Simulating Association Studies: a Data-Based Resampling Method for Candidate Regions Or Whole Genome Scans Fred A

Total Page:16

File Type:pdf, Size:1020Kb

Simulating Association Studies: a Data-Based Resampling Method for Candidate Regions Or Whole Genome Scans Fred A Vol. 23 no. 19 2007, pages 2581–2588 BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btm386 Genetics and population analysis Simulating association studies: a data-based resampling method for candidate regions or whole genome scans Fred A. Wright1,2,3,*, Hanwen Huang1, Xiaojun Guan4, Kevin Gamiel4, Clark Jeffries4,5, William T. Barry1, Fernando Pardo-Manuel de Villena2,6, Patrick F. Sullivan2,6, Kirk C. Wilhelmsen2,6 and Fei Zou1,2,3 1Department of Biostatistics, 2Center for Genome Sciences, 3Center for Environmental Bioinformatics, University of North Carolina, Chapel Hill, NC 27599, 4Renaissance Computing Institute, Europa Drive, 5School of Pharmacy and 6Department of Genetics, UNC Chapel Hill, NC, USA Received on August 25, 2006; revised on June 21, 2007; accepted on July 20, 2007 Advance Access publication September 4, 2007 Associate Editor: Keith Crandall ABSTRACT of appropriate significance thresholds (Dudbridge and Motivation: Reductions in genotyping costs have heightened Koeleman, 2004; Thomas et al., 2005), methods for fine- interest in performing whole genome association scans and in the mapping and reconstructing haplotypes (De La Chapelle and fine mapping of candidate regions. Improvements in study design Wright, 1998; Stephens and Donnelly, 2003) and approaches and analytic techniques will require the simulation of datasets with for handling multiple interacting susceptibility loci (Marchini realistic patterns of linkage disequilibrium and allele frequencies for et al., 2005). typed SNPs. In many cases, the best approaches depend on specifics of the Methods: We describe a general approach to simulate genotyped disease model and polymorphism in the population (Pritchard datasets for standard case-control or affected child trio data, by and Cox, 2002). In order to rigorously compare competing resampling from existing phased datasets. The approach allows for approaches, simulation studies must be performed which considerable flexibility in disease models, potentially involving a provide realistic patterns of allele frequencies and linkage large number of interacting loci. The method is most applicable for disequilibrium (LD) structure. Unfortunately, uncertainty of diseases caused by common variants that have not been under human population genetic history makes it difficult to perform strong selection, a class specifically targeted by the International such simulations. Forward simulation approaches (Dudek HapMap project. et al., 2006; Peng et al., 2007) can be sensitive to underlying Results: Using the three population Phase I/II HapMap data as a assumptions and starting genotypes, and are typically highly testbed for our approach, we have implemented the approach in variable across simulations (Calafell et al., 2000) for observed HAP-SAMPLE, a web-based simulation tool. LD and disease outcomes. Backward coalescent approaches for Availability: The web-based tool is available at http:// multiple loci (Laval and Excoffier, 2004; Posada and Wiuf, www.hapsample.org 2003; Wang and Rannala, 2005) can be ‘calibrated’ to fit Contact: [email protected]; [email protected]; observed data structures (Schaffner et al., 2005), but remain [email protected] computationally infeasible for dense SNP collections spanning large genomic regions. Moreover, coalescent methods are not well suited to handle unknown and variable selection pressures that may have affected broad genomic regions (Altshuler et al., 1 INTRODUCTION 2005). These approaches involve de novo simulation of artificial It has long been recognized (Risch and Merikangas, 1996) SNPs, while the researcher may be interested in simulation that large-scale genotype–phenotype association studies will tailored to a certain genomic region or the actual list of SNPs have great power and precision to elucidate genetic influences from a favored genotyping platform. Alternatively, one might in complex disease (Gibbs et al., 2003; Hirschhorn and Daly, simulate SNPs to fit pairwise LD measures observed in real 2005). However, key issues in optimal design and analysis data (Montana, 2005), but this approach may be unable to remain unresolved. A partial list of areas of active