)", CEZANNE FAST FORWARD. Baltimore Museum of Art, May 21, 2010. “Deerhorn Tapestry Installation”, Curators Incubator, 2009. MAP Maryland Art Place, September 15 – October 24, 2009. Curated by Shelly Blake-Pock, teachpaperless.blogspot.com “Deerhorn Micro-Cottage and Radionic Fish Drier”, Electro-Music Gathering, New Jersey, October 28-29, 2009. -
Chuck: a Strongly Timed Computer Music Language
Ge Wang,∗ Perry R. Cook,† ChucK: A Strongly Timed and Spencer Salazar∗ ∗Center for Computer Research in Music Computer Music Language and Acoustics (CCRMA) Stanford University 660 Lomita Drive, Stanford, California 94306, USA {ge, spencer}@ccrma.stanford.edu †Department of Computer Science Princeton University 35 Olden Street, Princeton, New Jersey 08540, USA [email protected] Abstract: ChucK is a programming language designed for computer music. It aims to be expressive and straightforward to read and write with respect to time and concurrency, and to provide a platform for precise audio synthesis and analysis and for rapid experimentation in computer music. In particular, ChucK defines the notion of a strongly timed audio programming language, comprising a versatile time-based programming model that allows programmers to flexibly and precisely control the flow of time in code and use the keyword now as a time-aware control construct, and gives programmers the ability to use the timing mechanism to realize sample-accurate concurrent programming. Several case studies are presented that illustrate the workings, properties, and personality of the language. We also discuss applications of ChucK in laptop orchestras, computer music pedagogy, and mobile music instruments. Properties and affordances of the language and its future directions are outlined. What Is ChucK? form the notion of a strongly timed computer music programming language. ChucK (Wang 2008) is a computer music program- ming language. First released in 2003, it is designed to support a wide array of real-time and interactive Two Observations about Audio Programming tasks such as sound synthesis, physical modeling, gesture mapping, algorithmic composition, sonifi- Time is intimately connected with sound and is cation, audio analysis, and live performance. -
Proceedings of the Fourth International Csound Conference
Proceedings of the Fourth International Csound Conference Edited by: Luis Jure [email protected] Published by: Escuela Universitaria de Música, Universidad de la República Av. 18 de Julio 1772, CP 11200 Montevideo, Uruguay ISSN 2393-7580 © 2017 International Csound Conference Conference Chairs Paper Review Committee Luis Jure (Chair) +yvind Brandtsegg Martín Rocamora (Co-Chair) Pablo Di Liscia John -tch Organization Team Michael Gogins Jimena Arruti Joachim )eintz Pablo Cancela Alex )ofmann Guillermo Carter /armo Johannes Guzmán Calzada 0ictor Lazzarini Ignacio Irigaray Iain McCurdy Lucía Chamorro Rory 1alsh "eli#e Lamolle Juan Martín L$#ez Music Review Committee Gusta%o Sansone Pablo Cetta Sofía Scheps Joel Chadabe Ricardo Dal "arra Sessions Chairs Pablo Di Liscia Pablo Cancela "olkmar )ein Pablo Di Liscia Joachim )eintz Michael Gogins Clara Ma3da Joachim )eintz Iain McCurdy Luis Jure "lo Menezes Iain McCurdy Daniel 4##enheim Martín Rocamora Juan Pampin Steven *i Carmelo Saitta Music Curator Rodrigo Sigal Luis Jure Clemens %on Reusner Index Preface Keynote talks The 60 years leading to Csound 6.09 Victor Lazzarini Don Quijote, the Island and the Golden Age Joachim Heintz The ATS technique in Csound: theoretical background, present state and prospective Oscar Pablo Di Liscia Csound – The Swiss Army Synthesiser Iain McCurdy How and Why I Use Csound Today Steven Yi Conference papers Working with pch2csd – Clavia NM G2 to Csound Converter Gleb Rogozinsky, Eugene Cherny and Michael Chesnokov Daria: A New Framework for Composing, Rehearsing and Performing Mixed Media Music Guillermo Senna and Juan Nava Aroza Interactive Csound Coding with Emacs Hlöðver Sigurðsson Chunking: A new Approach to Algorithmic Composition of Rhythm and Metre for Csound Georg Boenn Interactive Visual Music with Csound and HTML5 Michael Gogins Spectral and 3D spatial granular synthesis in Csound Oscar Pablo Di Liscia Preface The International Csound Conference (ICSC) is the principal biennial meeting for members of the Csound community and typically attracts worldwide attendance. -
Computer Music
THE OXFORD HANDBOOK OF COMPUTER MUSIC Edited by ROGER T. DEAN OXFORD UNIVERSITY PRESS OXFORD UNIVERSITY PRESS Oxford University Press, Inc., publishes works that further Oxford University's objective of excellence in research, scholarship, and education. Oxford New York Auckland Cape Town Dar es Salaam Hong Kong Karachi Kuala Lumpur Madrid Melbourne Mexico City Nairobi New Delhi Shanghai Taipei Toronto With offices in Argentina Austria Brazil Chile Czech Republic France Greece Guatemala Hungary Italy Japan Poland Portugal Singapore South Korea Switzerland Thailand Turkey Ukraine Vietnam Copyright © 2009 by Oxford University Press, Inc. First published as an Oxford University Press paperback ion Published by Oxford University Press, Inc. 198 Madison Avenue, New York, New York 10016 www.oup.com Oxford is a registered trademark of Oxford University Press All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of Oxford University Press. Library of Congress Cataloging-in-Publication Data The Oxford handbook of computer music / edited by Roger T. Dean. p. cm. Includes bibliographical references and index. ISBN 978-0-19-979103-0 (alk. paper) i. Computer music—History and criticism. I. Dean, R. T. MI T 1.80.09 1009 i 1008046594 789.99 OXF tin Printed in the United Stares of America on acid-free paper CHAPTER 12 SENSOR-BASED MUSICAL INSTRUMENTS AND INTERACTIVE MUSIC ATAU TANAKA MUSICIANS, composers, and instrument builders have been fascinated by the expres- sive potential of electrical and electronic technologies since the advent of electricity itself. -
