id733796 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

ISSN : 0974 - 7524 Volume 10 Issue 3 Physical CCHHEEAMMn InIdIiSSanTT JoRuRrnYYal

Full Paper PCAIJ, 10(3), 2015 [090-095] The Gibbs energy increments for of Pb-jarosite group

Oleg Viacheslavovich Eremin The Institute of natural resources, ecology and cryology Siberian Branch of the Russian Academy of Sciences, (RUSSIA) E-mail: [email protected]

ABSTRACT KEYWORDS

Ä º) values on The standard Gibbs poten- The linear decomposition of standard Gibbs potentials ( fG chemical elements for three synthetic Pb-As, Pb-Cu, and Pb-Zn jarosites tials of formation from the [6] have been calculated by means of linear programming problems. Com- elements; Ä º with published data does not ex- Pb-jarosites; parison the errors of calculations fG ceed on the average 1 %. The received equations have been used in cal- Hyroxosulphates and culations of Gibbs potentials for minerals with unknown thermodynamic hydroxoarsenates;  properties. 2015 Trade Science Inc. - INDIA Linear programming.

INTRODUCTION in the zone of hypergenesis, the oxidation zones of sulfide deposits, the mining and metallurgical land- Minerals of the jarosite group can be represented scapes[17]. Probably is the widespread presence of by the general formula: jarositesin the conditions of the Martian surface[16]. ·nH Interest in Pb-jarosites iscaused by their low solu- AB3(TO4)2(OH)6 2O, (1) where A are a cations with a coordination num- bility in aqueous solutionsin comparison with other  + + + + minerals of this group. For this reason the Pb- ber 9, often presentedby K , Na , H3O , NH4 ; B and T - cations of octahedral and tetrahedral coor- jarositeshave been exploited as purifiers on techno- dination respectively. The B cations are more pre- logical solutions in the metallurgical industries[4] and 3+ theymay be accumulators of toxic elements in envi- sented byFe ions, and anionsTO4by sulfates, the ronment, for example arsenicin the form of minerals ideal formula of jarosite - KFe3(SO4)(OH)6. At po- sitions A and B in the formula (1) may be the diva- beudantite - PbFe3(AsO4)(SO4)(OH)6, hidalgoite – Pb2+ 2+ 2+ [9-12] lent metal cations , Cu , Zn , and the posi- PbAl3(AsO4)(SO4)(OH)6 and others . Thermody- tions of the T - cations As5+, Se6+. It is known the namic characteristics of Pb-containing jarositesmake inclusion in the structure of jarosite three and possible to estimate the directions of the dissolution hexavalent chromium with the formation of com- and precipitation processes in aqueous solutions. The aim of this work is to obtain the linear decomposi- pounds KCr3(SO4)(OH)6 and KFe3(CrO4)(OH)6, re- spectively[3], and such elements as Cd, Ga, Hg and tion onchemical elementsfor the values of standard others[5,6]. Gibbs energies for of the Pb-jarositegroup Minerals of the jarosite group are often formed and estimate the potentials of theseclasses minerals PCAIJ, 10(3) 2015 Oleg Viacheslavovich Eremin 91

Full Paper Ä º (J/mol) for components of TABLE 1 : The values of standard Gibbs energies of formation from the elements - fG reactions (2-4) Ä º (J/mol) Component - fG PbO 188950