research reflect higher-order haplotype structures likely crucial for (Hirschhorn and Daly, 2005) includes reassessment of the evaluating haplotype reconstruction and inference (Liu and relative strengths of case-control versus family based designs Lin, 2005). Moreover, it is not clear how to incorporate disease (Hintsanen et al., 2006), design of multistage association models into this approach. studies (Lowe et al., 2004; Satagopan et al., 2004), selection Another possible data-based approach involves cataloguing the frequency of inferred haplotypes in real data across regions *To whom correspondence should be addressed. constituting haplotype blocks (Altshuler et al., 2005), and ß 2007 The Author(s) This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/ by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. F.A.Wright et al. resampling from these haplotypes. The specification of distinct Chromosome pool block boundaries is somewhat artificial (Schwartz et al., 2003), and may not reflect longer-range LD that is apparent in real data. By sampling from haplotypes of very long range, we Disease SNP allele may avoid the problem of applying arbitrary haplotype block 00011 definitions. Recent work (de Bakker et al., 2005) employed values resampling data across the 500-kb HapMap ENCODE regions (Feingold et al., 2004), but it is not clear how to extend these efforts to a large scale or how to flexibly specify disease models. Many complex diseases are likely to be influenced by ancient SNP variants that are common, and maintain appreciable frequencies across continent-level populations (Altshuler et al., Case chromosomes Control chromosomes 2005; Lohmueller et al., 2003; Peng and Kimmel, 2007). Variants with low penetrance or predisposing for diseases of old age will not have undergone strong selection, and investigation of this class of diseases is among the motivations Origin 11 111 1 Origin 00110 1 for the HapMap project (Altshuler et al., 2005; Gibbs et al., 2003). Under such a model, disease chromosomes may be thought of as drawn from the same population as control chromosomes, but with selection probabilities that differ from controls at causal disease loci. With these considerations, we developed a method to simulate realistic human autosomal SNP data for disease Fig. 1. Simulation of case and control chromosomes. Chromosome association studies, by resampling chromosome-length haplo- pool. These are derived from HapMap or other source as chromosome- types derived from real data. The simulated data follows length haplotypes. Case chromosomes. Genotypes at the disease SNP observed linkage disequilibrium structure and allele frequencies are determined according to P(g|D ¼ 1), and pool chromosomes are at actual SNP loci, and thus is well suited for power analyses chosen to be compatible with the genotype. Then the artificial crossover process is simulated, following the process described in the text, using and investigations of competing techniques for study design the disease SNP location as the origin. The example depicted here and analysis. We started by assuming that phased SNP data are shows a recessive disease, for which two ‘1’ alleles are required. Control available at a series of loci from a sample of individuals. chromosomes. Genotypes at the disease SNP are determined according Assuming random mating, the individual typed chromosomes to P(g|D ¼ 0), and otherwise the process is the same as with case form the relevant pool from which we draw in order to simulate chromosomes. Simulation of affected-child trio data proceeds similarly, SNP alleles for new individuals. We further implemented an with transmitted chromosomes simulated in the same manner as case artificial ‘crossover’ process that allows recombination of chromosomes. Non-transmitted chromosomes in the trios are simulated chromosomes at simulated crossovers. This crossover process in a similar manner to control chromosomes, but follow the mimics meiosis, but is arguably not necessary, as the original unconditional genotype frequencies P(g) at the disease loci. chromosome sample is already reflective of the population. However, we reasoned that a modest crossover process would replacement, as homozygosity of short-range haplotypes may increase novelty and avoid long-range allelic association arise in real data from a single shared ancestry. For low produced by chance variation or subtle population substruc- penetrance diseases, this