ENERGY, ENVIRONMENT, ECOSYSTEMS, DEVELOPMENT and LANDSCAPE ARCHITECTURE Engineering Sustainable Textiles: a Bamboo Textile Comparison MARILYN WAITE AND JIM PLATTS Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ UNITED KINGDOM
[email protected],
[email protected], http://www.ifm.eng.cam.ac.uk/people/mjp/ Abstract: This paper delves into a subset of engineering for sustainable development—the engineering of sustainable textiles using bamboo. The experiments performed attempt to answer two main questions: (1) what are the differences in textile properties between chemicallymanufactured and mechanicallymanufactured bamboo textiles? and (2) what are the differences in textile properties between two different species of bamboo? The textile properties examined relate to sustainability: wear and tear (and therefore durability) and moisture wicking (and therefore the need for machine washing and drying). The following are measured for fibre, yarn, and fabric: tear force, breaking force, breaking tenacity, moisture absorption and speed of drying, and surface morphology. Key-Words: textiles, bamboo, fibre, yarn, fabric, sustainability, renewable, manufacturing, SEM 1 Introduction There are two main manufacturing methods currently One of the earliest engineering practices involved the being employed in the creation of bamboo textiles— use of scientific principles to extract and manufacture chemicallybased (hydroalkalization and multi-phase textiles for practical applications. At present, the bleaching) and mechanicallybased (stripping, boiling, industry has a poor track record for social and and enzyme-use) processes. In this paper, bamboo environmental concerns. Textiles made from bamboo textiles made from the chemical process are referred to address the aim of sustainable development by as chemical bamboo and textiles made from the utilizing a renewable resource to make clothes and mechanical process are said to be mechanical bamboo.