PCR Diagnostic Methods for Ascosphaera Infections in Bees

Total Page:16

File Type:pdf, Size:1020Kb

PCR Diagnostic Methods for Ascosphaera Infections in Bees Journal of Invertebrate Pathology 90 (2005) 98–103 www.elsevier.com/locate/yjipa PCR diagnostic methods for Ascosphaera infections in bees R.R. James a,¤, J.S. Skinner b a USDA-ARS Bee Biology and Systematics Laboratory, Logan, UT, USA b Department of Horticulture, Oregon State University, Corvallis, OR, USA Received 19 May 2005; accepted 5 August 2005 Abstract Fungi in the genus Ascosphaera are the causative agents of chalkbrood, a major disease aVecting bee larval viability. IdentiWcation of individual Ascosphaera species based on morphological features has been diYcult due to a lack of distinguishing characteristics. Most identiWcations are based on the size and shape of the ascomata, spore balls and conidia. Unfortunately, much overlap occurs in the size of these structures, and some Ascosphaera species will not produce sexual structures in vitro. We report a quick and reliable diagnostic method for identifying Ascosphaera infections in Megachile bees (leafcutting bees) using PCR markers that employ genus-speciWc primers for Ascosphaera, and species-speciWc primers for species known to be associated with Megachile spp. Using these methods, species identi- Wcations can be performed directly on bees, including asymptomatic individuals. Furthermore, the PCR markers can detect co-infections of multiple Ascosphaera species in a single host. We also identiWed a marker for Ascosphaera apis, the predominant cause of chalkbrood in Apis mellifera, the honey bee. Our diagnostic methods eliminate the need for culturing samples, and could be used to process a large num- ber of Weld collected bee larvae. 2005 Elsevier Inc. All rights reserved. Keywords: Apis mellifera; Ascosphaera; Bees; Chalkbrood; Disease diagnosis; Megachile rotundata; PCR 1. Introduction morphological characteristics, and this placement is sub- stantiated by sequence analysis of the ribosomal gene The alfalfa leafcutting bee, Megachile rotundata (Hyme- region (Berbee and Taylor, 1992). Anderson et al. (1998) noptera: Megachilidae), is managed for the pollination of proposed a phylogeny of 20 Ascosphaera spp. based on the alfalfa seed crops. These bees nest in holes drilled or DNA sequence of this same region. molded into wood or polystyrene blocks. M. rotundata is The Ascosphaera have proved to be a diYcult group to highly susceptible to chalkbrood, a disease caused by fungi identify due to a lack of distinguishing characteristics, and in the genus Ascosphaera (Ascomycota: Plectomycetes: some species are diYcult to culture, requiring specialized Ascosphaearales), and this disease is prevalent enough in growth media or conditions. Most identiWcations are based the U.S. that most alfalfa seed growers rely on purchasing on the appearance of the ascomata in vivo, and the size and new bees each year to meet their pollination needs. shape of the spore balls and conidia. Unfortunately, much To date, 22 species of Ascosphaera have been identiWed overlap occurs between species in the size of these struc- (Bissett et al., 1996; Youssef and McManus, 2001), and all tures. Molecular methods for identifying some species have of these are found only in association with bees, either as a been previously developed, including isozyme analysis pathogen or as a saprophyte on the pollen stores in nests. (Maghrabi and Kish, 1985, 1987, 2001) and RAPD-PCR The Ascosphaera are placed in the Plectomyces based on (Lu et al., 1996). However, both of these techniques require either pure cultures of spores, or nearly pure cultures with little or no bee tissue. The pathogens must be isolated and * Corresponding author. Fax: +1 435 797 0461. grown in culture, or the infected bees must be symptomatic E-mail address: [email protected] (R.R. James). cadavers that consist primarily of fungal tissues. Thus, it 0022-2011/$ - see front matter 2005 Elsevier Inc. All rights reserved. doi:10.1016/j.jip.2005.08.004 R.R. James, J.S. Skinner / Journal of Invertebrate Pathology 90 (2005) 98–103 99 would be diYcult to use this method to identify infections All fungal species were cultured on Saboraud dextrose in bees that are still alive and asymptomatic. In addition, agar and potato dextrose agar, except Ascosphaera the results from such analyses are confounded if co-infec- aggregata, which was cultured on V-8 agar (James and tions occur in a single host, a condition that is likely to arise Buckner, 2004). V-8 Agar consists of 50 ml low sodium (Johnson et al., 2005). V-8 Juice (Campbell Soup, Camden, NJ), 5.3 g maltose, Polymerase chain reaction (PCR) techniques utilize highly 1.6 g yeast extract, 0.11 g MgSO4, 0.04 g thiamine, 1.1 mg speciWc primers and amplify only target DNA sequences in biotin, 7.5 ml Graces Medium (Invitrogen, Grand samples contaminated with other DNA. PCR markers could Island, NY), 0.5 ml canola oil, 0.5 ml 0.1% Triton X-100, provide a quick and reliable diagnostic method for Ascosph- and 1.5 g agar, and enough deionized water to bring the aera infections. Primers developed for the diVerent species of volume to 100ml. The pH was adjusted to 6.0 before Ascosphaera, could also be used to identify co-infections. We autoclaving. report here on PCR diagnostic methods to identify the Ascosphaera species that occur in association with Megachile 2.2. DNA extraction and PCR conditions bees, and for A. apis, the predominant cause of chalkbrood in Apis mellifera, the honey bee. DNA was extracted from pure Ascosphaera cultures, uninfected bee larvae, and larvae infected with A. aggregata 2. Methods using Ultra Clean plant DNA isolation kits (Mo Bio Labo- ratories, Solana Beach, CA). PCR analyses were conducted 2.1. Source of fungal cultures in 25 l reactions consisting of 19.9 l reverse osmosis puri- Wed water, 2.5 l of 10£ buVer, 0.5 l of 10 mM dNTP mix, We obtained pure cultures for eight species of Ascosph- 0.5 l of each primer (at 20 M each), 1 l DNA, and 0.1 l aera (Table 1), but were unable to obtain cultures of A. col- Taq DNA polymerase (5 U/l, Eppendorf HotMaster Taq, umbrina, A. variagata, and A. asterophora, which are also Brinkmann Instruments, Westbury, NY). Primer sequences recorded from Megachile hosts. These 11 species comprise are listed in Table 2. Thermocycle conditions were: an ini- all the recorded species to occur in Megachile spp. or Apis tial denaturing for 10 min at 94 °C; 30 cycles of 45 s dena- mellifera. In addition, we obtained Eremascus albus and turing at 94 °C, 45 s annealing at 62 °C, and 1 min extension Chrysosporium farinicola, due to their close relationship to at 72 °C; followed by a Wnal extension for 5 min at 72 °C. the Ascosphaera. For both of these, the strains obtained PCR products were electrophoretically separated on stan- were the type specimen. C. farinicola is the anamorph of dard agarose gels. Bettsia alvei, a fungus that grows saprophytically on bee pollen provisions. Eurotium, Monascus, and Sordaria cul- 2.3. Primer design tures (Table 1) were also obtained to verify that our speciWc primers would not amplify DNA from other common, The primers used here were all derived from conserved unrelated fungal species. regions of the DNA sequences reported by Anderson et al. (1998) for the 5.8S ribosomal DNA and the internal tran- scribed spacers (ITS 1 and ITS 2) using the program Gene- Table 1 Runner (Fig. 1). Fungal isolates used for testing genus- and species-speciWc primers Species Strain Source 2.4. Testing primers on pure fungal cultures Ascosphaera aggregata Wild1 Isolated from Megachile rotundata, Logan, UT To test the speciWcity of the primer pairs that we wanted a Ascosphaera aggregata 690 ARSEF to use as diagnostic markers, PCR reactions were con- Ascosphaera acerosa 201316 ATCCb Ascosphaera apis 13785 ATCC ducted for each primer using DNA extracted from every Ascosphaera apis 13786 ATCC one of our fungal cultures. Ascosphaera atra 693 ARSEF To test the sensitivity of the PCR reactions, DNA was Ascosphaera atra 5147 ARSEF extracted from A. aggregata (wild1) and A. acerosa X Ascosphaera ava 5144 