Mass Determination of the 1:3:5 Near-Resonant Planets Transiting GJ 9827 (K2-135)? J

Total Page:16

File Type:pdf, Size:1020Kb

Mass Determination of the 1:3:5 Near-Resonant Planets Transiting GJ 9827 (K2-135)? J A&A 618, A116 (2018) https://doi.org/10.1051/0004-6361/201832872 Astronomy & © ESO 2018 Astrophysics Mass determination of the 1:3:5 near-resonant planets transiting GJ 9827 (K2-135)? J. Prieto-Arranz1,2, E. Palle1,2, D. Gandolfi3, O. Barragán3, E. W. Guenther1,4, F. Dai5,6, M. Fridlund7,8, T. Hirano9, J. Livingston10, R. Luque1,2, P. Niraula11, C. M. Persson 8, S. Redfield11, S. Albrecht12, R. Alonso1,2, G. Antoniciello3, J. Cabrera13, W. D. Cochran14, Sz. Csizmadia13, H. Deeg1,2, Ph. Eigmüller13, M. Endl14, A. Erikson13, M. E. Everett15, A. Fukui16, S. Grziwa17, A. P. Hatzes 4, D. Hidalgo1,2, M. Hjorth12, J. Korth17, D. Lorenzo-Oliveira18, F. Murgas1,2, N. Narita10,19,20, D. Nespral 1,2, G. Nowak1,2, M. Pätzold17, P. Montañez Rodríguez1,2, H. Rauer13,21, I. Ribas22,23, A. M. S. Smith13, T. Trifonov24, V. Van Eylen7, and J. N. Winn5 (Affiliations can be found after the references) Received 22 February 2018 / Accepted 14 July 2018 ABSTRACT Context. Multiplanet systems are excellent laboratories to test planet formation models as all planets are formed under the same initial conditions. In this context, systems transiting bright stars can play a key role, since planetary masses, radii, and bulk densities can be measured. Aims. GJ 9827 (K2-135) has recently been found to host a tightly packed system consisting of three transiting small planets whose orbital periods of 1.2, 3.6, and 6.2 days are near the 1:3:5 ratio. GJ 9827 hosts the nearest planetary system (∼30 pc) detected by NASA’s Kepler or K2 space mission. Its brightness (V = 10.35 mag) makes the star an ideal target for detailed studies of the properties of its planets. Methods. Combining the K2 photometry with high-precision radial-velocity measurements gathered with the FIES, HARPS, and HARPS-N spectrographs we revised the system parameters and derive the masses of the three planets. +0:48 +0:14 Results. We find that GJ 9827 b has a mass of Mb = 3:69−0:46 M⊕ and a radius of Rb = 1:58−0:13 R⊕ , yielding a mean density of ρb = +1:74 −3 +0:58 +0:11 +2:31 −3 5:11−1:27 g cm . GJ 9827 c has a mass of Mc = 1:45−0:57 M⊕ , radius of Rc = 1:24−0:11 R⊕ , and a mean density of ρc = 4:13−1:77 g cm . +0:58 +0:11 +0:71 −3 For GJ 9827 d, we derive Md = 1:45−0:57 M⊕ , Rd = 1:24−0:11 R⊕ , and ρd = 1:51−0:53 g cm . Conclusions. GJ 9827 is one of the few known transiting planetary systems for which the masses of all planets have been determined with a precision better than 30%. This system is particularly interesting because all three planets are close to the limit between super- Earths and sub-Neptunes. The planetary bulk compositions are compatible with a scenario where all three planets formed with similar core and atmosphere compositions, and we speculate that while GJ 9827 b and GJ 9827 c lost their atmospheric envelopes, GJ 9827 d maintained its primordial atmosphere, owing to the much lower stellar irradiation. This makes GJ 9827 one of the very few systems where the dynamical evolution and the atmospheric escape can be studied in detail for all planets, helping us to understand how compact systems form and evolve. Key words. planetary systems – techniques: high angular resolution – techniques: photometric – techniques: radial velocities – stars: abundances – stars: individual: GJ 9827 