Implementing Stochastic Synthesis for Supercollider and Iphone
Implementing stochastic synthesis for SuperCollider and iPhone Nick Collins Department of Informatics, University of Sussex, UK N [dot] Collins ]at[ sussex [dot] ac [dot] uk - http://www.cogs.susx.ac.uk/users/nc81/index.html Proceedings of the Xenakis International Symposium Southbank Centre, London, 1-3 April 2011 - www.gold.ac.uk/ccmc/xenakis-international-symposium This article reflects on Xenakis' contribution to sound synthesis, and explores practical tools for music making touched by his ideas on stochastic waveform generation. Implementations of the GENDYN algorithm for the SuperCollider audio programming language and in an iPhone app will be discussed. Some technical specifics will be reported without overburdening the exposition, including original directions in computer music research inspired by his ideas. The mass exposure of the iGendyn iPhone app in particular has provided a chance to reach a wider audience. Stochastic construction in music can apply at many timescales, and Xenakis was intrigued by the possibility of compositional unification through simultaneous engagement at multiple levels. In General Dynamic Stochastic Synthesis Xenakis found a potent way to extend stochastic music to the sample level in digital sound synthesis (Xenakis 1992, Serra 1993, Roads 1996, Hoffmann 2000, Harley 2004, Brown 2005, Luque 2006, Collins 2008, Luque 2009). In the central algorithm, samples are specified as a result of breakpoint interpolation synthesis (Roads 1996), where breakpoint positions in time and amplitude are subject to probabilistic perturbation. Random walks (up to second order) are followed with respect to various probability distributions for perturbation size. Figure 1 illustrates this for a single breakpoint; a full GENDYN implementation would allow a set of breakpoints, with each breakpoint in the set updated by individual perturbations each cycle. -
Informatique Et MAO 1 : Configurations MAO (1)
Ce fichier constitue le support de cours “son numérique” pour les formations Régisseur Son, Techniciens Polyvalent et MAO du GRIM-EDIF à Lyon. Elles ne sont mises en ligne qu’en tant qu’aide pour ces étudiants et ne peuvent être considérées comme des cours. Elles utilisent des illustrations collectées durant des années sur Internet, hélas sans en conserver les liens. Veuillez m'en excuser, ou me contacter... pour toute question : [email protected] 4ème partie : Informatique et MAO 1 : Configurations MAO (1) interface audio HP monitoring stéréo microphone(s) avec entrées/sorties ou surround analogiques micro-ordinateur logiciels multipistes, d'édition, de traitement et de synthèse, plugins etc... (+ lecteur-graveur CD/DVD/BluRay) surface de contrôle clavier MIDI toutes les opérations sont réalisées dans l’ordinateur : - l’interface audio doit permettre des latences faibles pour le jeu instrumental, mais elle ne nécessite pas de nombreuses entrées / sorties analogiques - la RAM doit permettre de stocker de nombreux plugins (et des quantités d’échantillons) - le processeur doit être capable de calculer de nombreux traitements en temps réel - l’espace de stockage et sa vitesse doivent être importants - les périphériques de contrôle sont réduits au minimum, le coût total est limité SON NUMERIQUE - 4 - INFORMATIQUE 2 : Configurations MAO (2) HP monitoring stéréo microphones interface audio avec de nombreuses ou surround entrées/sorties instruments analogiques micro-ordinateur Effets logiciels multipistes, d'édition et de traitement, plugins (+ -
Interactive Csound Coding with Emacs
Interactive Csound coding with Emacs Hlöðver Sigurðsson Abstract. This paper will cover the features of the Emacs package csound-mode, a new major-mode for Csound coding. The package is in most part a typical emacs major mode where indentation rules, comple- tions, docstrings and syntax highlighting are provided. With an extra feature of a REPL1, that is based on running csound instance through the csound-api. Similar to csound-repl.vim[1] csound- mode strives to enable the Csound user a faster feedback loop by offering a REPL instance inside of the text editor. Making the gap between de- velopment and the final output reachable within a real-time interaction. 1 Introduction After reading the changelog of Emacs 25.1[2] I discovered a new Emacs feature of dynamic modules, enabling the possibility of Foreign Function Interface(FFI). Being insired by Gogins’s recent Common Lisp FFI for the CsoundAPI[3], I decided to use this new feature and develop an FFI for Csound. I made the dynamic module which ports the greater part of the C-lang’s csound-api and wrote some of Steven Yi’s csound-api examples for Elisp, which can be found on the Gihub page for CsoundAPI-emacsLisp[4]. This sparked my idea of creating a new REPL based Csound major mode for Emacs. As a composer using Csound, I feel the need to be close to that which I’m composing at any given moment. From previous Csound front-end tools I’ve used, the time between writing a Csound statement and hearing its output has been for me a too long process of mouseclicking and/or changing windows. -
