Peptone Stimulates CCK-Releasing Peptide Secretion by Activating Intestinal Submucosal Cholinergic Neurons

Total Page:16

File Type:pdf, Size:1020Kb

Peptone Stimulates CCK-Releasing Peptide Secretion by Activating Intestinal Submucosal Cholinergic Neurons Peptone stimulates CCK-releasing peptide secretion by activating intestinal submucosal cholinergic neurons. Y Li, C Owyang J Clin Invest. 1996;97(6):1463-1470. https://doi.org/10.1172/JCI118568. Research Article In this study we tested the hypothesis that peptone in the intestine stimulates the secretion of the CCK-releasing peptide (CCK-RP) which mediates CCK secretion, and examined the enteric neural circuitry responsible for CCK-RP secretion. We used a "donor-recipient" rat intestinal perfusion model to quantify the CCK-RP secreted in response to nutrient stimulation. Infusion of concentrated intestinal perfusate collected from donor rat perfused with 5% peptone caused a 62 +/- 10% increase in protein secretion and an elevation of plasma CCK levels to 6.9 +/- 1.8 pM in the recipient rat. The stimulatory effect of the intestinal washings was abolished when the donor rats were pretreated with atropine or hexamethonium but not with guanethidine or vagotomy. Mucosal application of lidocaine but not serosal application of benzalkonium chloride which ablates the myenteric neurons in the donor rats also abolished the stimulatory action of the intestinal washings. Furthermore, treatment of the donor rats with a 5HT3 antagonist and a substance P antagonist also prevented the secretion of CCK-RP. These observations suggest that peptone in the duodenum stimulates serotonin release which activates the sensory substance P neurons in the submucous plexus. Signals are then transmitted to cholinergic interneurons and to epithelial CCK-RP containing cells via cholinergic secretomotor neurons. This enteric neural circuitry which is responsible for the secretion of CCK-RP may in turn play […] Find the latest version: https://jci.me/118568/pdf Peptone Stimulates CCK-releasing Peptide Secretion by Activating Intestinal Submucosal Cholinergic Neurons Ying Li and Chung Owyang The University of Michigan Medical Center, Department of Internal Medicine, Ann Arbor, Michigan 48109 Abstract Recently it was reported that the release of CCK into the circulation is mediated by a “CCK-releasing peptide” (CCK- In this study we tested the hypothesis that peptone in the in- RP) secreted into the intestine of the rat (2, 3). When trypsin is testine stimulates the secretion of the CCK-releasing pep- present, this peptide is cleaved and inactivated. It has been tide (CCK-RP) which mediates CCK secretion, and exam- proposed that this newly discovered CCK-RP may also act as a ined the enteric neural circuitry responsible for CCK-RP mediator of pancreatic enzyme secretion in response to dietary secretion. We used a “donor-recipient” rat intestinal perfu- protein (4). Dietary protein in the intestine competes for sion model to quantify the CCK-RP secreted in response to trypsin (1), which would otherwise inactivate the CCK-RP. nutrient stimulation. Infusion of concentrated intestinal The resulting increase of active CCK-RP in the intestine re- perfusate collected from donor rat perfused with 5% pep- leases CCK and stimulates pancreatic enzyme secretion. On tone caused a 62Ϯ10% increase in protein secretion and an the other hand, if a dietary protein such as bovine serum albu- elevation of plasma CCK levels to 6.9Ϯ1.8 pM in the recipi- min or lactalbumin is a poor substrate for pancreatic proteases, ent rat. The stimulatory effect of the intestinal washings it will not prevent proteolytic inactivation of the CCK-RP and was abolished when the donor rats were pretreated with at- therefore will not evoke an increase in CCK secretion (1). ropine or hexamethonium but not with guanethidine or vag- Hence the ability of intact protein to stimulate CCK release otomy. Mucosal application of lidocaine but not serosal and pancreatic secretion has been attributed to its ability to application of benzalkonium chloride which ablates the my- bind with pancreatic proteases and