ARSEF (ATTC 201316), then diluted to 116 ng/ml. The DNA con- Ascosphaera larvis 262708 ATCC X X Ascosphaera proliperda 696 ARSEF centration was determined using a uorometer (Pico uor Ascosphaera proliperda 28358 ATCC Handheld, Turner Designs, Sunnyvale, CA) and Pico- Ascosphaera pollenicola 62712 ATCC Green (Molecular Probes, Eugene, OR), a Xuorescent dye Eurotium cheraleri B. Kropp, Utah State University with speciWcity to double stranded DNA. A series of Wve- Chrysosporium farinicola 18053 ATCC fold dilutions were prepared in 0.1% TE buVer to obtain Eremascus albus 11665 ATCC Monascus perperaseens B. Kropp, Utah State University solutions of 23.2, 4.64, 0.93, 0.185, and 0.037 ng DNA/ml. Sordaria spp. B. Kropp, Utah State University PCR analyses were conducted using 1 l of each dilution a USDA Agricultural Research Service Entomopathogenic Fungi Col- as template DNA to assess the minimum concentration lection, Ithaca, NY. that would amplify. The sensitivity analyses were repeated b American Type Culture Collection, Manassas, VA. three times. 100 R.R. James, J.S. Skinner / Journal of Invertebrate Pathology 90 (2005) 98–103 Fig. 1. Relative location of each primer on the ITS1–5.8S–ITS2 genomic region, and the Ascosphaera species that each primer will amplify. All species are ampliWed by the TW81/AB28 and AscoAll1/AscoAll2 primer pairs. Species in italics were not tested, but ampliWcation is predicted based on the DNA sequences. Table 2 symptomatic by the prepupal stage, and so asymptomatic Primers used as markers for Ascosphaera spp. detection prepupae were considered to be free of infection. IdentiWer Forward Primer sequence (5Ј–3Ј) Fifty A. aggregata-infected and 50 healthy prepupae or reverse were removed from the stored boards, individually surface TW81a F GTT TCC GTA GGT GAA CCT GC cleaned by submerging in a 1% chlorine solution (sodium AB28a R ATA TGC TTA AGT TCA GCG GGT dichloro-s-triazinetrione dihydrate, Quantum Biochemical, AscoAll1 F GCA CTC CCA CCC TTG TCT A Alpharetta, GA) for 3–7 min, followed by three rinses in AscoAll2 R GAW CAC GAC GCC GTC ACT 1a-F2 F GGA AAA GAC CCT CGA CGA G sterile, distilled water.
Recommended publications
  • Standard Methods for Fungal Brood Disease Research Métodos Estándar Para La Investigación De Enfermedades Fúngicas De La Cr
    Journal of Apicultural Research 52(1): (2013) © IBRA 2013 DOI 10.3896/IBRA.1.52.1.13 REVIEW ARTICLE Standard methods for fungal brood disease research Annette Bruun Jensen1*, Kathrine Aronstein2, José Manuel Flores3, Svjetlana Vojvodic4, María 5 6 Alejandra Palacio and Marla Spivak 1Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1817 Frederiksberg C, Denmark. 2Honey Bee Research Unit, USDA-ARS, 2413 E. Hwy. 83, Weslaco, TX 78596, USA. 3Department of Zoology, University of Córdoba, Campus Universitario de Rabanales (Ed. C-1), 14071, Córdoba, Spain. 4Center for Insect Science, University of Arizona, 1041 E. Lowell Street, PO Box 210106, Tucson, AZ 85721-0106, USA. 5Unidad Integrada INTA – Facultad de Ciencias Ags, Universidad Nacional de Mar del Plata, CC 276,7600 Balcarce, Argentina. 6Department of Entomology, University of Minnesota, St. Paul, Minnesota 55108, USA. Received 1 May 2012, accepted subject to revision 17 July 2012, accepted for publication 12 September 2012. *Corresponding author: Email: [email protected] Summary Chalkbrood and stonebrood are two fungal diseases associated with honey bee brood. Chalkbrood, caused by Ascosphaera apis, is a common and widespread disease that can result in severe reduction of emerging worker bees and thus overall colony productivity. Stonebrood is caused by Aspergillus spp. that are rarely observed, so the impact on colony health is not very well understood. A major concern with the presence of Aspergillus in honey bees is the production of airborne conidia, which can lead to allergic bronchopulmonary aspergillosis, pulmonary aspergilloma, or even invasive aspergillosis in lung tissues upon inhalation by humans. In the current chapter we describe the honey bee disease symptoms of these fungal pathogens.
