Biochemistry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Determination of Total Dietary Fibre and Available Carbohydrates: a Rapid Integrated Procedure That Simulates in Vivo Digestion
860 DOI 10.1002/star.201500017 Starch/Stärke 2015, 67, 860–883 RESEARCH ARTICLE Determination of total dietary fibre and available carbohydrates: A rapid integrated procedure that simulates in vivo digestion Barry V. McCleary, Naomi Sloane and Anna Draga Megazyme International Ireland, Bray Business Park, Bray, County Wicklow, Ireland The new definition of dietary fibre introduced by Codex Alimentarius in 2008 includes resistant Received: January 23, 2015 starch and the option to include non-digestible oligosaccharides. Implementation of this definition Revised: March 5, 2015 required new methodology. An integrated total dietary fibre method was evaluated and accepted by Accepted: March 5, 2015 AOAC InternationalandAACCInternational(AOACMethods2009.01and2011.25;AACCMethod 32–45.01 and 32–50.01, and recently adopted by Codex Alimentarius as a Type I Method. However, in application of the method to a diverse range of food samples and particularly food ingredients, some limitations have been identified. One of the ongoing criticisms of this method was that the time of incubation with pancreatic a-amylase/amyloglucosidase mixture was 16 h, whereas the time for food to transit through the human small intestine was likely to be approximately 4 h. In the current work, we use an incubation time of 4 h, and have evaluated incubation conditions that yield resistant starch and dietary values in line with ileostomy results within this time frame. Problems associated with production, hydrolysis and chromatography of various oligosaccharides have been addressed resulting in a more rapid procedure that is directly applicable to all foods and food ingredients currently available. Keywords: Available carbohydrates / Codex Alimentarius / Dietary fibre determination / Enzymic / Non-digestible oligosaccharides / Resistant starch : Additional supporting information may be found in the online version of this article at the publisher’s web-site. -
A by Fluorous-Tag Assistance Th
Angewandte Chemie DOI: 10.1002/ange.200704262 Carbohydrate Microarrays Synthesis and Quantitative Evaluation of Glycero-d-manno-heptose Binding to Concanavalin A by Fluorous-Tag Assistance** Firoz A. Jaipuri, Beatrice Y. M. Collet, and Nicola L. Pohl* Herein we report the first use of a quantitative fluorous approach has proven valuable for the probing of other classes microarray strategy to show that the mannose-binding lectin of small molecules.[2] In the case of histone deacetylase concanavalin A (conA), contrary to prevailing belief, actually inhibitors with dissocation constants of less than 0.1s À1, the can accept modifications of the mannose at the C-6 position in hits found by fluorous microarrays were comparable to those the form of glycero-manno-heptoses found on pathogenic found by techniques such as surface plasmon resonance bacteria (Figure 1). The well-known mannose–conA interac- (SPR) and solution-based biochemical assays.[2a] Ideally, of course, the relative quantification of these binding interac- tions could also be carried out within the same fluorous microarray screening format. ConA is a plant lectin that is widely used like antibodies as research tools and diagnostics to identify the presence of specific sugars, such as mannose, on cells;[3] however, in reality the sugar specificities of lectins have not been tested broadly, especially against less readily available carbohydrates. ConA is the most-studied lectin and is usually considered to bind terminal alpha-linked mannose, glucose, and N-acetylglucos- amine. Earlier inhibition data suggest that modifications at the C-3, C-4, and C-6 positions of the d-mannopyranose deter binding to conA.[4] In particular, the loss of the hydroxy group in the C-6 position as in 6-deoxy-d-mannose and 1,6-anhydro- b-d-manno-pyranose result in complete loss of activity. -