1. Introduction mechanisms, since all planets have formed under the same ini- tial conditions. The short orbital period increases the geometric Systems containing multiple planets have drawn much atten- probability to see the planets transiting their host stars, allow- tion because they have frequently been seen as potential solar ing us to measure the planetary radii. The Doppler reflex motion system analogues. However, none of the systems discovered is larger, enabling the mass determination via radial velocity so far resemble ours. The vast majority of multiplanet sys- (RV) measurements using state-of-the-art, high-precision spec- tems identified by the NASA’s Kepler space mission contains trographs. However, although more than 200 systems with three super-Earths (1 ≤ Rp ≤ 2 R⊕) and sub-Neptunes (2 ≤ Rp ≤ 4 R⊕) or more planets have been discovered so far, many questions in tightly packed configurations, with orbits smaller than the remain unanswered. orbit of Mercury (Winn & Fabrycky 2015). How do compact planetary systems form? It has been pro- Compact systems containing planets of different sizes and posed that planets with short orbital periods might have either masses are the best test beds to constrain planetary formation formed in situ (Chiang & Laughlin 2013), or at much larger dis- ? tance from their host star and then moved inwards via type I Based on observations made with (a) the ESO-3.6 m telescope at or type II migration mechanisms (for a review see Baruteau et La Silla Observatory under program ID 099.C-0491 and 0100.C-0808; al. 2014). Once the disk has been dispersed, planets could also (b) the Italian Telescopio Nazionale Galileo operated on the island of La Palma by the Fundación Galileo Galilei of the Istituto Nazionale di migrate through planet–planet scattering (see, e.g., Marzari & Astrofisica; (c) the Nordic Optical Telescope, operated by the Nordic Weidenschilling 2002). Explaining the formation of compact Optical Telescope Scientific Association at the Observatorio del Roque systems with in situ formation is however not easy because a lot de los Muchachos. of material in the inner disk is required in order to form planets. Article published by EDP Sciences A116, page 1 of 15 A&A 618, A116 (2018) Using an in situ formation model, Hansen & Murray(2013) Table 1. Equatorial coordinates, optical and near-infrared magnitude, found that there are roughly 50% more single-planet candidates and stellar parameters of GJ 9827. observed than those produced by any model population. How can we observationally distinguish between different GJ 9827 scenarios? In order to gain insights into the formation of com- pact systems, we have to understand whether the planets formed RAa (J2000.0) 23:27:04.83647 at large distance (e.g., beyond the snow-line), or close-in to Deca (J2000.0) −01:17:10.5816 their host star. It is now well accepted that the composition of Distancea (pc) 29:6864 ± 0:1033 a pre-main sequence disk – where planet formation takes place – V-band magnitudeb (mag) 10:35 ± 0:10 depends on the radial distance from the host star. The chemical J-band magnitudec (mag) 7:984 ± 0:020 abundance of planets can thus be used to trace their formation. Spectral typed K6 V e Thiabaud et al.