Fe2O3 742099

SO3 371170

As2O5 782400

H2O 237181

O2 0 CuO 129500 ZnO 320700

(H3O)0.68Pb0.32Fe2.86(SO4)1.69(AsO4)0.31(OH)5.59(H2O)0.41 3164800

(H3O)0.67Pb0.33Fe2.71Cu0.25(SO4)2(OH)5.96(H2O)0.04 3131400

(H3O)0.57Pb0.43Fe2.7Zn0.21(SO4)2(OH)5.95(H2O)0.05 3153600 Ä º (J/mol) for minerals of the TABLE 2 : The values of standard Gibbs energies of formation from the elements - fG jarosite group, calculated with equations (5-7) in comparison with the literature data. Relative errors of the esti- mates are given in percent Calculation by equations Mineral Literature data (5) (6) (7) (H O) Pb Fe (SO ) (AsO ) (OH) (H O) 3164800 3 0.68 0.32 2.86 4 1.69 4 0.31 5.59 2 0.41 3164800[6] (Pb-As-jarosite) (0.00) (H O) Pb Fe Cu (SO ) (OH) (H O) 3096837 3131400 3156450 3 0.67 0.33 2.71 0.25 4 2 5.96 2 0.04 3131400[6] (Pb-Cu-jarosite) (1.11) (0.00) (0.80) (H O) Pb Fe Zn (SO ) (OH) (H O) 3074163 3104873 3153600 3 0.57 0.43 2.7 0.21 4 2 5.95 2 0.05 3153600[6] (Pb-Zn-jarosite) (2.55) (1.56) (0.00) ·20H Fe (SO ) (OH) O 9892316 9982140 10016444 5 4 6 2 2 9971000[1] (copiapite) (0.79) (0.11) (0.45) (H O)Fe (SO ) (OH) 3205900 3235212 3245830 3 3 4 2 6 3232500[1] (hydroxonium-jarosite) (0.83) (0.08) (0.41) ·20H Fe (SO ) O(OH) O 9849748 9948425 9984998 5 4 6 2 9899000[1] (ferricopiapite) (0.50) (0.50) (0.86) ·20.71H Fe (SO ) (OH) O 10119926 10222316 10259445 4.78 4 6 2.34 2 10089800[1] (ferricopiapite) (0.30) (1.30) (1.67) PbFe (AsO )(SO )(OH) 3084719 3 4 4 6 3055600[2] (beudantite) (0.95) ·7H Fe (AsO )(SO )(OH) O 3596905 2 4 4 2 3480000[2] (bukovskiite) (3.30) ä (%) Mean relative error, 0.81 0.59 0.70

with unknown properties. 033PbO + 1.355Fe2O3 + 0.25CuO +2SO3

+ 4.025H2O =(H3O)0.67Pb0.33Fe2.71Cu0.25(SO4)2 (OH) (H O) (3) METHODS 5.96 2 0.04

043PbO + 1.35Fe2O3 + 0.21ZnO +2SO3 + 3.88H O =(H O) Pb Fe Zn The synthetic Pb-As, Pb-Cu and Pb-Zn jarosite 2 3 0.57 0.43 2.7 0.21 [6] (SO ) (OH) (H O) (4) have been chosen ascalibration substances . For the 4 2 5.95 2 0.05 by means of linear programming problems[18-22] reactions of their formation from oxides: Ä º (kJ/ 032PbO + 1.43Fe O +1.69SO +0.155As O the molar increments of the Gibbs energies fG 2 3 3 2 mol) have been obtained in the form of correspond- + 4.225H O +0.845O = (H O) Pb 2 2 3 0.68 0.32 ing linear dependencies: Fe (SO ) (AsO ) (OH) (H O) (2) 2.86 4 1.69 4 0.31 5.59 2 0.41 Ä º = -3164.800 = -83.701y f G Pb-134.369yFe Physical CHEAMn InIdiSanT JouRrnaYl 92 The Gibbs energy increments for minerals of Pb-jarosite group PCAIJ, 10(3) 2015

Full Paper Ä º (J/mol) for minerals of TABLE 3 : The values of standard Gibbs energies of formation from the elements - fG chemical classes -hydroxosulfates and hydroxoarsenatesof , lead, copper and zinc Calculation by equations Mineral (5) (6) (7) ·5H Fe(SO )(OH) O 4 2 2212508 2269839 2276448 (fibroferrite) ·2H Fe(SO )(OH) O 4 2 1471592 1484301 1490013 (butlerite) Pb Fe (SO ) (OH) 0.5 3 4 2 6 2969410 2970861 2978110 (plumbojarosite) PbFe (SO ) (OH) 3 4 2 6 3037920 3002069 3003981 (beaverite) Pb Fe Cu (SO ) (OH) 0.94 1.74 1.12 4 2 6 2764581 2876034 2887357 (beaverite-Cu) PbCuFe (SO ) (OH) 2 4 2 6 2828616 2906120 2915941 (osarizawaite) ·2H CuFe (SO ) (OH) O 2 4 2 2 2277614 2226738 2234996 (guildite) PbFe Zn(SO ) (OH) 2 4 2 6 3007189 3084694 3094515 (beaverite-Zn) ·7H FeZn(SO ) (OH) O 4 2 2 3471785 3608633 3626297 (zinkobotryogen)[23] ·H Fe (AsO ) (SO )(OH) O 6 3 4 4 4 2 4856979 (tooeleite)[15] ·5H Fe (AsO )(SO )(OH) O 2 4 4 2 3045790 (sarmientite)[10] ·15H Fe (AsO ) (SO )(OH) O 4 4 3 4 2 7182075 (zykaite)[12] PbFe (AsO ) (OH) 2 4 2 2 2166756 (carminite)[23] ·H Cu Fe (AsO ) (OH) O 2 2 4 2 4 2 2659794 (chenevixite)[8] ·8H Cu (SO )(AsO ) (OH) O 10 4 4 4 6 2 6197750 (leogangite)[14] ·4H CuFe (AsO ) (OH) O 2 4 2 2 2 3027581 (arthurite)[23] ·7H Cu (SO )(AsO ) (OH) O 9 4 4 2 10 2 5439120 (parnauite)[7] ·5H Cu (AsO ) (OH) O 8 4 4 4 2 4496947 (strashimirite)[13]