conditional sampling scheme is far ture. As described below, we take care to simulate crossovers in more efficient than unconditionally generating large numbers a manner that preserves haplotype block structure, and the of genotypes and retaining only the small fraction with disease. crossover rate is controlled by the user. The remaining allele values are generated by following an Figure 1 shows a schematic of the approach. The user artificial crossover process using the disease locus as the origin identifies one or more ‘disease’ SNPs in the pool data (currently (see Methods Section). At each generated crossover, a random limited to one per autosome), for which ascertainment of cases chromosome from the
Recommended publications
  • Genetic, Epidemiological and Biological Analysis of Interleukin-10
    Genes and Immunity (2009) 10, 174–180 & 2009 Macmillan Publishers Limited All rights reserved 1466-4879/09 $32.00 www.nature.com/gene ORIGINAL ARTICLE Genetic, epidemiological and biological analysis of interleukin-10 promoter single-nucleotide polymorphisms suggests a definitive role for À819C/T in leprosy susceptibility AC Pereira1,5, VN Brito-de-Souza1,5, CC Cardoso2, IMF Dias-Baptista1, FPC Parelli1,3, J Venturini1,3, FR Villani-Moreno1, AG Pacheco4 and MO Moraes2 1Instituto Lauro de Souza Lima, Bauru, Sa˜o Paulo, Brazil; 2Laborato´rio de Hansenı´ase, Departamento de Micobacterioses, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil; 3Tropical Diseases Area, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Sa˜o Paulo, Brazil and 4Departamento de Epidemiologia e Me´todos Quantitativos em Sau´de (DEMQS), Escola Nacional de Sau´de Pu´blica (ENSP)/PROCC, FIOCRUZ, Rio de Janeiro, Brazil Leprosy is a complex infectious disease influenced by genetic and environmental factors. The genetic contributing factors are considered heterogeneous and several genes have been consistently associated with susceptibility like PARK2, tumor necrosis factor (TNF), lymphotoxin-a (LTA) and vitamin-D receptor (VDR). Here, we combined a case–control study (374 patients and 380 controls), with meta-analysis (5 studies; 2702 individuals) and biological study to test the epidemiological and physiological relevance of the interleukin-10 (IL-10) genetic markers in leprosy. We observed that the À819T allele is associated with leprosy susceptibility either in the case–control or in the meta-analysis studies. Haplotypes combining promoter single-nucleotide polymorphisms also implicated a haplotype carrying the À819T allele in leprosy susceptibility (odds ratio (OR) ¼ 1.40; P ¼ 0.01).
    [Show full text]
  • PLINK: a Toolset for Whole Genome Association and Population-Based Linkage Analyses
    1 PLINK: a toolset for whole genome association and population-based linkage analyses Shaun Purcell1,2, Benjamin Neale1,2,3, Kathe Todd-Brown1, Lori Thomas1, Manuel A R Ferreira1, David Bender1,2, Julian Maller1,2, Paul I W de Bakker1,2, Mark J Daly1,2, Pak C Sham4 1 Center for Human Genetic Research, MGH, Boston, USA. 2 Broad Institute of Harvard and MIT, Cambridge, USA. 3 Institute of Psychiatry, University of London, London, UK. 4 Genome Research Center, University of Hong Kong, Pokfulam, Hong Kong. Correspondence: Shaun Purcell, Rm 6.254, CPZ-N, 185 Cambridge Street, Boston, MA, 02114, USA; Tel: 617-726-7642; Fax: 617-726-0830; [email protected] Keywords : Whole genome association studies, single nucleotide polymorphisms, identity-by-state, identity-by-descent, linkage analysis, computer software Abstract Whole-genome association studies (WGAS) bring new computational as well as analytic challenges to researchers. Many existing genetic analysis tools are not designed to handle such large datasets in a convenient manner and do not necessarily exploit the new opportunities that whole-genome data bring. To address these issues, we developed PLINK, an open source C/C++ WGAS toolset. Large datasets, comprising hundreds of thousands of markers geno- typed for thousands of individuals, can be rapidly manipulated and analyzed in their entirety. As well as providing tools to make the basic analytic steps computationally efficient, PLINK also supports some novel approaches to whole-genome data, that take advantage of whole-genome coverage. We in- troduce PLINK and describe the five main domains of function: data man- agement, summary statistics, population stratification, association analysis and identity-by-descent estimation.