(2015) showed that the C/O is a good tracer to Effective temperature Teff (K) 4219 ± 70 e assess whether a given planet formed in situ or not. The Mg/Si Surface gravity log g? (cgs) 4:657 ± 0:042 and Fe/Si bulk composition ratios are also interesting tracers. Iron abundancee [Fe/H] (dex) −0:29 ± 0:12 e In this respect, the discovery that the ultra-short period planet Mass M? (M ) 0:637 ± 0:051 e K2-106 b (Guenther et al. 2017) has an iron core containing Radius R? (R ) 0:622 ± 0:051 +20 e −1 80−30% of its mass supports the notion that this planet might Projected rot. velocity v sin i? ( km s ) 1:5 ± 1:0 f −1 have formed in a metal rich environment – typically close to the Microturbulent velocity vmic ( km s ) 0:9 (fixed) g −1 host star, where photophoresis process can separate iron from sil- Macroturbulent velocity vmac ( km s ) 0:5 (fixed) e icates in the early phase of planet formation (Wurm et al. 2013). Interstellar reddening Av (mag) 0:04 ± 0:08 On the contrary, if a close-in planet (a / 0.1 AU) were found to have a high quantity of water, this would imply that the planet Notes. (a)Gaia DR2 (Gaia Collaboration et al. 2018). The quoted uncer- formed beyond the snow-line and then migrated inwards to its tainty takes into account possible Gaia systematics following Luri current position (Raymond et al. 2008; Lopez 2017). et al.(2018). (b)(Mumford 1956). (c)2MASS (Skrutskie et al. 2006). As pointed out by Izidoro et al.(2017), the period ratio distri- (d)Houdebine et al.(2017). (e)This work. ( f )Bruntt et al.(2010). (g)Gray bution of planets in multiplanet systems can also provide some (2008). clues about the formation mechanisms involved. Using N-body simulations together with a model of gaseous disk, Izidoro et al. Gandolfi et al. 2017; Barragán et al. 2017; Dai et al. 2017; (2017) found that only 50–60% of resonant chains became unsta- Guenther et al. 2017). ble whereas to match observations at least 75% (and probably Teske et al.(2018) recently reported on the mass determina- 90–95% according to Kepler results) must be expected. tions of the three planets based on a ∼7-year-long RV monitoring In order to address these questions, a well characterized carried out with the Planet Finder Spectrograph on the Magellan sample of multiplanet systems transiting relatively bright stars II telescope. We compare their results with ours in Sect.7. for which planetary radii, masses, and orbital parameters have been determined with high accuracy is needed. The three 2. Ground based follow-up observations brightest systems known to host three or more planets for which 2.1.
Recommended publications
  • Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
    Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born.
    [Show full text]
  • Physical Parameters of the Multiplanet Systems HD 106315 and GJ 9827*†
    The Astronomical Journal, 161:47 (16pp), 2021 January https://doi.org/10.3847/1538-3881/abca39 © 2020. The American Astronomical Society. All rights reserved. Physical Parameters of the Multiplanet Systems HD 106315 and GJ 9827*† Molly R. Kosiarek1,35 , David A. Berardo2 , Ian J. M. Crossfield3, Cesar Laguna1,4 , Caroline Piaulet5 , Joseph M. Akana Murphy1,35 , Steve B. Howell6 , Gregory W. Henry7 , Howard Isaacson8,9 , Benjamin Fulton10 , Lauren M. Weiss11 , Erik A. Petigura12 , Aida Behmard13 , Lea A. Hirsch14 , Johanna Teske15, Jennifer A. Burt16 , Sean M. Mills17 , Ashley Chontos18,35 , Teo Močnik19 , Andrew W. Howard17 , Michael Werner16 , John H. Livingston20 , Jessica Krick21 , Charles Beichman22 , Varoujan Gorjian16 , Laura Kreidberg23,24 , Caroline Morley25 , Jessie L. Christiansen21 , Farisa Y. Morales16 , Nicholas J. Scott6 , Jeffrey D. Crane26 , Sharon Xuesong Wang27,28 , Stephen