reverse protease-induced enteric neurons in the donor rats also abolished the stimula- feedback inhibition of CCK release. In a recent study, how- tory action of the intestinal washings. Furthermore, treat- ever (5) it was reported that peptic digests of lactalbumin not ment of the donor rats with a 5HT3 antagonist and a native lactalbumin were potent stimuli of pancreatic secretion. substance P antagonist also prevented the secretion of It is conceivable that digests of protein in the intestine may CCK-RP. These observations suggest that peptone in the stimulate the secretion of CCK-RP. To test this hypothesis we duodenum stimulates serotonin release which activates the used a “donor-recipient” rat intestinal perfusion model that sensory substance P neurons in the submucous plexus. Sig- has been previously used to identify the CCK-RP (2) and ex- nals are then transmitted to cholinergic interneurons and to amined the ability of peptone, a pancreatic protease digest of epithelial CCK-RP containing cells via cholinergic secreto- protein in the intestine, to stimulate the secretion of CCK-RP. motor neurons. This enteric neural circuitry which is re- Furthermore, we examined the enteric neural circuitry mediat- sponsible for the secretion of CCK-RP may in turn play an ing CCK-RP secretion. The relative importance of extrinsic important role in the postprandial release of CCK. (J. Clin. versus intrinsic neural pathways were studied and the location Invest. 1996. 97:1463–1470.) Key words: substance P • sero- of the local neural plexus identified. In addition, we delineated tonin • enteric nervous system • cholecystokinin • cholecys- the individual components of the enteric neural circuitry which tokinin-releasing peptide mediates CCK-RP secretion. Introduction Methods Cholecystokinin (CCK)1 plays an important role in the media- Materials tion of postprandial pancreatic secretion and gallbladder con- traction. In the rat, protein is the major dietary intestinal stim- The following were purchased from Sigma Chemical Co. (St. Louis, l ulus for CCK release (1). Little, however, is known about the MO): Peptone, maltose, -amino acids, atropine sulfate, hexametho- nium and benzalkonium chloride. mechanisms regulating CCK secretion. Animal preparation Male Sprague-Dawley rats, weighing between 250 and 300 grams, Address correspondence to Chung Owyang, M.D., The University of were fasted overnight and anesthetized with a mixture of xylazine Michigan Medical Center, 3912 Taubman Center, Box 0362, Ann Ar- and ketamine (13 and 87 mg/kg body wt, respectively). Supplemental bor, MI 48109-0362. Phone: 313-936-4785; FAX: 313-036-7392. doses were used every 2 h as needed to maintain adequate anesthesia. Received for publication 4 August 1995 and accepted in revised Through a midline incision, a polyethylene catheter was inserted into form 12 December 1995. the common bile pancreatic duct at the ampulla. A second catheter was placed in the duodenum, slightly above the ampulla for the intes- 1. Abbreviations used in this paper: CCK, cholecystokinin; RP, releas- tinal perfusion of bile pancreatic juice. The abdominal wound was ing peptide. covered with a saline gauge and the animal body temperature was monitored by a rectal thermal probe and maintained at 37ЊC with a J. Clin. Invest. heating pad. After 60 min of stabilization, combined bile and pancre- © The American Society for Clinical Investigation, Inc. atic secretions were collected every 15 min. The volume was mea- 0021-9738/96/03/1463/08 $2.00 sured, and an aliquot was taken and diluted with distilled water for Volume 97, Number 6, March 1996, 1463–1470 protein determination. The remainder of the undiluted bile pancre- Peptone Stimulates Cholecystokinin-releasing Peptide 1463 atic juice was returned to the intestine via the duodenal cannula dur- acute bilateral subdiaphragmatic vagotomy was performed in donor ing the next collection period. Bile pancreatic juice protein was mea- rats. Through a midline incision of the abdominal wall, the stomach sured spectrophotometrically using the assay method of Bradford (6). was carefully manipulated to expose