    [Show full text]
  • Basics in Genetics Analysis
    Genetics and Diseases Basics in Genetics Analysis Heping Zhang Environment 9/24/2007 Dr. Doug Brutlag Lecture Syllabus “central paradigm” //www.s-star.org/ 2 Diseases Progression Known and Probable Risk Factors z Being a woman How does the Breast Cancer grows and spread? z Getting older z Having a personal history of BC or ovarian cancer z Having a family history of breast cancer z Having a previous biopsy showing carcinoma in situ z Having your first period before age 12 z Starting menopause after age 55 A malignant Malignant Cancer cells z Never having children tumor within tumors spread z Having your first child after age 30 the breast suppress z Having a mutation in the BRCA1 or BRCA2 genes normal ones z Drinking more than 1 alcoholic drink per day z Being overweight after menopause or gaining weight as an adult. 9/24/2007 3 9/24/2007 4 Genetic Epidemiology Terminology • How is a disease transmitted in families? ( Marker: a known DNA sequence that can be identified by a Inheritance patterns). simple assay e.g., D1S80, D4S43, D16S126 • What is the recurrence Allele: a viable DNA coding that occupies a given locus risk for relatives? (position) on a chromosome e.g., A, a; • Mendelian disorders Genotype: the observed alleles at a genetic locus for an • Autosomal or X-linked individual • Dominant or recessive e.g., AA, Aa, aa; 0 Homozygous: AA, aa 0 Heterozygous: Aa Phenotype: the expression of a particular genotype 0 Continuous: blood pressure 0 Dichotomous: Cancer, Hypertension 9/24/2007 Duke University Center of Human Genetics 5 9/24/2007 6 1 Mendel’s Laws DNA Polymorphism and Human Variation First Law Segregation of Characteristics: the sex cell of a plant or animal may contain one factor (allele) for different traits but not both factors needed to express the traits.
    [Show full text]
  • Genetic Association Tests for Binary Traits with An
    GENETIC ASSOCIATION TESTS FOR BINARY TRAITS WITH AN APPLICATION by SULGI KIM Submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy Dissertation Advisor: Dr. Robert C. Elston Department of Epidemiology and Biostatistics CASE WESTER RESERVE UNIVERSITY August, 2009 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approved the dissertation of Sulgi Kim candidate for the Ph. D. degree*. (Signed) Robert C. Elston, Ph.D Department of Epidemiology and Biostatistics Chair of the committee Xiaofeng Zhu, Ph.D Department of Epidemiology and Biostatistics Courtney Gray-McGuire, Ph.D Department of Epidemiology and Biostatistics Jill S. Barnholtz-Sloan, Ph.D Case Comprehensive Cancer Center June 8, 2009 *We also certify that written approval has been obtained for any proprietary material therein. ii Table of Contents List of Tables .................................................................................................................... iv List of Figures .....................................................................................................................v Acknowledgements .......................................................................................................... vi Abstract ...............................................................................................................................1 Chapter 1. Introduction.....................................................................................................3 Chapter 2. Association Tests
    [Show full text]
  • Design and Analysis of Genetic Association Studies