    [Show full text]
  • Landscape Composition and Fungicide Exposure Influence Host
    Environmental Entomology, XX(XX), 2020, 1–10 doi: 10.1093/ee/nvaa138 Insect-Microbial Interaction Research Landscape Composition and Fungicide Exposure Downloaded from https://academic.oup.com/ee/advance-article/doi/10.1093/ee/nvaa138/6008150 by Cornell University Library user on 05 December 2020 Influence Host–Pathogen Dynamics in a Solitary Bee Erin Krichilsky,1,4 Mary Centrella,2 Brian Eitzer,3 Bryan Danforth,1 Katja Poveda,1 and Heather Grab1, 1Department of Entomology, Cornell University, 2130 Comstock Hall, Ithaca, 14853, NY, 2Pesticide Management Education Program, Cornell University, 525 Tower Road, Ithaca 14853, NY, 3The Connecticut Agricultural Experiment Station, Department of Analytical Chemistry, Johnson-Horsfall Laboratory, 123 Huntington Street, P.O. Box 1106, New Haven 06504-1106, CT, and 4Corresponding author, e-mail: [email protected] Subject Editor: Gloria DeGrandi-Hoffman Received 25 May 2020; Editorial decision 13 October 2020 Abstract Both ecosystem function and agricultural productivity depend on services provided by bees; these services are at risk from bee declines which have been linked to land use change, pesticide exposure, and pathogens. Although these stressors often co-occur in agroecosystems, a majority of pollinator health studies have focused on these factors in isolation, therefore limiting our ability to make informed policy and management decisions. Here, we investigate the combined impact of altered landscape composition and fungicide exposure on the prevalence of chalkbrood disease, caused by fungi in the genus Ascosphaera Olive and Spiltoir 1955 (Ascosphaeraceae: Onygenales), in the introduced solitary bee, Osmia cornifrons (Radoszkowski 1887) (Megachilidae: Hymenoptera). We used both field studies and laboratory assays to evaluate the potential for interactions between altered landscape composition, fungicide exposure, and Ascosphaera on O.
    [Show full text]
  • Control of Chalkbrood Disease with Natural Products
    Control of chalkbrood disease with natural products A report for the Rural Industries Research and Development Corporation by Dr Craig Davis and Wendy Ward December 2003 RIRDC Publication No 03/107 RIRDC Project No DAQ-269A © 2003 Rural Industries Research and Development Corporation. All rights reserved. ISBN 0 642 58672 X ISSN 1440-6845 The control of chalkbrood disease with natural products Publication No. 03/107 Project No. DAQ-269A The views expressed and the conclusions reached in this publication are those of the author and not necessarily those of persons consulted. RIRDC shall not be responsible in any way whatsoever to any person who relies in whole or in part on the contents of this report. This publication is copyright. However, RIRDC encourages wide dissemination of its research, providing the Corporation is clearly acknowledged. For any other enquiries concerning reproduction, contact the Publications Manager on phone (02) 6272 3186. Researcher Contact Details: Dr Craig Davis Wendy Ward Centre for Food Technology Animal Research Institute 19 Hercules Street, Hamilton 4007 665 Fairfield Road, Yeerongpilly 4105 Phone: (07) 3406 8611 Phone: (07) 3362 9446 Fax: (07) 3406 8677 Fax: (07) 3362 9440 Email: [email protected] Email: [email protected] In submitting this report, the researcher has agreed to RIRDC publishing this material in its edited form. RIRDC Contact Details Rural Industries Research and Development Corporation Level 1, AMA House 42 Macquarie Street BARTON ACT 2600 PO Box 4776 KINGSTON ACT 2604 Phone: 02 6272 4819 Fax: 02 6272 5877 Email: [email protected] Website: http://www.rirdc.gov.au Published in December 2003 Printed on environmentally friendly paper by Canprint ii Foreword Chalkbrood of honeybees (Apis mellifera) is caused by the fungus Ascosphaera apis.