+91.961yS-4.433yAs-173.574yO-42.568yH (5) in (TABLE 2). Ä º = -3131.400 = -62.417y f G Pb-105.908yFe RESULTS AND DISCUSSIONS -9.959yCu+151.098yS-194.417yO-33.715yH (6) Ä º = -3153.600 = -51.741y G -98.000y f Pb Fe Comparing equations (5-7)as bar diagrams (Fig- -188.533y +159.998y -199.255y -31.446y , (7) Zn S O H ure 1-3) it can be seen that the decomposition (5-7) wherey is the stoichiometric coefficients of the i are similar. The decomposition (5) can be used for chemical elementsi in the formula (1). estimations of iron and lead hydroxosulfates and The used values of Gibbs potentials for compo- hydroxoarsenates. Moreover the calculations with nents of reactions (2-4) are presented in (TABLE the usage of equation (5) can be applied for Cu and 1). The relative error of calculations by equations Zn containing compounds with involving the values (5-7) with published data for minerals of iron and of copper and zinc increments from the expressions lead hydroxosulfates and hydroxoarsenatesare shown (6) and (7). With this in mind we calculated the val- Physical CHEAMn InIdiSanT JouRrnaYl PCAIJ, 10(3) 2015 Oleg Viacheslavovich Eremin 93

Full Paper

Ä º=-3164800 (J/mole) for Pb-As- Figure 1 : The linear decomposition of value Gibbs free energy fG jarosite(H3O)0.68Pb0.32Fe2.86(SO4)1.69(AsO4)0.31(OH)5.59(H2O)0.41on chemical elements increments

Ä º=-3131400 (J/mole) for Pb-Cu- Figure 2 : The linear decomposition of value Gibbs free energy fG jarosite(H3O)0.67Pb0.33Fe2.71Cu0.25(SO4)2(OH)5.96(H2O)0.04on chemical elements increments

Ä º=-3153600 (J/mole) for Pb-Zn- Figure 3 : The linear decomposition of value Gibbs free energy fG jarosite(H3O)0.57Pb0.43Fe2.7Zn0.21(SO4)2(OH)5.95(H2O)0.05on chemical elements increments Physical CHEAMn InIdiSanT JouRrnaYl 94 The Gibbs energy increments for minerals of Pb-jarosite group PCAIJ, 10(3) 2015