A. Shectman26, Lee J. Rosenthal17 , Samuel K. Grunblatt29,30 , Ryan A. Rubenzahl17,35 , Paul A. Dalba31,36 , Steven Giacalone32 , Chiara Dane Villanueva1,4, Qingtian Liu1,4, Fei Dai13 , Michelle L. Hill31 , Malena Rice33 , Stephen R. Kane31 , and Andrew W. Mayo32,34 1 Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA; [email protected] 2 Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 3 Department of Physics & Astronomy, University of Kansas, 1082 Malott,1251 Wescoe Hall Dr., Lawrence, KS 66045, USA 4 Department
    [Show full text]
  • Temperate Earth-Sized Planets Transiting a Nearby Ultracool Dwarf Star
    1 Temperate Earth-sized planets transiting a nearby ultracool dwarf star Michaël Gillon1, Emmanuël Jehin1, Susan M. Lederer2, Laetitia Delrez1, Julien de Wit3, Artem Burdanov1, Valérie Van Grootel1, Adam J. Burgasser4, Amaury H. M. J. Triaud5, Cyrielle Opitom1, Brice-Olivier Demory6, Devendra K. Sahu7, Daniella Bardalez Gagliuffi4, Pierre Magain1 & Didier Queloz6 1Institut d’Astrophysique et de Géophysique, Université de Liège, Allée du 6 Août 19C, 4000 Liège, Belgium. 2NASA Johnson Space Center, 2101 NASA Parkway, Houston, Texas, 77058, USA. 3Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA. 4Center for Astrophysics and Space Science, University of California San Diego, La Jolla, California 92093, USA. 5Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, UK. 6Astrophysics Group, Cavendish Laboratory, 19 J J Thomson Avenue, Cambridge, CB3 0HE, UK. 7Indian Institute of Astrophysics, Koramangala, Bangalore 560 034, India. Star-like objects with effective temperatures of less than 2,700 kelvin are referred to as ‘ultracool dwarfs'1. This heterogeneous group includes stars of extremely low mass as well as brown dwarfs (substellar objects not massive enough to sustain hydrogen fusion), and represents about 15 per cent of the population of astronomical objects near the Sun2. Core-accretion theory predicts that, given the small masses of these ultracool dwarfs, and the small sizes of their protoplanetary disk3,4, there should be a large but hitherto undetected population of terrestrial planets orbiting them5—ranging from metal-rich Mercury-sized planets6 to more hospitable volatile-rich Earth-sized planets7. Here we report observations of three short-period Earth-sized planets transiting an 2 ultracool dwarf star only 12 parsecs away.
    [Show full text]
  • Arxiv:2105.11583V2 [Astro-Ph.EP] 2 Jul 2021 Keck-HIRES, APF-Levy, and Lick-Hamilton Spectrographs
    Draft version July 6, 2021 Typeset using LATEX twocolumn style in AASTeX63 The California Legacy Survey I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades Lee J. Rosenthal,1 Benjamin J. Fulton,1, 2 Lea A. Hirsch,3 Howard T. Isaacson,4 Andrew W. Howard,1 Cayla M. Dedrick,5, 6 Ilya A. Sherstyuk,1 Sarah C. Blunt,1, 7 Erik A. Petigura,8 Heather A. Knutson,9 Aida Behmard,9, 7 Ashley Chontos,10, 7 Justin R. Crepp,11 Ian J. M. Crossfield,12 Paul A. Dalba,13, 14 Debra A. Fischer,15 Gregory W. Henry,16 Stephen R. Kane,13 Molly Kosiarek,17, 7 Geoffrey W. Marcy,1, 7 Ryan A. Rubenzahl,1, 7 Lauren M. Weiss,10 and Jason T. Wright18, 19, 20 1Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 2IPAC-NASA Exoplanet Science Institute, Pasadena, CA 91125, USA 3Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA 4Department of Astronomy, University of California Berkeley, Berkeley, CA 94720, USA 5Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 6Department of Astronomy & Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA 7NSF Graduate Research Fellow 8Department of Physics & Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA 9Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA 10Institute for Astronomy, University of Hawai`i,