the esophagus. The subdia- Our previous study (7) has confirmed that the increase in protein out- phragmatic vagal trunks were exposed halfway between the dia- put in the bile pancreatic juice following CCK-8 stimulation mainly phragm and the gastric cardia. Both anterior and posterior trunks of reflected protein from the pancreatic source. Biliary juice protein did the vagal nerves were transected. For control experiments, the ab- not increase with CCK stimulation. dominal vagal nerves were exposed but not cut. Intraluminal peptone perfusion studies were performed following acute vagotomy. Pancre- atic amylase output and plasma CCK levels were monitored in the re- Experimental protocols cipient rats following the same protocol as described earlier. Effect of intraluminal nutrients on CCK-RP secretion after 5-h diver- Effects of mucosal anesthestic and serosal application of benzalko- sion of BPJ. To investigate the effect of intraluminal peptone on nium choloride (BAC) on peptone-stimulated CCK-RP secretion. CCK-RP secretion, we utilized the donor-recipient rat model de- The enteric nervous system is composed of the myenteric and submu- scribed previously (2). The common bile-pancreatic duct was cannu- cous plexuses. To investigate if the submucous plexus is involved in lated at the ampulla for diversion of bile pancreatic juice. Two cannu- the mediation of CCK-RP secretion, 1% lidocaine was used as a topi- las were placed into the small bowel: one in the proximal duodenum cal anesthetic (2 ml/kg bolus plus 0.2 ml/min for 5 min at hourly inter- for the infusion of saline or nutrient solutions and the other in the je- vals intraduodenally) ten minutes before the intraduodenal perfusion junum 20 cm distal to the ligament of Tretz for collection of intestinal of 5% peptone. This method has previously been shown to inhibit the perfusates. We have shown previously that diversion of bile pancre- increase in superior mesenteric artery blood flow evoked by in- atic juice from the intestine resulted in a marked increase in plasma traduodenal perfusion of 0.1N HCl (10). To investigate if myeteric CCK levels and pancreatic secretion.
Recommended publications
  • Relationships Between the Autonomic Nervous System and the Pancreas Including Regulation of Regeneration and Apoptosis Recent Developments
    ORIGINAL ARTICLE Relationships Between the Autonomic Nervous System and the Pancreas Including Regulation of Regeneration and Apoptosis Recent Developments Takayoshi Kiba, MD, PhD organ at birth, reaches its adult size and morphology after Abstract: Substantial new information has accumulated on the weaning (3 weeks of age). mechanisms of secretion, the development, and regulation of the gene In pancreatic regeneration after cholecystokinin analog expression, and the role of growth factors in the differentiation, growth, and regeneration of the pancreas. Many genes that are re- cerulein-induced acute pancreatitis, 2 separate peaks of DNA quired for pancreas formation are active after birth and participate in synthesis have been reported. The first peak corresponded with endocrine and exocrine cell functions. Although the factors that nor- duct cell and mesenchymal cell proliferation, and the second mally regulate the proliferation of the pancreas largely remain elu- peak was associated with acinar cell proliferation.1 However, sive, several factors to influence the growth have been identified. It in this model, islet cells did not regenerate. Formation of new was also reported that the pancreas was sensitive to a number of apop- ␤ cells can take place via 2 pathways: replication of already totic stimuli. The autonomic nervous system influences many of the differentiated ␤ cells and neogenesis from putative islet stem functions of the body, including the pancreas. In fact, the parasympa- cells. It is generally admitted that neogenesis mostly takes thetic nervous system and the sympathetic nervous system have op- place during fetal and neonatal life. In adulthood, little increase posing effects on insulin secretion from islet ␤ cells; feeding-induced in the ␤-cell number seems to occur.