    ection S ON Design and Analysis of Statistical Genetic Association G enetics Studies Hemant K Tiwari, Ph.D. Professor & Head Section on Statistical Genetics Department of Biostatistics School of Public Health Association Analysis • Linkage Analysis used to be the first step in gene mapping process • Closely located SNPs to disease locus may co- segregate due to linkage disequilibrium i.e. allelic association due to linkage. • The allelic association forms the theoretical basis for association mapping Linkage vs. Association • Linkage analysis is based on pedigree data (within family) • Association analysis is based on population data (across families) • Linkage analyses rely on recombination events • Association analyses rely on linkage disequilibrium • The statistic in linkage analysis is the count of the number of recombinants and non-recombinants • The statistical method for association analysis is “statistical correlation” between Allele at a locus with the trait Linkage Disequilibrium • Over time, meiotic events and ensuing recombination between loci should return alleles to equilibrium. • But, marker alleles initially close (genetically linked) to the disease allele will generally remain nearby for longer periods of time due to reduced recombination. • This is disequilibrium due to linkage, or “linkage disequilibrium” (LD). Linkage Disequilibrium (LD) • Chromosomes are mosaics Ancestor • Tightly linked markers Present-day – Alleles associated – Reflect ancestral haplotypes • Shaped by – Recombination history – Mutation, Drift Tishkoff
    [Show full text]
  • Genome-Wide Association Studies: Understanding the Genetics of Common Disease the Academy of Medical Sciences | FORUM
    The Academy of Medical Sciences | FORUM Genome-wide association studies: understanding the genetics of common disease Symposium report July 2009 The Academy of Medical Sciences The Academy of Medical Sciences promotes advances in medical science and campaigns to ensure these are converted into healthcare benefits for society. Our Fellows are the UK’s leading medical scientists from hospitals and general practice, academia, industry and the public service. The Academy seeks to play a pivotal role in determining the future of medical science in the UK, and the benefits that society will enjoy in years to come. We champion the UK’s strengths in medical science, promote careers and capacity building, encourage the implementation of new ideas and solutions – often through novel partnerships – and help to remove barriers to progress. The Academy’s FORUM with industry The Academy’s FORUM is an active network of scientists from industry and academia, with representation spanning the pharmaceutical, biotechnology and other health product sectors, as well as trade associations, Research Councils and other major charitable research funders. Through promoting interaction between these groups, the FORUM aims to take forward national discussions on scientific opportunities, technology trends and the associated strategic choices for healthcare and other life-science sectors. The FORUM builds on what is already distinctive about the Academy: its impartiality and independence, its focus on research excellence across the spectrum of clinical and basic sciences and its commitment to interdisciplinary working. Acknowledgements This report provides a summary of the discussion at the FORUM symposium on ‘Genome-wide association studies’ held in October 2008.
    [Show full text]
  • Study of Genetic Association
    Statistical Genomics and Bioinformatics Workshop 8/16/2013 Statistical Genomics and Bioinformatics Workshop: Genetic Association and RNA-Seq Studies Population Genetics and Genome‐wide Genetic Association Studies (GWAS) Brooke L. Fridley, PhD University of Kansas Medical Center 1 Study of Genetic Association Cases Controls Genetic association studies look at the frequency of genetic changes in a group of cases and controls to try to determine whether specific changes are associated with disease. 