Full Paper –58 ues of the Gibbs energies of some minerals with un- lecular Structure, 988, 52 (2011). known properties (TABLE 3). The equations (5-7) [10] R.L.Frost, S.J.Palmer, Y.Xi; The molecular struc- ture of the mineral sarmientite can be used for estimations the standard Gibbs po- ·5H – Implications for ar- Fe (AsO ,SO ) (OH) O tentials for complex minerals of hydroxosulfates and 2 4 4 2 6 2 senic accumulation and removal//Journal of Molecu- hydroxoarsenatesclassesof iron, lead, copper, and –93 lar Structure, 1004, 88 (2011). zinc. [11] R.L.Frost, S.J.Palmer, Y.Xi; The molecular struc- ture of the multianion mineral REFERENCES – Implications for hidalgoitePbAl3(AsO4)(SO4)(OH)6 removal from soils//Journal of Molecular –219 [1] M.V.Charykova, V.G.Krivovichev, w.Depmeir; Structure, 1005, 214 (2011). Thermodynamicsofarsenates, selenites, andsulfates [12] R.L.Frost, S.J.Palmer, Y.Xi; Vibrational spectros- of the oxidation zone of sulphide ores:I. Thermody- copy of the multi-anion mineral zykaite ·15H namic constants at ambient conditions//Geology of Fe (AsO )(SO )(OH) O-implications for arsen- 4 4 4 2 – Ore Deposits, 52, 8, 689-700 (2010). ate removal//SpectrochimicaActa Part A, 83, 444 [2] P.Drahota, M.Filippi; Secondary arsenic minerals in 448 (2011). the environment: A review//Environment Interna- [13] R.L.Frost, J.Sejkora, J.Cejka, E.C.Keeffe; Vibra- tional, 35, 1243-1255 (2009). tional spectroscopic study of the arsenate mineral [3] C.Drouet, D.Baron, A.Navrotsky; On the thermo- —Relationship strashimirite Cu8(AsO4)4(OH)4_5H2O chemistry of the solid solution between jarosite and to other basic copper arsenates//Vibrational Spec- –1954 –297 its chromate analog//Am.Mineral, 88, 1949 troscopy, 50, 289 (2009). (2003). [14] R.L.Frost, Y.Xi, S.J.Palmer; The structure of the [4] J.E.Dutrizac, J.Jambor; Jarosites and their applica- ·8H — mineral leogangite Cu10(OH)6(SO4)(AsO4)4 2O tion in hydrometallurgy in: P.H. Ribbe (Ed.), Re- Implications for arsenic accumulation and removal/ – 227 views in Mineralogyand : Sulfate Min- / SpectrochimicaActa Part A, 82, 221 (2011). erals, Mineralogical Society of America,Washington, –443 [15] J.Liu, S.Deng, F.Zhao, H.Cheng, R.L.Frost; Spec- DC, 40, 405 (2000). troscopic characterization and solubility investiga- [5] F.L.Forray, A.M.L.Smith, C.Drouet, A.Navrotsky, tion on the effects of As(V) on mineral structure K.Wright, Hudson K.A.Edwards, W.E.Dubbin; Syn- tooeleite (Fe6(AsO3)4SO4(OH)4_H2O)// thesis, Characterization and thermochemistry of a SpectrochimicaActa Part A: Molecular and –433 Pb-jarosite//Geochimica et CosmochimicaActa, 74, Biomolecular Spectroscopy, 134, 428 (2015). 215-224 (2010). [16] A.Navrotsky, F.L.Forray, C.Drouet; Jarosite stabil- –253 [6] F.L.Forray, A.M.L.Smith, A.Navrotsky, K.Wright, ity on Mars// Icarus., 176, 250 (2005). Hudson K.A.Edwards, W.E.Dubbin; Synthesis, [17] R.E.Stoffregen, C.N.Alpers, J.L.Jambor; Alunite- Characterization and thermochemistry of synthetic jarosite crystallography, thermodynamics, and Pb-As, Pb-Cu and Pb-Zn jarosites//Geochimica et geochemistry, in: P.H.Ribbe (Ed.), Reviews in CosmochimicaActa, 127, 107-119 (2014). Mineralogyand Geochemistry: Sulfate Minerals, [7] R.L.Frost, E.C.Keeffe; The mixed anion mineral Mineralogical Society of America,Washington, DC, ·7H —A –479 parnauite Cu9[(OH)10|SO4|(AsO4)2] 2O 40, 454 (2000). Raman spectroscopic study// SpectrochimicaActa – 116 [18] O.V.Yeriomin; Evaluation of standard thermody- Part A, 81, 111 (2011). namic potentials for natural zeolites in unified sto- [8] R.L.Frost, A.Lopez, R.Scholz, C.Lana, Y.Xi; A ichiometric formulas//Journal of Earth Science Re- Raman spectroscopic study of the arsenate mineral search, 1, 3, 84-93 (2013).

chenevixite Cu2Fe2(AsO4)2(OH)4_H2O// [19] O.V.Yeriomin; Calculation of standard thermody- SpectrochimicaActa Part A: Molecular and –197 namic potentials for Na-zeolites with the use of lin- Biomolecular Spectroscopy, 135, 192 (2015). ear programming problems. [9] R.L.Frost, S.J.Palmer, H.J.Spratt, W.N.Martens; The InternationalJournalofGeosciences, 3, 227-230 molecular structure of the mineral –Implications for (2011). beudantitePbFe3(AsO4,SO4)2(OH)6 [20] O.V.Yeriomin, G.A.Yurgenson; Calculation of stan- arsenic accumulation and removal//Journal of Mo- dard thermodynamic potentials of natural calcium Physical CHEAMn InIdiSanT JouRrnaYl PCAIJ, 10(3) 2015 Oleg Viacheslavovich Eremin 95

Full Paper zeolites//Zeitschrift fur GeologischeWissenschaften, [23] http://mincryst.iem.ac.ru/Crystallographic and 4, 245-251 (2012). Crystallochemical Database for Minerals and their [21] O.V.Eremin; Estimation of the standard thermody- Structural Analogues namic potentials of framework Ca-aluminosilicates by linear programming//Geochimiya, [In Russian], 9, 859-864 (2014). [22] O.V.Eremin, S.V.Vinnichenko, G.A.Yurgenson; Calculationofstandard Gibbs potentials for copper hydroxosulfates with crystal water by means of dual linear programming problems// DokladyAcademiiNauk, [In Russian], 409(3), 386- 388 (2006).

Physical CHEAMn InIdiSanT JouRrnaYl