    [Show full text]
  • A Comparative Survey of the RF-Amide Peptide Superfamily
    EDITORIAL published: 10 August 2015 doi: 10.3389/fendo.2015.00120 Editorial: A comparative survey of the RF-amide peptide superfamily Karine Rousseau 1*, Sylvie Dufour 1 and Hubert Vaudry 2 1 Laboratory of Biology of Aquatic Organisms and Ecosystems (BOREA), Muséum National d’Histoire Naturelle, CNRS 7208, IRD 207, Université Pierre and Marie Curie, UCBN, Paris, France, 2 Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U982, International Associated Laboratory Samuel de Champlain, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, Mont-Saint-Aignan, France Keywords: RF-amide peptides, receptors, evolution, functions, deuterostomes, protostomes The first member of the RF-amide peptide superfamily to be characterized, in 1977, was the cardioexcitatory peptide, FMRFamide, isolated from the ganglia of the clam Macrocallista nimbosa (1). Since then, a large number of such peptides, designated after their C-terminal arginine (R) and amidated phenylalanine (F) residues, have been identified in representative species of all major phyla. The discovery, 12 years ago, that the RF-amide peptide kisspeptin, acting via GPR54, was essential for the onset of puberty and reproduction, has been a major breakthrough in reproductive physiology (2–4). It has also put in front of the spotlights RF-amide peptides and has invigo- rated research on this superfamily of regulatory neuropeptides. The present Research Topic aims at illustrating major advances achieved, through comparative studies in (mammalian and non- mammalian) vertebrates and invertebrates, in the knowledge of RF-amide peptides in terms of evolutionary history and physiological significance. Since 2006, by means of phylogenetic analyses, the superfamily of RFamide peptides has been divided into five families/groups in vertebrates (5, 6): kisspeptin, 26RFa/QRFP, GnIH (including LPXRFa and RFRP), NPFF, and PrRP.
    [Show full text]
  • Physiology of the Pancreas
    LECTURE IV: Physiology of the Pancreas EDITING FILE IMPORTANT MALE SLIDES EXTRA FEMALE SLIDES LECTURER’S NOTES 1 PHYSIOLOGY OF THE PANCREAS Lecture Four OBJECTIVES ● Functional Anatomy ● Major components of pancreatic juice and their physiologic roles ● Cellular mechanisms of bicarbonate secretion ● Cellular mechanisms of enzyme secretion ● Activation of pancreatic enzymes ● Hormonal & neural regulation of pancreatic secretion ● Potentiation of the secretory response Pancreas Lying parallel to and beneath the stomach, it is a large compound gland with most of its internal structure similar to that of the salivary glands. It is composed of: Figure 4-1 Endocrine portion 1-2% Exocrine portion 95% (Made of Islets of Langerhans) (Acinar gland tissues) Secrete hormones into the blood Made of acinar & ductal cells.1 - ● Insulin (beta cells; 60%) secretes digestive enzymes, HCO3 ● Glucagon (alpha cells; 25%) and water into the duodenum . ● Somatostatin (delta cells; 10%). Figure 4-2 Figure 4-3 ● The pancreatic digestive enzymes are secreted by pancreatic acini. ● Large volumes of sodium bicarbonate solution are secreted by the small ductules and larger ducts leading from the acini. ● Pancreatic juice is secreted in response to the presence of chyme in the upper portions of the small intestine. ● Insulin and Glucagon are crucial for normal regulation of glucose, lipid, and protein metabolism. FOOTNOTES 1. Acinar cells arrange themselves like clusters of grapes, that eventually release their secretions into ducts. Collection of acinar cells is called acinus, acinus and duct constitute one exocrine gland. 2 PHYSIOLOGY OF THE PANCREAS Lecture Four Pancreatic Secretion: ● Amount ≈ 1.5 L/day in an adult human. ● The major functions of pancreatic secretion: To neutralize the acids in the duodenal chyme to optimum range 1 (pH=7.0-8.0) for activity of pancreatic enzymes.