(12) United States Patent (10) Patent No.: US 6,713,116 B1 Aldrich Et Al
USOO6713116B1 (12) United States Patent (10) Patent No.: US 6,713,116 B1 Aldrich et al. (45) Date of Patent: Mar. 30, 2004 (54) SWEET-STABLE ACIDIFIED BEVERAGES 4,957,763 A 9/1990 Saita et al. ................. 426/548 5,169,671. A 12/1992 Harada et al. .............. 426/658 (75) Inventors: Jessica A. Aldrich, Hazlet, NJ (US); 5,380,541 A 1/1995 Beyts et al. ................ 426/548 Lisa Y. Hanger, Basking Ridge, NJ 5.431,929 A 7/1995 Yatka et al. ................... 426/3 5,731,025 A 3/1998 Mitchell ..................... 426/548 (US); Guido Ritter, Laer (DE) 6,322,835 B1 * 11/2001 De Soete et al. ........... 426/453 (73) Assignee: Nutrinova Inc., Somerset, NJ (US) 6,372.277 B1 * 4/2002 Admiraal et al. ........... 426/548 FOREIGN PATENT DOCUMENTS (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 W WO as: : 3.1. - - - - - - - - - - - A23L/1/236 U.S.C. 154(b) by 0 days. WO WO 98/19564 5/1998 ............. A23L/2/60 (21) Appl. No.: 09/675,825 OTHER PUBLICATIONS (22) Filed: Sep. 29, 2000 Widemann et al., “Synergistic Sweeteners”, Food Ingred. and Analysis Int., 19(6):51-52, 55-56 (abstract only), Dec. Related U.S. Application Data 1997.* (63) Continuation-in-part of application No. 09/186,275, filed on sk cited- by examiner Nov. 5, 1998, now abandoned. Primary Examiner Keith Hendricks (60) Pisional application No. 60/079,408, filed on Mar. 26, (74) Attorney, Agent, or Firm-ProPat, L.L.C. (51) Int. Cl. -
Carbohydrate Composition of Endotoxins from R-Type Isogenic Mutants of Shigella Sonnei Studied by Capillary Electrophoresis and GC-MS†
CROATICA CHEMICA ACTA CCACAA, ISSN 0011-1643, e-ISSN 1334-417X Croat. Chem. Acta 84 (3) (2011) 393–398. CCA-3487 Original Scientific Article Carbohydrate Composition of Endotoxins from R-type Isogenic Mutants of Shigella sonnei Studied by Capillary Electrophoresis and GC-MS† Annamária Bui,a Anikó Kilár,b,c Ágnes Dörnyei,a,c Viktória Poór,a Krisztina Kovács,b Béla Kocsis,b and Ferenc Kilára,c,* aInstitute of Bioanalysis, Faculty of Medicine, University of Pécs, Szigeti út 12., H-7624 Pécs bDepartment of Medical Microbiology and Immunology, Faculty of Medicine, University of Pécs, Szigeti út 12., H-7624 Pécs, Hungary cDepartment of Analytical and Environmental Chemistry, Faculty of Sciences, University of Pécs, Ifjúság útja 6., H-7624 Pécs, Hungary RECEIVED NOVEMBER 9, 2010; REVISED FEBRUARY 5, 2011; ACCEPTED MAY 13, 2011 Abstract. The carbohydrate composition of the rough-type endotoxins (lipopolysaccharides, LPSs) from Shigella sonnei mutant strains (Shigella sonnei phase II - 4303, 562H, R41 and 4350) was investigated by capillary electrophoresis and GC-MS. The monosaccharides obtained by hydrolysis were determined by capillary electrophoresis combined with laser induced fluorescence detection (CE-LIF) after labeling with 8-aminopyrene-1,3,6-trisulfonic acid (APTS) and by GC-MS as alditol-acetate derivatives. It was ob- tained that the lipopolysaccharides of the isogenic rough mutants are formed in a step-like manner, con- taining no heptose (4350), one D-glycero-D-mannoheptose (562H), or two or three L-glycero-D- mannoheptoses (R41, 4303, respectively) in the deep core region. Besides the heptoses, the longest LPS from the mutant Shigella sonnei 4303 contains hexoses, such as glucoses and galactoses, in a pro- portion of approximately 3:2. -
Carbohydrates: Structure and Function