    [Show full text]
  • Institut Für Weltraumforschung (IWF) Österreichische Akademie Der Wissenschaften (ÖAW) Schmiedlstraße 6, 8042 Graz, Austria
    WWW.OEAW.AC.AT ANNUAL REPORT 2018 IWF INSTITUT FÜR WELTRAUMFORSCHUNG WWW.IWF.OEAW.AC.AT ANNUAL REPORT 2018 COVER IMAGE Artist's impression of the BepiColombo spacecraft in cruise configuration, with Mercury in the background (© spacecraft: ESA/ATG medialab; Mercury: NASA/JPL). TABLE OF CONTENTS INTRODUCTION 5 NEAR-EARTH SPACE 7 SOLAR SYSTEM 13 SUN & SOLAR WIND 13 MERCURY 15 VENUS 16 MARS 17 JUPITER 18 COMETS & DUST 20 EXOPLANETARY SYSTEMS 21 SATELLITE LASER RANGING 27 INFRASTRUCTURE 29 OUTREACH 31 PUBLICATIONS 35 PERSONNEL 45 IMPRESSUM INTRODUCTION INTRODUCTION The Space Research Institute (Institut für Weltraum- ESA's Cluster mission, launched in 2000, still provides forschung, IWF) in Graz focuses on the physics of space unique data to better understand space plasmas. plasmas and (exo-)planets. With about 100 staff members MMS, launched in 2015, uses four identically equipped from 20 nations it is one of the largest institutes of the spacecraft to explore the acceleration processes that Austrian Academy of Sciences (Österreichische Akademie govern the dynamics of the Earth's magnetosphere. der Wissenschaften, ÖAW, Fig. 1). The China Seismo-Electromagnetic Satellite (CSES) was IWF develops and builds space-qualified instruments and launched in February to study the Earth's ionosphere. analyzes and interprets the data returned by them. Its core engineering expertise is in building magnetometers and NASA's InSight (INterior exploration using Seismic on-board computers, as well as in satellite laser ranging, Investigations, Geodesy and Heat Transport) mission was which is performed at a station operated by IWF at the launched in May to place a geophysical lander on Mars Lustbühel Observatory.
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 # Name Mass Star Name
    exoplanet.eu_catalog # name mass star_name star_distance star_mass OGLE-2016-BLG-1469L b 13.6 OGLE-2016-BLG-1469L 4500.0 0.048 11 Com b 19.4 11 Com 110.6 2.7 11 Oph b 21 11 Oph 145.0 0.0162 11 UMi b 10.5 11 UMi 119.5 1.8 14 And b 5.33 14 And 76.4 2.2 14 Her b 4.64 14 Her 18.1 0.9 16 Cyg B b 1.68 16 Cyg B 21.4 1.01 18 Del b 10.3 18 Del 73.1 2.3 1RXS 1609 b 14 1RXS1609 145.0 0.73 1SWASP J1407 b 20 1SWASP J1407 133.0 0.9 24 Sex b 1.99 24 Sex 74.8 1.54 24 Sex c 0.86 24 Sex 74.8 1.54 2M 0103-55 (AB) b 13 2M 0103-55 (AB) 47.2 0.4 2M 0122-24 b 20 2M 0122-24 36.0 0.4 2M 0219-39 b 13.9 2M 0219-39 39.4 0.11 2M 0441+23 b 7.5 2M 0441+23 140.0 0.02 2M 0746+20 b 30 2M 0746+20 12.2 0.12 2M 1207-39 24 2M 1207-39 52.4 0.025 2M 1207-39 b 4 2M 1207-39 52.4 0.025 2M 1938+46 b 1.9 2M 1938+46 0.6 2M 2140+16 b 20 2M 2140+16 25.0 0.08 2M 2206-20 b 30 2M 2206-20 26.7 0.13 2M 2236+4751 b 12.5 2M 2236+4751 63.0 0.6 2M J2126-81 b 13.3 TYC 9486-927-1 24.8 0.4 2MASS J11193254 AB 3.7 2MASS J11193254 AB 2MASS J1450-7841 A 40 2MASS J1450-7841 A 75.0 0.04 2MASS J1450-7841 B 40 2MASS J1450-7841 B 75.0 0.04 2MASS J2250+2325 b 30 2MASS J2250+2325 41.5 30 Ari B b 9.88 30 Ari B 39.4 1.22 38 Vir b 4.51 38 Vir 1.18 4 Uma b 7.1 4 Uma 78.5 1.234 42 Dra b 3.88 42 Dra 97.3 0.98 47 Uma b 2.53 47 Uma 14.0 1.03 47 Uma c 0.54 47 Uma 14.0 1.03 47 Uma d 1.64 47 Uma 14.0 1.03 51 Eri b 9.1 51 Eri 29.4 1.75 51 Peg b 0.47 51 Peg 14.7 1.11 55 Cnc b 0.84 55 Cnc 12.3 0.905 55 Cnc c 0.1784 55 Cnc 12.3 0.905 55 Cnc d 3.86 55 Cnc 12.3 0.905 55 Cnc e 0.02547 55 Cnc 12.3 0.905 55 Cnc f 0.1479 55