    [Show full text]
  • Enteric Nervous System (ENS): 1) Myenteric (Auerbach) Plexus & 2
    Enteric Nervous System (ENS): 1) Myenteric (Auerbach) plexus & 2) Submucosal (Meissner’s) plexus à both triggered by sensory neurons with chemo- and mechanoreceptors in the mucosal epithelium; effector motors neurons of the myenteric plexus control contraction/motility of the GI tract, and effector motor neurons of the submucosal plexus control secretion of GI mucosa & organs. Although ENS neurons can function independently, they are subject to regulation by ANS. Autonomic Nervous System (ANS): 1) parasympathetic (rest & digest) – can innervate the GI tract and form connections with ENS neurons that promote motility and secretion, enhancing/speeding up the process of digestion 2) sympathetic (fight or flight) – can innervate the GI tract and inhibit motility & secretion by inhibiting neurons of the ENS Sections and dimensions of the GI tract (alimentary canal): Esophagus à ~ 10 inches Stomach à ~ 12 inches and holds ~ 1-2 L (full) up to ~ 3-4 L (distended) Duodenum à first 10 inches of the small intestine Jejunum à next 3 feet of small intestine (when smooth muscle tone is lost upon death, extends to 8 feet) Ileum à final 6 feet of small intestine (when smooth muscle tone is lost upon death, extends to 12 feet) Large intestine à 5 feet General Histology of the GI Tract: 4 layers – Mucosa, Submucosa, Muscularis Externa, and Serosa Mucosa à epithelium, lamina propria (areolar connective tissue), & muscularis mucosae Submucosa à areolar connective tissue Muscularis externa à skeletal muscle (in select parts of the tract); smooth muscle (at least 2 layers – inner layer of circular muscle and outer layer of longitudinal muscle; stomach has a third layer of oblique muscle under the circular layer) Serosa à superficial layer made of areolar connective tissue and simple squamous epithelium (a.k.a.
    [Show full text]
  • TRH-Like Peptides
    Physiol. Res. 60: 207-215, 2011 https://doi.org/10.33549/physiolres.932075 REVIEW TRH-Like Peptides R. BÍLEK1, M. BIČÍKOVÁ1, L. ŠAFAŘÍK2 1Institute of Endocrinology, Prague, Czech Republic, 2Urology Clinic, Beroun, Czech Republic Received September 6, 2010 Accepted October 8, 2010 On-line November 29, 2010 Summary of the leaders working in the area concerning the TRH TRH-like peptides are characterized by substitution of basic research was Professor V. Schreiber from Prague, Czech amino acid histidine (related to authentic TRH) with neutral or Republic, which already in 1959 formulated the acidic amino acid, like glutamic acid, phenylalanine, glutamine, hypothesis that adenohypophyseal acid phosphatase is tyrosine, leucin, valin, aspartic acid and asparagine. The related to thyrotropin secretion and that TRH is its presence of extrahypothalamic TRH-like peptides was reported in possible activator (Schreiber and Kmentova 1959, peripheral tissues including gastrointestinal tract, placenta, neural Schreiber et al. 1962). TRH precursor, human prepro- tissues, male reproductive system and certain endocrine tissues. TRH, consists of 242 amino acid residues, and contains Work deals with the biological function of TRH-like peptides in six separate copies of the TRH progenitor sequence different parts of organisms where various mechanisms may (Satoh and Mori 1994), which determine the primary serve for realisation of biological function of TRH-like peptides as structure of TRH as a tripeptide pyroglutamyl-histidinyl- negative feedback to the pituitary exerted by the TRH-like proline amide. The transcriptional unit of prepro-TRH is peptides, the role of pEEPam such as fertilization-promoting localized on chromosome 3 in humans (three exons peptide, the mechanism influencing the proliferative ability of interrupted by two introns) (Yamada et al.