2 1 Statistical Genomics and Bioinformatics Workshop 8/16/2013 Genetic Analysis Strategies Linkage effect GWAS Association size Rare Variant Analysis allele frequency Ardlie, Kruglyak & Seielstad (2002) Nature Genetics Reviews Zondervan & Cardon (2004) Nature Genetics Reviews 3 Genetics of Complex Traits • Multiple genes / variants – Common and rare variants – Interactions, Haplotypes, Pathways • Environment – Gene‐Environment interaction 4 2 Statistical Genomics and Bioinformatics Workshop 8/16/2013 In reality, much more complex! 5 NIHGRI GWAS Catalog (8/11/2013) http://www.genome.gov/gwastudies/ 6 3 Statistical Genomics and Bioinformatics Workshop 8/16/2013 Population Genetics 7 Recombination A1 B1 D1 Before meioses A2 B2 D2 A1 B1 D2 Crossovers occur during meioses A2 B2 D1 D2 A1 B1 After recombination A2 B2 D1 8 4 Statistical Genomics and Bioinformatics Workshop 8/16/2013 Linkage Disequilibrium (LD) • Particular alleles at neighboring loci tend to be co-inherited. • For tightly linked loci, this co-inheritance might lead to associations between
    [Show full text]
  • Genetic Association Analysis of SARS-Cov-2 Infection in 455,838 UK Biobank Participants
    medRxiv preprint doi: https://doi.org/10.1101/2020.10.28.20221804; this version posted November 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license . 1 Genetic association analysis of SARS-CoV-2 infection in 455,838 UK Biobank participants 2 J. A. Kosmicki†, J. E. Horowitz†, N. Banerjee, R. Lanche, A. Marcketta, E. Maxwell, Xiaodong 3 Bai, D. Sun, J. Backman, D. Sharma, C. O’Dushlaine, A. Yadav, A. J. Mansfield, A. Li, J. 4 Mbatchou, K. Watanabe, L. Gurski, S. McCarthy, A. Locke, S. Khalid, O. Chazara, Y. Huang, E. 5 Kvikstad, A. Nadkar, A. O’Neill, P. Nioi, M. M. Parker, S. Petrovski, H. Runz, J. D. Szustakowski, 6 Q. Wang, Regeneron Genetics Center*, UKB Exome Sequencing Consortium*, M. Jones, S. 7 Balasubramanian, W. Salerno, A. Shuldiner, J. Marchini, J. Overton, L. Habegger, M. N. Cantor, 8 J. Reid, A. Baras‡, G. R. Abecasis‡, M. A. Ferreira‡ 9 10 From: 11 Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA (JK, JEH, 12 NB, RL, AM, EM, XB, DS, JB, DSh, CO’D, AY, AJM, AL, JM, KW, LG, SM, AL, SK, MJ, SB, 13 WS, AS, JM, JO, LH, MNC, JR, AB, GRA, MAF) 14 Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, 15 Cambridge, UK (OC, AO’N, SP, QW) 16 Biogen, 300 Binney St, Cambridge, MA 02142, USA (YH, HR) 17 Alnylam Pharmaceuticals, 675 West Kendall St, Cambridge, MA 02142, USA (MMP, PN).
    [Show full text]
  • Characterization of Quantitative Traits Using Association Genetics
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2010 Characterization of quantitative traits using association genetics tetraploid and genetic linkage mapping in diploid cotton (Gossypium spp.) Ashok Badigannavar Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Badigannavar, Ashok, "Characterization of quantitative traits using association genetics tetraploid and genetic linkage mapping in diploid cotton (Gossypium spp.)" (2010). LSU Doctoral Dissertations. 2207. https://digitalcommons.lsu.edu/gradschool_dissertations/2207 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. CHARACTERIZATION OF QUANTITATIVE TRAITS USING ASSOCIATION GENETICS IN TETRAPLOID AND GENETIC LINKAGE MAPPING IN DIPLOID COTTON (GOSSYPIUM SPP.) A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The School of Plant, Environmental, and Soil Sciences By Ashok Badigannavar BSc (Agri), University of Agricultural Sciences, Dharwad, India, 1997 MSc (Agri), University of Agricultural Sciences, Dharwad, India, 1999 May 2010 This dissertation is dedicated in memory of my late father….. ii ACKNOWLEDGEMENTS I would like to express my sincere gratitude to my major professor Dr.Gerald O Myers for his valuable guidance and advice throughout my dissertation. The freedom he has provided during the course of study is commendable.