    [Show full text]
  • Osmia Lignaria)
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-2021 Investigating Routes and Effects of Pesticide Exposure on the Blue Orchard Bee (Osmia lignaria) Andi M. Kopit Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Recommended Citation Kopit, Andi M., "Investigating Routes and Effects of Pesticide Exposure on the Blue Orchard Bee (Osmia lignaria)" (2021). All Graduate Theses and Dissertations. 8106. https://digitalcommons.usu.edu/etd/8106 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. 1 INVESTIGATING ROUTES AND EFFECTS OF PESTICIDE EXPOSURE ON THE BLUE ORCHARD BEE (OSMIA LIGNARIA) by Andi M. Kopit A dissertation submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Biology Approved: Ricardo Ramirez, Ph.D. James Strange, Ph.D. Major Professor Committee Member Theresa L. Pitts-Singer, Ph.D. Earl Creech, Ph.D. Committee Member Committee Member D. Richard Cutler, Ph.D. Interim Vice Provost of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2021 ii Copyright © Andi M. Kopit 2021 All Rights Reserved iii ABSTRACT Investigating Routes and Effects of Pesticide Exposure on the Blue Orchard Bee (Osmia lignaria) by Andi M. Kopit Utah State University, 2021 Major Professor: Dr. Ricardo A. Ramirez Department: Biology Osmia lignaria (Megachilidae), commonly known as the blue orchard bee, is an important alternative pollinator of commercial orchards.
    [Show full text]
  • Spore Germination and Vegetative Growth of Ascosphaera Aggregata
    Original article Effects of selected fungicides on in vitro spore germination and vegetative growth of Ascosphaera aggregata MS Goettel GM Duke GB Schaalje, KW Richards Agriculture Canada Research Station, PO Box 3000, Main, Lethbridge, Alberta, Canada TIJ 4B1 (Received 8 August 1991; accepted 13 April 1992) Summary — Five fungicides were studied for their in vitro effects on spore germination and vegeta- tive growth of Ascosphaera aggregata, the causative organism of chalkbrood in the alfalfa leafcutter bee, Megachile rotundata. The compounds were incorporated directly into liquid or agar growth medi- um. EC50s for inhibition of vegetative growth on an agar surface were estimated as follows: enilcona- zole, 0.034; Rovral (iprodione), 1.10; Benlate (benomyl), 1.16; and Ascocidin (N-glycosylpolifungin), 135.6 ppm (m/v). DFMO (α-DL-difluoromethyl omithine) stimulated growth resulting in an approximately 50% increased radius at 10 000 ppm compared to the control. Benlate inhibited spore germination; at the highest concentration only, Rovral inhibited germination while Ascocidin and enilconazole exhibited a slight effect. DFMO did not affect spore germination. Ascocidin and Benlate exhibited most effect on germling viability at 48 h followed by Rovral and enilconazole. DFMO had no effect on germling viabili- ty. Benlate, Rovral and enilconazole had the most pronounced effect on germ tube growth at 96 h. As- cocidin affected germ tube growth at the higest concentration; DFMO exhibited little to no effect. Com- parisons between in vitro results obtained in the present study with previously published in vivo results indicate that in vitro effects on spore germination most closely correlated with efficacy against chalk- brood in vivo, suggesting that compounds with activity against spore germination or germling viability may be the most promising candidates for use against chalkbrood.