    [Show full text]
  • Arxiv:2009.03398V2 [Astro-Ph.EP] 12 Sep 2020
    vDraft version September 15, 2020 Typeset using LATEX twocolumn style in AASTeX63 Physical Parameters of the Multi-Planet Systems HD 106315 and GJ 9827∗y Molly R. Kosiarek,1, z David A. Berardo,2 Ian J. M. Crossfield,3 Cesar Laguna,4 Joseph M. Akana Murphy,1, z Steve B. Howell,5 Gregory W. Henry,6 Howard Isaacson,7, 8 Lauren M. Weiss,9 Erik A. Petigura,10 Benjamin Fulton,11 Aida Behmard,12 Lea A. Hirsch,13 Johanna Teske,14 Jennifer A. Burt,15 Sean M. Mills,16 Ashley Chontos,17, z Teo Mocnik,18 Andrew W. Howard,16 Michael Werner,15 John H. Livingston,19 Jessica Krick,20 Charles Beichman,21 Varoujan Gorjian,15 Laura Kreidberg,22, 23 Caroline Morley,24 Jessie L. Christiansen,20 Farisa Y. Morales,15 Nicholas J. Scott,5 Jeffrey D. Crane,25 Lee J. Rosenthal,16 Samuel K. Grunblatt,26, 27 Ryan A. Rubenzahl,16, z Paul A. Dalba,28, x Steven Giacalone,29 Chiara Dane Villanueva,4 Qingtian Liu,4 Fei Dai,12 Michelle L. Hill,28 Malena Rice,30 Stephen R. Kane,28 Andrew W. Mayo,29, 31 | 1Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA 2Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 3Department of Physics & Astronomy, University of Kansas, 1082 Malott,1251 Wescoe Hall Dr., Lawrence, KS 66045, USA 4Department of Physics, University of California, Santa Cruz, CA 95064, USA 5NASA Ames Research Center, Moffett Field, CA 94035, USA 6Center of Excellence in Information Systems, Tennessee State University, Nashville, TN
    [Show full text]
  • From the Stellar Properties of HD219134 to the Internal
    Astronomy & Astrophysics manuscript no. HD219134˙published © ESO 2019 October 31, 2019 From the stellar properties of HD 219134 to the internal compositions of its transiting exoplanets. R. Ligi1, C. Dorn2, A. Crida3;4, Y. Lebreton5;6, O. Creevey3, F. Borsa1, D. Mourard3, N. Nardetto3, I. Tallon-Bosc7, F. Morand3, E. Poretti1. 1 INAF-Osservatorio Astronomico di Brera, Via E. Bianchi 46, I-23807 Merate, Italy e-mail: [email protected] 2 University of Zurich, Institut of Computational Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland 3 Universite´ Coteˆ d’Azur, Observatoire de la Coteˆ d’Azur, CNRS, Laboratoire Lagrange, Bd de l’Observatoire, CS 34229, 06304 Nice cedex 4, France 4 Institut Universitaire de France, 103 Boulevard Saint-Michel, 75005 Paris, France 5 LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universites,´ UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cite,´ 92195 Meudon Cedex, France 6 Univ. Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France 7 Univ. Lyon, Univ. Lyon1, Ens de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574, F-69230 Saint-Genis- Laval, France Received 5 July 2019 / Accepted 20 September 2019 ABSTRACT Context. The harvest of exoplanet discoveries has opened the area of exoplanet characterisation. But this cannot be achieved without a careful analysis of the host star parameters. Aims. The system of HD 219134 hosts two transiting exoplanets and at least two additional non-transiting exoplanets. We revisit the properties of this system using direct measurements of the stellar parameters to investigate the composition of the two transiting exoplanets.