CARBOHYDRATES: STRUCTURE AND FUNCTION Color index: . Very important . Extra Information. “ STOP SAYING I WISH, START SAYING I WILL” 435 Biochemistry Team *هذا العمل ﻻ يغني عن المصدر المذاكرة الرئيسي • The structure of carbohydrates of physiological significance. • The main role of carbohydrates in providing and storing of energy. • The structure and function of glycosaminoglycans. OBJECTIVES: 435 Biochemistry Team extra information that might help you 1-synovial fluid: - It is a viscous, non-Newtonian fluid found in the cavities of synovial joints. - the principal role of synovial fluid is to reduce friction between the articular cartilage of synovial joints during movement O 2- aldehyde = terminal carbonyl group (RCHO) R H 3- ketone = carbonyl group within (inside) the compound (RCOR’) 435 Biochemistry Team the most abundant organic molecules in nature (CH2O)n Carbohydrates Formula *hydrate of carbon* Function 1-provides important part of energy Diseases caused by disorders of in diet . 2-Acts as the storage form of energy carbohydrate metabolism in the body 3-structural component of cell membrane. 1-Diabetesmellitus. 2-Galactosemia. 3-Glycogen storage disease. 4-Lactoseintolerance. 435 Biochemistry Team Classification of carbohydrates monosaccharides disaccharides oligosaccharides polysaccharides simple sugar Two monosaccharides 3-10 sugar units units more than 10 sugar units Joining of 2 monosaccharides No. of carbon atoms Type of carbonyl by O-glycosidic bond: they contain group they contain - Maltose (α-1, 4)= glucose + glucose -Sucrose (α-1,2)= glucose + fructose - Lactose (β-1,4)= glucose+ galactose Homopolysaccharides Heteropolysaccharides Ketone or aldehyde Homo= same type of sugars Hetero= different types Ketose aldose of sugars branched unBranched -Example: - Contains: - Contains: Examples: aldehyde group glycosaminoglycans ketone group. -
Synthesis and Functions of a Glycopolymer Carrying Gal/Jl-+4(Glcnach Tetrasaccharide
Polymer Journal, Vol. 30. No. 8, pp 653-658 ( 1998) Synthesis and Functions of a Glycopolymer Carrying Gal/Jl-+4(GlcNAch Tetrasaccharide Kazukiyo KoBAYASHI,t Shoko KAMIYA, Minoru MATSUYAMA,* Takeomi MURATA,* and Taichi Usur* Graduate School of' Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan * Faculty of' Agriculture, Shizuoka University, Ohya, Shizuoka 422---8529, Japan (Received February 16, 1998) ABSTRACT: Tetrasaccharide Galfil--+4(GlcNAch was synthesized from N,N',N"-triacetylchitotriose (GlcNAc)s and lactose using transglycosylation with a P-o-galactosidase from Bacillus circu/ans. The reducing terminal of Galfil--+4(GlcNAclJ was oxidized and connected to p-vinylbenzylamine via amide linkage, and the resulting oligosaccharide-substituted styrene monomer was polymerized with the radical initiator, 2,2' -azobis(2-amidinopropane) dihydrochloride at 60"C. Glycopolystyrene was found to bind strongly with wheat germ agglutinin (WGA) and tomato (Lycopersicon esculentum) agglutinin (LEA) by inhibition of hemagglutination and double diffusion. KEY WORDS Oligosaccharides / Glycopolymers / Lectins / Enzymatic Synthesis/ Recognition / Cell surface carbohydrates from glycoproteins, glyco dimensional immunodiffusion in agar and inhibition of lipids, proteoglycans, and capsular polysaccharides play lectin-induced hemagglutination. Comparison was made important roles in biological events, 1.2 Carbohydrate using analogous homopolymers carrying N-acetyllactos protein interaction is usually weak and multivalent amine and chitooligosaccharides. Chart I illustrates the oligosaccharide chains are required to target cell surface chemical structures and abbreviations of these glycopoly carbohydrate receptors and inhibit host infection by mers. pathogens. 3 Glycopolymers carrying pendant oligo saccharide chains can be regarded as multivalent ligands known to interact strongly with lectins and antibodies, 4 · 5 Glycopolymers have been synthesized and applied as biomedical materials having biological recognition signals. -