    [Show full text]
  • [Thesis Title Goes Here]
    RARE AND COMMON GENETIC VARIANT ASSOCIATIONS WITH QUANTITATIVE HUMAN PHENOTYPES A Dissertation Presented to The Academic Faculty by Jing Zhao In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Biology Georgia Institute of Technology August 2015 COPYRIGHT © 2015 BY JING ZHAO RARE AND COMMON GENETIC VARIANT ASSOCIATIONS WITH QUANTITATIVE HUMAN PHENOTYPES Approved by: Dr. Greg Gibson, Advisor Dr. Joseph Lachance School of Biology School of Biology Georgia Institute of Technology Georgia Institute of Technology Dr. Fredrik Vannberg Dr. Eva Lee School of Biology School of Industrial and Systems Georgia Institute of Technology Engineering Georgia Institute of Technology Dr. Patrick McGrath School of Biology Georgia Institute of Technology Date Approved: June 25, 2015 To my family and friends ACKNOWLEDGEMENTS The path to a PhD is full of laughter and tears. During the long journey of pursuing the degree of PhD, many people have provided me help and encouragement. Among those people, thesis advisor plays a very important role in my success of graduate study and research thesis. I always feel grateful to have Dr. Greg Gibson as my PhD advisor for almost five years. I remember a lot of moments when I was frustrated with the disappointing research results, Dr. Gibson encouraged me and helped me find the right direction to solve the problems. His encouragement and support has boosted my strong belief to overcome the challenges and keep my enthusiasm for science. What is more important, his attitude about science will have long-term influence on my future career. I appreciate the guidance and advice from my thesis committee members: Dr.
    [Show full text]
  • Geographic Confounding in Genome-Wide Association Studies
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.18.435971; this version posted March 18, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Geographic Confounding in Genome-Wide Association Studies Abdel Abdellaoui1, Karin J.H. Verweij1, Michel G. Nivard2 1Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands 2Department of Biological Psychology, VU University, Amsterdam, the Netherlands Correspondence: [email protected]; [email protected]; [email protected] Abstract Gene-environment correlations can bias associations between genetic variants and complex traits in genome-wide association studies (GWASs). Here, we control for geographic sources of gene- environment correlation in GWASs on 56 complex traits (N=69,772–271,457). Controlling for geographic region significantly decreases heritability signals for SES-related traits, most strongly for educational attainment and income, indicating that socio-economic differences between regions induce gene-environment correlations that become part of the polygenic signal. For most other complex traits investigated, genetic correlations with educational attainment and income are significantly reduced, most significantly for traits related to BMI, sedentary behavior, and substance use. Controlling for current address has greater impact on the polygenic signal than birth place, suggesting both active and passive sources of gene-environment correlations. Our results show that societal sources of social stratification that extend beyond families introduce regional-level gene-environment correlations that affect GWAS results.
    [Show full text]
  • A Tutorial on Statistical Methods for Population Association Studies
    FOCUS ON STATISTICAL ANALYSISREVIEWS A tutorial on statistical methods for population association studies David J. Balding Abstract | Although genetic association studies have been with us for many years, even for the simplest analyses there is little consensus on the most appropriate statistical procedures. Here I give an overview of statistical approaches to population association studies, including preliminary analyses (Hardy–Weinberg equilibrium testing, inference of phase and missing data, and SNP tagging), and single-SNP and multipoint tests for association. My goal is to outline the key methods with a brief discussion of problems (population structure and multiple testing), avenues for solutions and some ongoing developments. Haplotype The goal of population association studies is to identify will obtain a clearer picture of the statistical issues and A combination of alleles at patterns of polymorphisms that vary systematically gain some ideas for new or modified approaches. different loci on the same between individuals with different disease states and In this review I cover only population association chromosome. could therefore represent the effects of risk-enhancing or studies in which unrelated individuals of different dis- protective alleles (BOXES 1,2). That sounds easy enough: ease states are typed at a number of SNP markers. I do Population stratification Refers to a situation in which what could be difficult about spotting allele patterns that not address family-based association studies, admixture the population of interest are overrepresented in cases relative to controls? mapping or linkage studies (BOX 3), which also have an includes subgroups of One fundamental problem is that the genome is so important role in efforts to understand the effects of individuals that are on average large that patterns that are suggestive of a causal poly- genes on disease2.
    [Show full text]