    [Show full text]
  • Peptide Handbook a Guide to Peptide Design and Applications in Biomedical Research
    Peptide Handbook A Guide to Peptide Design and Applications in Biomedical Research First Edition www.GenScript.com GenScript USA Inc. 860 Centennial Ave. Piscataway, NJ 08854 USA Phone: 1-732-885-9188 Toll-Free: 1-877-436-7274 Fax: 1-732-885-5878 Table of Contents The Universe of Peptides Reliable Synthesis of High-Quality Peptides Molecular structure 3 by GenScript Characteristics 5 Categories and biological functions 8 Analytical methods 10 Application of Peptides Research in structural biology 12 Research in disease pathogenesis 12 Generating antibodies 13 FlexPeptideTM Peptide Synthesis Platform which takes advantage of the latest Vaccine development 14 peptide synthesis technologies generates a large capacity for the quick Drug discovery and development 15 synthesis of high-quality peptides in a variety of lengths, quantities, purities Immunotherapy 17 and modifications. Cell penetration-based applications 18 Anti-microorganisms applications 19 Total Quality Management System based on multiple rounds of MS and HPLC Tissue engineering and regenerative medicine 20 analyses during and after peptide synthesis ensures the synthesis of Cosmetics 21 high-quality peptides free of contaminants, and provides reports on peptide Food industry 21 solubility, quality and content. Synthesis of Peptides Diverse Delivery Options help customers plan their peptide-based research Chemical synthesis 23 according to their time schedule and with peace of mind. Microwave-assisted technology 24 ArgonShield™ Packing eliminates the experimental variation caused by Ligation technology 26 oxidization and deliquescence of custom peptides through an innovative Recombinant technology 28 Modifications packing and delivery technology. 28 Purification 30 Expert Support offered by Ph.D.-level scientists guides customers from Product identity and quality control 31 peptide design and synthesis to reconstitution and application.
    [Show full text]
  • Effect of the Natural Sweetener Xylitol on Gut Hormone Secretion and Gastric Emptying in Humans: a Pilot Dose-Ranging Study
    nutrients Article Effect of the Natural Sweetener Xylitol on Gut Hormone Secretion and Gastric Emptying in Humans: A Pilot Dose-Ranging Study Anne Christin Meyer-Gerspach 1,2,* , Jürgen Drewe 3, Wout Verbeure 4 , Carel W. le Roux 5, Ludmilla Dellatorre-Teixeira 5, Jens F. Rehfeld 6, Jens J. Holst 7 , Bolette Hartmann 7, Jan Tack 4, Ralph Peterli 8, Christoph Beglinger 1,2 and Bettina K. Wölnerhanssen 1,2,* 1 St. Clara Research Ltd. at St. Claraspital, 4002 Basel, Switzerland; [email protected] 2 Faculty of Medicine, University of Basel, 4001 Basel, Switzerland 3 Department of Clinical Pharmacology and Toxicology, University Hospital of Basel, 4001 Basel, Switzerland; [email protected] 4 Translational Research Center for Gastrointestinal Disorders, Catholic University of Leuven, 3000 Leuven, Belgium; [email protected] (W.V.); [email protected] (J.T.) 5 Diabetes Complications Research Centre, Conway Institute University College Dublin, 3444 Dublin, Ireland; [email protected] (C.W.l.R.); [email protected] (L.D.-T.) 6 Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark; [email protected] 7 Department of Biomedical Sciences and Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; [email protected] (J.J.H.); [email protected] (B.H.) 8 Department of Surgery, Clarunis, St. Claraspital, 4002 Basel, Switzerland; [email protected] * Correspondence: [email protected] (A.C.M.-G.); [email protected] (B.K.W.); Tel.: +41-61-685-85-85 (A.C.M.-G.
    [Show full text]
  • Digestive System
    Type of Question with Method & Solution for H. S. and Other Competitive Entrance Examination (Medical / Engineering) Cou ncil Chapter - Digestive System '1. Contraction of gall bladder is stimulated by : (c) Pancreatic,uice (d) Gall bladder bile (a) Gastrin (b) Secretin 1r. Detergent action of bile acid is due to : (c) CCK (d) Vagus (a) Formation of soap 2. True statemenls regarding gastric acid secre- (b) Formation of zwitterions . tion: (c) Formation of medium chain triglycerides (a) Gastrin increases acid secretion (d) Amphipathic nature of bile acids (b) Secretin decreases acid secretion 12. Which of the following enzymes is secreted by (c) Total acid secretion reflects functional intestine? parietal cell mass (a) Trypsin (b) Elaslase (d). H2 blockers decrease acid secretion . (c) Dipeptidase (d) Phospholipase 42 3. ln which of the following areas, the vomiting 13. Cephalic phase of gastric secretion is caused centre is located : by: (a) Thalamus . (a) Parasympathetic nerves (b) Hypothalamus (b) Sympathetic nerves (c) Medulla oblongata (c) Gastrin (d) Pons (d) Neurohormones in : 4, Vitamin 8,, is absorbed '14. Pepsinogen is activated by lhe the following : (a) Stomach (b) Duodenum (a) Enterokinase (b) Low pH (c) lleum (d) Jejunum (c) Trypsin (d) Chymotrypsin 5. Gastricjuice contains all except : 15. All are secreted as proenzymes except : (a) Na" (b) K- (a) Trypsin (b) Chymotrypsin (c) Ca". (d) Ms.* (c) Pepsin (d) Ribonuclease Bilirubin is derived from : 6. 16. Most potent stimulus for secretin secretion is : . (a) Myoglobin (b) Haemoglobin (a) Dilatation of intestine (c) Cholesterol (d) Muscle (b) Protein 7. Which of the following are essential for the (c) Fat digestion of dietary fat? (d) Acid chyme (a) Bile plgment (b) Pancreatlc lipase 17.