    [Show full text]
  • (Megachile Rotundata). I
    Original article Chalkbrood (Ascosphaera aggregata) resistance in the leafcutting bee (Megachile rotundata). I. Challenge of selected lines WP Stephen * BL Fichter Oregon State University, Department of Entomology,Corvallis, OR 97331-2907, USA (Received 20 April 1989; accepted 13 March 1990) Summary — Twenty-nine cell series of the leafcutting bee, Megachile rotundata (Fabr), each con- taining 5 or more healthy larvae, no chalkbrood (Ascosphaera aggregata Skou) and no pollen mass- es were isolated from a population with over 36% chalkbrood. This selected subpopulation was split and isolated for 4 and 6 generations before being challenged by forcing the females to nest in heavi- ly contaminated media, or by weekly dustings with approximately 175 x 108 A aggregata spores. The incidence of chalkbrood in both challenged lines was markedly lower than that of the wildtype, and comparable to that of the selected lines, suggesting a genetic component for resistance in both lines. The very low incidence of pollen masses (dead eggs or early instar larvae) in the selected lines throughout the 4 yrs of the study indicates that this trait may also be genetically mediated, ei- ther linked to, or independent of disease resistance. chalkbrood / Ascosphaera / Ieafcutting bee / resistance / Megachile INTRODUCTION mori L (Watanabe, 1967; Briese, 1981), and 3 reports describe resistance to the Few studies have been conducted on re- "hairless-black syndrome" in honey bees sistance in endemic insects to naturally oc- (Bailey, 1965; Kulincevic and Rothenbuh-
    [Show full text]
  • Virulence Evolution of Fungal Pathogens in Social and Solitary Bees with an Emphasis on Multiple Infections
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 8-2015 Virulence Evolution of Fungal Pathogens in Social and Solitary Bees with an Emphasis on Multiple Infections Ellen G. Klinger Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Biology Commons Recommended Citation Klinger, Ellen G., "Virulence Evolution of Fungal Pathogens in Social and Solitary Bees with an Emphasis on Multiple Infections" (2015). All Graduate Theses and Dissertations. 4441. https://digitalcommons.usu.edu/etd/4441 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. VIRULENCE EVOLUTION OF FUNGAL PATHOGENS IN SOCIAL AND SOLITARY BEES WITH AN EMPHASIS ON MULTIPLE INFECTIONS by Ellen G. Klinger A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Biology Approved: Dennis L. Welker Rosalind R. James Major Professor Project Advisor Donald W. Roberts John R. Stevens Committee Member Committee Member Carol D. von Dohlen Mark R. McLellan Committee Member Vice President for Research and Dean of the School of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2015 ii Disclaimer regarding products used in the dissertation: This paper reports the results of research only. The mention of a proprietary product does not constitute an endorsement or a recommendation by the USDA for its use. Disclaimer about copyrights: The dissertation was prepared by a USDA employee as part of his/her official duties.
    [Show full text]
  • Genetic Variation in Virulence Among Chalkbrood Strains Infecting Honeybees
    Genetic variation in virulence among chalkbrood strains infecting honeybees Vojvodic, Svjetlana; Jensen, Annette Bruun; Markussen, Bo; Eilenberg, Jørgen; Boomsma, Jacobus Jan Published in: P L o S One DOI: 10.1371/journal.pone.0025035 Publication date: 2011 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Vojvodic, S., Jensen, A. B., Markussen, B., Eilenberg, J., & Boomsma, J. J. (2011). Genetic variation in virulence among chalkbrood strains infecting honeybees. P L o S One, 6(9). https://doi.org/10.1371/journal.pone.0025035 Download date: 05. okt.. 2021 Genetic Variation in Virulence among Chalkbrood Strains Infecting Honeybees Svjetlana Vojvodic1*¤, Annette B. Jensen1, Bo Markussen2, Jørgen Eilenberg1, Jacobus J. Boomsma3 1 Centre for Social Evolution, Faculty of Life Sciences, Department of Agriculture and Ecology, University of Copenhagen, Copenhagen, Denmark, 2 Department of Natural Sciences and Environment, Faculty of Life Sciences, University of Copenhagen, Copenhagen, Denmark, 3 Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark Abstract Ascosphaera apis causes chalkbrood in honeybees, a chronic disease that reduces the number of viable offspring in the nest. Although lethal for larvae, the disease normally has relatively low virulence at the colony level. A recent study showed that there is genetic variation for host susceptibility, but whether Ascosphaera apis strains differ in virulence is unknown. We exploited a recently modified in vitro rearing technique to infect honeybee larvae from three colonies with naturally mated queens under strictly controlled laboratory conditions, using four strains from two distinct A. apis clades. We found that both strain and colony of larval origin affected mortality rates.