    [Show full text]
  • A Multi-Planet System Transiting the $ V $= 9 Rapidly Rotating F-Star HD
    DRAFT VERSION APRIL 25, 2017 Preprint typeset using LATEX style emulateapj v. 12/16/11 A MULTI-PLANET SYSTEM TRANSITING THE V = 9 RAPIDLY ROTATING F-STAR HD 106315 JOSEPH E. RODRIGUEZ1, GEORGE ZHOU1, ANDREW VANDERBURG1,JASON D. EASTMAN1,LAURA KREIDBERG1, PHILLIP A. CARGILE1, ALLYSON BIERYLA1,DAVID W. LATHAM1,JONATHAN IRWIN1, ANDREW W. MAYO1,MICHAEL L. CALKINS1, GILBERT A. ESQUERDO1,JESSICA MINK1 1Harvard-Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138, USA Draft version April 25, 2017 ABSTRACT We report the discovery of a multi-planet system orbiting HD 106315, a rapidly rotating mid F-type star, using data from the K2 mission. HD 106315 hosts a 2.51 0.12 R sub-Neptune in a 9.5 day orbit, +0.24 ± ⊕ and a 4.31 0.27 R super-Neptune in a 21 day orbit. The projected rotational velocity of HD 106315 −1 ⊕ (12.9 kms− ) likely precludes precise measurements of the planets’ masses, but could enable a mea- surement of the sky-projected spin-orbit obliquity for the outer planet via Doppler tomography. The eccentricities of both planets were constrained to be consistent with 0, following a global modeling of the system that includes a Gaia distance and dynamical arguments. The HD 106315 system is one of few multi-planet systems hosting a Neptune-sized planet for which orbital obliquity measure- ments are possible, making it an excellent test-case for formation mechanisms of warm-Neptunian systems. The brightness of the host star also makes HD 106315 c a candidate for future transmission spectroscopic follow-up studies.
    [Show full text]
  • From the Star to the Transiting Exoplanets: Characterisation of the HD 219134 System R
    From the star to the transiting exoplanets: Characterisation of the HD 219134 system R. Ligi, C. Dorn, A. Crida, Y. Lebreton, O. Creevey, F. Borsa, N. Nardetto, I. Tallon-Bosc, F. Morand, E. Poretti To cite this version: R. Ligi, C. Dorn, A. Crida, Y. Lebreton, O. Creevey, et al.. From the star to the transiting exoplanets: Characterisation of the HD 219134 system. SF2A 2019, May 2019, NICE, France. hal-03044535 HAL Id: hal-03044535 https://hal.archives-ouvertes.fr/hal-03044535 Submitted on 6 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. SF2A 2019 P. Di Matteo, O. Creevey, A. Crida, G. Kordopatis, J. Malzac, J.-B. Marquette, M. N’Diaye, O. Venot (eds) FROM THE STAR TO THE TRANSITING EXOPLANETS : CHARACTERISATION OF THE HD 219134 SYSTEM R. Ligi1, C. Dorn2, A. Crida3; 4, Y. Lebreton5; 6, O. Creevey3, F. Borsa1, D. Mourard3, N. Nardetto3, I. Tallon-Bosc7, F. Morand3 and E. Poretti1 Abstract. Exoplanets’ properties are directly linked to that of their host star. This is even more true in the case of transiting exoplanets, where the planetary radius cannot be derived if the stellar radius is unknown.