    [Show full text]
  • Digestive System Physiology of the Pancreas
    Digestive System Physiology of the pancreas Dr. Hana Alzamil Objectives Pancreatic acini Pancreatic secretion Pancreatic enzymes Control of pancreatic secretion ◦ Neural ◦ Hormonal Secretin Cholecystokinin What are the types of glands? Anatomy of pancreas Objectives Pancreatic acini Pancreatic secretion Pancreatic enzymes Control of pancreatic secretion ◦ Neural ◦ Hormonal Secretin Cholecystokinin Histology of the Pancreas Acini ◦ Exocrine ◦ 99% of gland Islets of Langerhans ◦ Endocrine ◦ 1% of gland Secretory function of pancreas Acinar and ductal cells in the exocrine pancreas form a close functional unit. Pancreatic acini secrete the pancreatic digestive enzymes. The ductal cells secrete large volumes of sodium bicarbonate solution The combined product of enzymes and sodium bicarbonate solution then flows through a long pancreatic duct Pancreatic duct joins the common hepatic duct to form hepatopancreatic ampulla The ampulla empties its content through papilla of vater which is surrounded by sphincter of oddi Objectives Pancreatic acini Pancreatic secretion Pancreatic enzymes Control of pancreatic secretion ◦ Neural ◦ Hormonal Secretin Cholecystokinin Composition of Pancreatic Juice Contains ◦ Water ◦ Sodium bicarbonate ◦ Digestive enzymes Pancreatic amylase pancreatic lipase Pancreatic nucleases Pancreatic proteases Functions of pancreatic secretion Fluid (pH from 7.6 to 9.0) ◦ acts as a vehicle to carry inactive proteolytic enzymes to the duodenal lumen ◦ Neutralizes acidic gastric secretion Enzymes ◦
    [Show full text]
  • What Is Pancreatic Polypeptide and What Does It Do?
    What is Pancreatic Polypeptide and what does it do? This document aims to evaluate current understanding of pancreatic polypeptide (PP), a gut hormone with several functions contributing towards the maintenance of energy balance. Successful regulation of energy homeostasis requires sophisticated bidirectional communication between the gastrointestinal tract and central nervous system (CNS; Williams et al. 2000). The coordinated release of numerous gastrointestinal hormones promotes optimal digestion and nutrient absorption (Chaudhri et al., 2008) whilst modulating appetite, meal termination, energy expenditure and metabolism (Suzuki, Jayasena & Bloom, 2011). The Discovery of a Peptide Kimmel et al. (1968) discovered PP whilst purifying insulin from chicken pancreas (Adrian et al., 1976). Subsequent to extraction of avian pancreatic polypeptide (aPP), mammalian homologues bovine (bPP), porcine (pPP), ovine (oPP) and human (hPP), were isolated by Lin and Chance (Kimmel, Hayden & Pollock, 1975). Following extensive observation, various features of this novel peptide witnessed its eventual classification as a hormone (Schwartz, 1983). Molecular Structure PP is a member of the NPY family including neuropeptide Y (NPY) and peptide YY (PYY; Holzer, Reichmann & Farzi, 2012). These biologically active peptides are characterized by a single chain of 36-amino acids and exhibit the same ‘PP-fold’ structure; a hair-pin U-shaped molecule (Suzuki et al., 2011). PP has a molecular weight of 4,240 Da and an isoelectric point between pH6 and 7 (Kimmel et al., 1975), thus carries no electrical charge at neutral pH. Synthesis Like many peptide hormones, PP is derived from a larger precursor of 10,432 Da (Leiter, Keutmann & Goodman, 1984). Isolation of a cDNA construct, synthesized from hPP mRNA, proposed that this precursor, pre-propancreatic polypeptide, comprised 95 residues (Boel et al., 1984) and is processed to produce three products (Leiter et al., 1985); PP, an icosapeptide containing 20-amino acids and a signal peptide (Boel et al., 1984).