    [Show full text]
  • Introduction of Non-Native Pollinators Can Lead to Trans-Continental Movement of Bee- Associated Fungi
    RESEARCH ARTICLE Introduction of Non-Native Pollinators Can Lead to Trans-Continental Movement of Bee- Associated Fungi Shannon M. Hedtke1,2*, Eleanor J. Blitzer1¤, Graham A. Montgomery1, Bryan N. Danforth1 1 Department of Entomology, Cornell University, Ithaca, New York, United States of America, 2 Department of Ecology, Environment, and Evolution, La Trobe University, Bundoora, Victoria, Australia ¤ Current address: Biology Department, Carroll College, Helena, Montana, United States of America * [email protected] Abstract Bees are essential pollinators for many flowering plants, including agriculturally important OPEN ACCESS crops such as apple. As geographic ranges of bees or their host plants change as a result of human activities, we need to identify pathogens that could be transmitted among newly Citation: Hedtke SM, Blitzer EJ, Montgomery GA, sympatric species to evaluate and anticipate their effects on bee communities. We used Danforth BN (2015) Introduction of Non-Native Pollinators Can Lead to Trans-Continental Movement PCR screening and DNA sequencing to evaluate exposure to potentially disease-causing of Bee-Associated Fungi. PLoS ONE 10(6): microorganisms in a pollinator of apple, the horned mason bee (Osmia cornifrons). We did e0130560. doi:10.1371/journal.pone.0130560 not detect microsporidia, Wolbachia, or trypanosomes, which are common pathogens of Academic Editor: Fabio S. Nascimento, bees, in any of the hundreds of mason bees screened. We did detect both pathogenic and Universidade de São Paulo, Faculdade de Filosofia apathogenic (saprophytic) fungal species in the genus Ascosphaera (chalkbrood), an Ciências e Letras de Ribeirão Preto, BRAZIL unidentified species of Aspergillus fungus, and a strain of bacteria in the genus Paenibacil- Received: January 18, 2015 lus that is probably apathogenic.
    [Show full text]
  • The Biology and Prevalence of Fungal Diseases in Managed and Wild Bees
    Available online at www.sciencedirect.com ScienceDirect The biology and prevalence of fungal diseases in managed and wild bees 1 2 Sophie EF Evison and Annette B Jensen Managed and wild bees, whether solitary or social have a specialists in the exploitation of bees or their nesting plethora of microbial associations that vary in their influence on habitats, probably due to their osmophilic nature [1 ]. the health of the bees. In this review, we summarise our current Whilst many species in this genus are saprophytes of bee knowledge of aspects of the biology and ecology of bee products (larval faeces, nesting materials, or pupal associated fungi. The biology of bees that fungi are associated cocoons [2]), some species of Ascosphaera are obligate with are described, and the likely influences on fungal pathogens of the brood of both solitary and social bees, transmission are discussed. There is a clear disparity in causing the fungal disease commonly referred to as research on fungi associated with managed compared to wild ‘chalkbrood’ ([3 ] and hereafter references therein; bees, leaving gaps in our understanding of fungal pathogen Table 1). In the honey bee Apis mellifera, outbreaks of epidemiology. Translocation of bees to meet global pollination chalkbrood caused by the obligate pathogen A. apis are needs will increase exposure of bees to exotic pathogens. rarely fatal for the colony; it is regarded as a common Thus, filling these gaps is an important step towards mitigating spring disease and most colonies can recover as they grow the impact of fungal diseases in bees. stronger over the summer.