Implementing a Parametric EQ Plug-In in C++ Using the Multi-Platform VST Specification
2003:044 C EXTENDED ESSAY Implementing a parametric EQ plug-in in C++ using the multi-platform VST specification JONAS EKEROOT SCHOOL OF MUSIC Audio Technology Supervisor: Jan Berg 2003:044 • ISSN: 1402 – 1773 • ISRN: LTU - CUPP - - 03/44 - - SE Implementing a parametric EQ plug-in in C++ using the multi-platform VST specification Jonas Ekeroot Division of Sound Recording School of Music in Pite˚a Lule˚aUniversity of Technology April 23, 2003 Abstract As the processing power of desktop computer systems increase by every year, more and more real-time audio signal processing is per- formed on such systems. What used to be done in external effects units, e.g. adding reverb, can now be accomplished within the com- puter system using signal processing code modules – plug-ins. This thesis describes the development of a peak/notch parametric EQ VST plug-in. First a prototype was made in the graphical audio program- ming environment Max/MSP on MacOS, and then a C++ implemen- tation was made using the VST Software Development Kit. The C++ source code was compiled on both Windows and MacOS, resulting in versions of the plug-in that can be used in any VST host application on Windows and MacOS respectively. Writing a plug-in relieves the programmer of the burden to deal directly with audio interface details and graphical user interface specifics, since this is taken care of by the host application. It can thus be an interesting way to start developing audio DSP algorithms, since the host application also provides the op- portunity to listen to and measure the performance of the implemented plug-in algorithm. -
A NIME Reader Fifteen Years of New Interfaces for Musical Expression
CURRENT RESEARCH IN SYSTEMATIC MUSICOLOGY Alexander Refsum Jensenius Michael J. Lyons Editors A NIME Reader Fifteen Years of New Interfaces for Musical Expression 123 Current Research in Systematic Musicology Volume 3 Series editors Rolf Bader, Musikwissenschaftliches Institut, Universität Hamburg, Hamburg, Germany Marc Leman, University of Ghent, Ghent, Belgium Rolf Inge Godoy, Blindern, University of Oslo, Oslo, Norway [email protected] More information about this series at http://www.springer.com/series/11684 [email protected] Alexander Refsum Jensenius Michael J. Lyons Editors ANIMEReader Fifteen Years of New Interfaces for Musical Expression 123 [email protected] Editors Alexander Refsum Jensenius Michael J. Lyons Department of Musicology Department of Image Arts and Sciences University of Oslo Ritsumeikan University Oslo Kyoto Norway Japan ISSN 2196-6966 ISSN 2196-6974 (electronic) Current Research in Systematic Musicology ISBN 978-3-319-47213-3 ISBN 978-3-319-47214-0 (eBook) DOI 10.1007/978-3-319-47214-0 Library of Congress Control Number: 2016953639 © Springer International Publishing AG 2017 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. -
Audio Visual Instrument in Puredata
Francesco Redente Production Analysis for Advanced Audio Project Option - B Student Details: Francesco Redente 17524 ABHE0515 Submission Code: PAB BA/BSc (Hons) Audio Production Date of submission: 28/08/2015 Module Lecturers: Jon Pigrem and Andy Farnell word count: 3395 1 Declaration I hereby declare that I wrote this written assignment / essay / dissertation on my own and without the use of any other than the cited sources and tools and all explanations that I copied directly or in their sense are marked as such, as well as that the dissertation has not yet been handed in neither in this nor in equal form at any other official commission. II2 Table of Content Introduction ..........................................................................................4 Concepts and ideas for GSO ........................................................... 5 Methodology ....................................................................................... 6 Research ............................................................................................ 7 Programming Implementation ............................................................. 8 GSO functionalities .............................................................................. 9 Conclusions .......................................................................................13 Bibliography .......................................................................................15 III3 Introduction The aim of this paper will be to present the reader with a descriptive analysis