Carbohydrates Adapted from Pellar
Carbohydrates Adapted from Pellar OBJECTIVE: To learn about carbohydrates and their reactivities BACKGROUND: Carbohydrates are a major food source, with most dietary guidelines recommending that 45-65% of daily calories come from carbohydrates. Rice, potatoes, bread, pasta and candy are all high in carbohydrates, specifically starches and sugars. These compounds are just a few examples of carbohydrates. Other carbohydrates include fibers such as cellulose and pectins. In addition to serving as the primary source of energy for the body, sugars play a number of other key roles in biological processes, such as forming part of the backbone of DNA structure, affecting cell-to-cell communication, nerve and brain cell function, and some disease pathways. Carbohydrates are defined as polyhydroxy aldehydes or polyhydroxy ketones, or compounds that break down into these substances. They can be categorized according to the number of carbons in the structure and whether a ketone or an aldehyde group is present. Glucose, for example, is an aldohexose because it contains six carbons and an aldehyde functional group. Similarly, fructose would be classified as a ketohexose. glucose fructose A more general classification scheme exists where carbohydrates are broken down into the groups monosaccharides, disaccharides, and polysaccharides. Monosaccharides are often referred to as simple sugars. These compounds cannot be broken down into smaller sugars by acid hydrolysis. Glucose, fructose and ribose are examples of monosaccharides. Monosaccharides exist mostly as cyclic structures containing hemiacetal or hemiketal groups. These structures in solution are in equilibrium with the corresponding open-chain structures bearing aldehyde or ketone functional groups. The chemical linkage of two monosaccharides forms disaccharides. -
Total Synthesis of Zwitterionic Bacterial Polysaccharide (PS A1) Antigen Fragments
A Dissertation Titled: Total Synthesis of Zwitterionic Bacterial Polysaccharide (PS A1) Antigen Fragments from B. fragilis ATCC 25285/NCTC 9343 with Alternating Charges on Adjacent Monosaccharides by Pradheep Eradi Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Chemistry ___________________________________________ Dr. Peter R. Andreana, PhD, Committee Chair ___________________________________________ Dr. Steve Sucheck, PhD, Committee Member ___________________________________________ Dr. Jianglong Zhu, PhD, Committee Member ___________________________________________ Dr. Amanda C. Bryant-Freidrich, PhD, Committee Member ___________________________________________ Dr. Cyndee Gruden, Dean College of Graduate Studies The University of Toledo May 2019 Copyright 2019 Pradheep Eradi This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Total Synthesis of Zwitterionic Bacterial Polysaccharide (PS A1) Antigen Fragments from B. fragilis ATCC 25285/NCTC 9343 with Alternating Charges on Adjacent Monosaccharides by Pradheep Eradi Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Chemistry The University of Toledo May 2019 Zwitterionic polysaccharides (ZPSs) are a relatively new class of carbohydrate antigens, with a paradigm shifting property; they can activate CD4+ T-cells in the absence of lipids, peptide(s) or protein(s) upon MHC class II presentation. Up until now, various anaerobic bacteria are known to express ZPSs, for example, PS A1, PS A2 and PS B (Bacteroides fragilis), Sp1 (Streptococcus pneumoniae), CP5 and CP8 (Staphylococcus aureus) and O-chain antigen (Morganella morgani). Among all the afore mentioned ZPSs, Sp1 and PS A1 polysaccharides were the prime focus of research for the past few decades and their biological properties are very well-understood. -