    [Show full text]
  • Behaviour of Digestive Enzymes in the Pancreatic Juice and Pancreas of Rats Fed on a Low-Protein Diet (3 P
    Behaviour of digestive enzymes in the pancreatic juice and pancreas of rats fed on a low-protein diet (3 p. 100 of cereal protein) then on a balanced diet (23.5 p. 100 of mixed protein) O. Kheroua, J. Belleville To cite this version: O. Kheroua, J. Belleville. Behaviour of digestive enzymes in the pancreatic juice and pancreas of rats fed on a low-protein diet (3 p. 100 of cereal protein) then on a balanced diet (23.5 p. 100 of mixed protein). Reproduction Nutrition Développement, 1981, 21 (6A), pp.901-917. hal-00897907 HAL Id: hal-00897907 https://hal.archives-ouvertes.fr/hal-00897907 Submitted on 1 Jan 1981 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Behaviour of digestive enzymes in the pancreatic juice and pancreas of rats fed on a low-protein diet (3 p. 100 of cereal protein) then on a balanced diet (23.5 p. 100 of mixed protein) O. KHEROUA, J. BELLEVILLE Laboratoire de Physiologie de la Nutrition Université d’Oran, Algérie. * Laboratoire de Physiologie de la Nutrition UER Nutrition, BP 138, 21100 Dijon Cedex, France. Summary. The aim of this study in the rat was to determine the effect of a low-protein diet (3 p.
    [Show full text]
  • Effect of Acid Infusion Into Various Levels of the Intestine on Gastric and Pancreatic Secretion in the Cat
    Gut: first published as 10.1136/gut.10.9.749 on 1 September 1969. Downloaded from Gut, 1969, 10, 749-753 Effect of acid infusion into various levels of the intestine on gastric and pancreatic secretion in the cat S. J. KONTUREK, J. DUBIEL, AND B. GABRY9 From the Department ofMedicine, Medical School, Krakow, Poland SUMMARY Intraduodenal infusion of increasing amounts of hydrochloric acid solution results in a stepwise increase in the volume of pancreatic secretion and output of bicarbonate, reaching about 90 % of amounts attained with exogenous secretin infused intravenously in increasing doses. Acid infusion into the different regions of the intestine stimulates pancreatic secretion only from the duodenum and upper jejunum, suggesting that the area ofendogenous release of secretin by acid is confined to the upper part ofthe small bowel in the cat. Gastric acid secretion induced by pentagastrin, but not by histamine, is inhibited by acid perfusion of the duodenum. The acidification of other parts of the small intestine does not result in any change in gastric acid secretion induced either by pentagastrin or by histamine. Previous studies have shown that acidification of the ligament of Treitz, and the third in the ileum about 25 cm duodenum in the cat inhibits gastric acid secretion proximal to the caecum. and stimulates pancreatic secretion, due to the endogenous release of secretin (Konturek, Dubiel, SECRETORY PROCEDURE The secretory tests were started and and about two weeks after the cats hadrecoveredfrom surgery. Gabryg, 1969; Konturek, Gabrys, Dubiel, http://gut.bmj.com/ 1969). No study, however, has compared the relative effects on gastric and pancreatic secretion of acid infusions into various regions of the small intestine.
    [Show full text]