    [Show full text]
  • From the Stellar Properties of HD 219134 to the Internal Compositions of Its Transiting Exoplanets R
    A&A 631, A92 (2019) https://doi.org/10.1051/0004-6361/201936259 Astronomy & © ESO 2019 Astrophysics From the stellar properties of HD 219134 to the internal compositions of its transiting exoplanets R. Ligi1, C. Dorn2, A. Crida3,4, Y. Lebreton5,6, O. Creevey3, F. Borsa1, D. Mourard3, N. Nardetto3, I. Tallon-Bosc7, F. Morand3, and E. Poretti1 1 INAF – Osservatorio Astronomico di Brera, Via E. Bianchi 46, 23807 Merate, Italy e-mail: [email protected] 2 Institut of Computational Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland 3 Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, Bd de l’Observatoire, CS 34229, 06304 Nice Cedex 4, France 4 Institut Universitaire de France, 103 boulevard Saint-Michel, 75005 Paris, France 5 LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Université Paris 06, Université Paris Diderot, Sorbonne Paris Cité, 92195 Meudon Cedex, France 6 Univ. Rennes, CNRS, IPR (Institut de Physique de Rennes) – UMR 6251, 35000 Rennes, France 7 Univ. Lyon, Univ. Lyon1, Ens de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon UMR 5574, 69230 Saint-Genis-Laval, France Received 5 July 2019 / Accepted 20 September 2019 ABSTRACT Context. The harvest of exoplanet discoveries has opened the area of exoplanet characterisation. But this cannot be achieved without a careful analysis of the host star parameters. Aims. The system of HD 219134 hosts two transiting exoplanets and at least two additional non-transiting exoplanets. We revisit the properties of this system using direct measurements of the stellar parameters to investigate the composition of the two transiting exoplanets.
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 Star Distance Star Name Star Mass
    exoplanet.eu_catalog star_distance star_name star_mass Planet name mass 1.3 Proxima Centauri 0.120 Proxima Cen b 0.004 1.3 alpha Cen B 0.934 alf Cen B b 0.004 2.3 WISE 0855-0714 WISE 0855-0714 6.000 2.6 Lalande 21185 0.460 Lalande 21185 b 0.012 3.2 eps Eridani 0.830 eps Eridani b 3.090 3.4 Ross 128 0.168 Ross 128 b 0.004 3.6 GJ 15 A 0.375 GJ 15 A b 0.017 3.6 YZ Cet 0.130 YZ Cet d 0.004 3.6 YZ Cet 0.130 YZ Cet c 0.003 3.6 YZ Cet 0.130 YZ Cet b 0.002 3.6 eps Ind A 0.762 eps Ind A b 2.710 3.7 tau Cet 0.783 tau Cet e 0.012 3.7 tau Cet 0.783 tau Cet f 0.012 3.7 tau Cet 0.783 tau Cet h 0.006 3.7 tau Cet 0.783 tau Cet g 0.006 3.8 GJ 273 0.290 GJ 273 b 0.009 3.8 GJ 273 0.290 GJ 273 c 0.004 3.9 Kapteyn's 0.281 Kapteyn's c 0.022 3.9 Kapteyn's 0.281 Kapteyn's b 0.015 4.3 Wolf 1061 0.250 Wolf 1061 d 0.024 4.3 Wolf 1061 0.250 Wolf 1061 c 0.011 4.3 Wolf 1061 0.250 Wolf 1061 b 0.006 4.5 GJ 687 0.413 GJ 687 b 0.058 4.5 GJ 674 0.350 GJ 674 b 0.040 4.7 GJ 876 0.334 GJ 876 b 1.938 4.7 GJ 876 0.334 GJ 876 c 0.856 4.7 GJ 876 0.334 GJ 876 e 0.045 4.7 GJ 876 0.334 GJ 876 d 0.022 4.9 GJ 832 0.450 GJ 832 b 0.689 4.9 GJ 832 0.450 GJ 832 c 0.016 5.9 GJ 570 ABC 0.802 GJ 570 D 42.500 6.0 SIMP0136+0933 SIMP0136+0933 12.700 6.1 HD 20794 0.813 HD 20794 e 0.015 6.1 HD 20794 0.813 HD 20794 d 0.011 6.1 HD 20794 0.813 HD 20794 b 0.009 6.2 GJ 581 0.310 GJ 581 b 0.050 6.2 GJ 581 0.310 GJ 581 c 0.017 6.2 GJ 581 0.310 GJ 581 e 0.006 6.5 GJ 625 0.300 GJ 625 b 0.010 6.6 HD 219134 HD 219134 h 0.280 6.6 HD 219134 HD 219134 e 0.200 6.6 HD 219134 HD 219134 d 0.067 6.6 HD 219134 HD
    [Show full text]