The Isolation and Partial Characterization of the Lipopolysaccharides from Rhizobium Leguminosarum Biovar Trifolii Strains TB4, TB104, and TB112 (Llne)
Eastern Illinois University The Keep Masters Theses Student Theses & Publications 1990 The solI ation and Partial Characterization of the Lipopolysaccharides from Rhizobium leguminosarum biovar trifolii strains TB4, TB104, and TB112 Jill K. Miller Eastern Illinois University This research is a product of the graduate program in Zoology at Eastern Illinois University. Find out more about the program. Recommended Citation Miller, Jill K., "The sI olation and Partial Characterization of the Lipopolysaccharides from Rhizobium leguminosarum biovar trifolii strains TB4, TB104, and TB112" (1990). Masters Theses. 2302. https://thekeep.eiu.edu/theses/2302 This is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Masters Theses by an authorized administrator of The Keep. For more information, please contact [email protected]. THESIS REPRODUCTION CERTIFICATE TO: Graduate Degree Candidates who have written formal theses. SUBJECT: Permission to reproduce theses. The University Library is receiving a number of requests from other institutions asking permission to reproduce dissertations for inclusion in their library holdings. Although no copyright laws are involved, we feel that professional courtesy demands that permission be obtained from the author before we allow theses to be copied. Please sign one of the following statements: Booth Library of Eastern Illinois University has my permission to lend my thesis to a reputable college or university for the purpose of copying it for inclusion in that institution's library or research holdings. l f ttJ9o I Date I respectfully request Booth Library of Eastern Illinois University not allow my thesis be reproduced because -------------- Date Author m The Isolation and Partial Characterization of the Lipopolysaccharides from Rhizobium leguminosarum biovar trifolii strains TB4, TB104, and TB112 (llnE) BY Jill K. -
Tetrasaccharide Glycoforms from Bacillus Anthracis Exosporium and Fragments Thereof
molecules Article Structure-Immunogenicity Relationship of α- and β-Tetrasaccharide Glycoforms from Bacillus anthracis Exosporium and Fragments Thereof Riccardo De Ricco 1, Christy L. Ventura 2, Filippo Carboni 1, Rina Saksena 3,†, Pavol Kováˇc 3 and Roberto Adamo 1,* ID 1 GSK, Research Centre, via Fiorentina 1, 53100 Siena, Italy; [email protected] (R.D.R.); fi[email protected] (F.C.) 2 Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; [email protected] 3 NIDDK, LBC, National Institutes of Health, Bethesda, MD 20892-0815, USA; [email protected] (R.S.); [email protected] (P.K.) * Correspondence: [email protected]; Tel.: +39-0577-539393 † Current address: Department of Chemistry, The University of New Mexico, Albuquerque, NM 87131, USA. Received: 12 July 2018; Accepted: 17 August 2018; Published: 20 August 2018 Abstract: The tetrasaccharide (2-O-methyl-4-(3-hydroxy-3-methylbutamido)-4,6-dideoxy-α-D- glucopyranosyl-(1!3)-α-L-rhamnopyranosyl-(1!3)-α-L-rhamnopyranosyl-(1!2)-L-rhamnopyranose) from the major exosporium protein (BclA) of Bacillus anthracis has been proposed as a target for development of diagnostics and immune therapy or prophylaxis. While the immunodominant character of the anthrose residue has been previously elucidated, the role of the stereochemical configuration of the downstream rhamnose is unknown. Because the linkage of this residue to the GlcNAc bridging the glycan and the protein is lost during isolation of the tetrasaccharide, its α- and β-glycoforms have been synthesized. Herein, we prepared neoglycoconjugates from a series of fragments of the tetrasaccharide, including the complete α- and β-tetrasaccharide glycoforms, a 2-demethoxylated version of the α-tetrasaccharide, and the α- and β-trirhamnosides and CRM197. -