    [Show full text]
  • Long-Term Storage of Ascosphaera Aggregata and Ascosphaera Apis, Pathogens of the Leafcutting Bee (Megachile Rotundata) and the Honey Bee (Apis Mellifera)
    Journal of Invertebrate Pathology 101 (2009) 157–160 Contents lists available at ScienceDirect Journal of Invertebrate Pathology journal homepage: www.elsevier.com/locate/yjipa Short Communication Long-term storage of Ascosphaera aggregata and Ascosphaera apis, pathogens of the leafcutting bee (Megachile rotundata) and the honey bee (Apis mellifera) A.B. Jensen a,*, R.R. James b, J. Eilenberg a a Department of Ecology and Agriculture, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark b USDA-ARS Pollinating Insects—Biology, Management and Systematics Research Unit, Logan, UT, USA article info abstract Article history: Survival rates of Ascosphaera aggregata and Ascosphaera apis over the course of a year were tested using Received 19 January 2009 different storage treatments. For spores, the storage methods tested were freeze–drying and ultra-low Accepted 24 March 2009 temperatures, and for hyphae, freeze–drying, agar slants, and two methods of ultra-low temperatures. Available online 28 March 2009 Spores of A. aggregata and A. apis stored well at À80 °C and after freeze–drying. A. aggregata hyphae did not store well under any of the methods tested while A. apis hyphae survived well using cryopreser- Keywords: vation. Spores produced from cryopreserved A. apis hyphae were infective. Long-term storage of these Ascosphaera aggregata two important fungal bee diseases is thus possible. Ascosphaera apis Ó 2009 Elsevier Inc. All rights reserved. Chalkbrood Bee diseases Storage 1. Introduction gal cultures. Cultures can be stored at temperatures above freezing, in a frozen state or by lyophilization (freeze–drying). Each method Leafcutting bees (Megachile rotundata) and honey bees (Apis has its advantages, shortcomings, different costs and requirements mellifera) are both important pollinators in various crops and nat- for special devices (Humber, 1997).
    [Show full text]
  • Honey Bee Fungal Pathogen, Ascosphaera Apis; Current Understanding of Host-Pathogen Interactions and Host Mechanisms of Resistance
    Microbial____________________________________________________________________________________________ pathogens and strategies for combating them: science, technology and education (A. Méndez-Vilas, Ed.) Honey bee fungal pathogen, Ascosphaera apis; current understanding of host-pathogen interactions and host mechanisms of resistance Katherine Aronstein* and Beth Holloway USDA-ARS Honey Bee Breeding, Genetics & Physiology Laboratory, 1157 Ben Hur Road, Baton Rouge, LA 70820, USA. This review was inspired by the rapid development of genomic tools in the fields of honey bee immunity and disease pathology [1, 2]. Our aim in this chapter is to provide an overview of the profound knowledge accumulated in recent years from genome and transcriptome-wide attempts to determine host immune responses to honey bee fungal diseases and to identify quantitative trait loci (QTLs) that underline host mechanisms of resistance [3]. Considering the huge economic impact honey bees have on crop production and particularly on the pollination of specialty crops, a substantial part of this chapter will be dedicated to reviewing efforts to improve the health and survival of the honey bee. We start with a brief discussion of Ascosphaeara apis biology and disease pathology to introduce the reader to key concepts of host-pathogen interactions, A. apis virulence factors and development of marker-assisted selection programs are discussed in the remainder of the chapter. We will look at examples of specific gene targets, both in the host and the pathogen to allow development of novel anti-microbial strategies, and to enhance bee survival by improving genetic lines of bees for resistance to microbial pathogens [5-7]. The latest achievements in basic honey bee research, disease detection methods [8, 9] and pathology provide a better understanding of current and future directions in this field of research to breed a better bee and to develop novel anti-microbial drugs protecting bees from invasive mycoses.
    [Show full text]