Nucleosides & Nucleotides
Nucleosides & Nucleotides Biochemistry Fundamentals > Genetic Information > Genetic Information NUCLEOSIDE AND NUCLEOTIDES SUMMARY NUCLEOSIDES  • Comprise a sugar and a base NUCLEOTIDES  • Phosphorylated nucleosides (at least one phosphorus group) • Link in chains to form polymers called nucleic acids (i.e. DNA and RNA) N-BETA-GLYCOSIDIC BOND  • Links nitrogenous base to sugar in nucleotides and nucleosides • Purines: C1 of sugar bonds with N9 of base • Pyrimidines: C1 of sugar bonds with N1 of base PHOSPHOESTER BOND • Links C3 or C5 hydroxyl group of sugar to phosphate NITROGENOUS BASES  • Adenine • Guanine • Cytosine • Thymine (DNA) 1 / 8 • Uracil (RNA) NUCLEOSIDES • =sugar + base • Adenosine • Guanosine • Cytidine • Thymidine • Uridine NUCLEOTIDE MONOPHOSPHATES – ADD SUFFIX 'SYLATE' • = nucleoside + 1 phosphate group • Adenylate • Guanylate • Cytidylate • Thymidylate • Uridylate Add prefix 'deoxy' when the ribose is a deoxyribose: lacks a hydroxyl group at C2. • Thymine only exists in DNA (deoxy prefix unnecessary for this reason) • Uracil only exists in RNA NUCLEIC ACIDS (DNA AND RNA)  • Phosphodiester bonds: a phosphate group attached to C5 of one sugar bonds with - OH group on C3 of next sugar • Nucleotide monomers of nucleic acids exist as triphosphates • Nucleotide polymers (i.e. nucleic acids) are monophosphates • 5' end is free phosphate group attached to C5 • 3' end is free -OH group attached to C3 2 / 8 FULL-LENGTH TEXT • Here we will learn about learn about nucleoside and nucleotide structure, and how they create the backbones of nucleic acids (DNA and RNA). • Start a table, so we can address key features of nucleosides and nucleotides. • Denote that nucleosides comprise a sugar and a base. -
Quantitative Changes in Various Sugar Concentrations During Fermentation
QUAriTri'AT:CVE GHAI'jGES 111 VARIOUS SUGAR GOIjCm'RATlOKS UJRIMG FEH'IiSm'ATlOII Oi<' DOUGliS, SPONGiiS AMD BRliT/ZS ^' Ting Jui Tan^ 3. S., Tai-.v-an Provincial ChTJungshing Universitj . A MSTEK'S THESIS subnitted in partial fulfilLTient of the req-uireiaent Tor the decree MSTitlR OF SCIENCE Food Science Depairtinsnt Ox Grain Science arid Ladiistiy KAIIS'IS STATK UNXVilRSI'i'Y Manhattan, Kansas 1963 ApTrov'i'id by: I'lajor Professor . ' - LD . /?(? . tSX table of coiitehts eitroduction 1 REVIEV7 OF LITER/iTUPJi; 2 I. The Carbohydrates of Ivlieat and VJheat Flour 2 II. Quantitative Determination of Sugars in Natural ............ Materials 5 III, The Fate of Sugars in Breadmaking ......... 11 ^lETHOD AND MATERIALS l6 I. Flour Samples l6 II. Formulation, Dough I-Iake-up and Balcing 16 III, Determination of Gas Production Rates 19 IV. Schedule of Sample Collection for Sugar Analyses ..... 20 V. Method of Ejctraction of Sugars from Dough, Brew, Sponge and Bread Crumb . , 21 VI. tiethods of Analyses , 21 RESULTS AND DISCUSSION 25 I. of Discussion the Experimental Methods , 25 II. Change in Total Reducing Sugars of the Extracts 31 III. Change of Concentration of Individual Sugars During Fermentation ........... ....... 32 IV. Rate of Gas Production 34 V. Residual Sugars in Bread 36 SU>2^SIRY AND CONCLUSION 37 ACKI^Oi-niEDGEMEIT Zfo LITERATURE CITED , ^ i^l ii LIST _0F TABLES I. The I-Iono- and Di- saccharide Content of Flour , 3 II, Changes of Sugar Content in Steeped and Germinated Ivheat , , , , 12 III, Size of Sar.ples Used in Detenrdnation of Gas Production Hates , . 19 IV.