The Immune System: Innate and Adaptive Body Defenses: Part A

Total Page:16

File Type:pdf, Size:1020Kb

The Immune System: Innate and Adaptive Body Defenses: Part A 10/9/2014 PowerPoint® Lecture Slides Immunity prepared by Barbara Heard, Atlantic Cape Community • Resistance to disease College • Immune system – Two intrinsic systems C H A P T E R 21 • Innate (nonspecific) defense system • Adaptive (specific) defense system The Immune System: Innate and Adaptive Body © Annie Leibovitz/Contact Press Images © 2013 Pearson Education, Inc. Defenses: © 2013 Pearson Education, Inc. Part A Immune System Immunity • Functional system rather than organ • Innate defense system has two lines of system defense • Innate and adaptive defenses intertwined – First - external body membranes (skin and • Release and recognize many of same mucosae) defensive molecules – Second - antimicrobial proteins, phagocytes, • Innate defenses do have specific and other cells pathways for certain substances • Inhibit spread of invaders • Innate responses release proteins that • Inflammation most important mechanism alert cells of adaptive system to foreign molecules © 2013 Pearson Education, Inc. © 2013 Pearson Education, Inc. Immunity Figure 21.1 Overview of innate and adaptive defenses. Surface barriers • Skin • Mucous membranes • Adaptive defense system Innate – Third line of defense attacks particular foreign defenses Internal defenses • Phagocytes substances • Natural killer cells • Inflammation • Takes longer to react than innate system • Antimicrobial proteins • Fever Humoral immunity • B cells Adaptive defenses Cellular immunity • T cells © 2013 Pearson Education, Inc. © 2013 Pearson Education, Inc. 1 10/9/2014 Innate Defenses Surface Barriers • Surface barriers ward off invading • Protective chemicals inhibit or destroy pathogens microorganisms – Acidity of skin and secretions – acid mantle – – Skin, mucous membranes, and their inhibits growth secretions – Enzymes - lysozyme of saliva, respiratory • Physical barrier to most microorganisms mucus, and lacrimal fluid – kill many • Keratin resistant to weak acids and bases, microorganisms bacterial enzymes, and toxins – Defensins – antimicrobial peptides – inhibit • Mucosae provide similar mechanical barriers growth – Other chemicals - lipids in sebum, dermcidin in sweat – toxic © 2013 Pearson Education, Inc. © 2013 Pearson Education, Inc. Surface Barriers Internal Defenses: Cells and Chemicals • Respiratory system modifications • Necessary if microorganisms invade – Mucus-coated hairs in nose deeper tissues – Cilia of upper respiratory tract sweep dust- – Phagocytes and bacteria-laden mucus toward mouth – Natural killer (NK) cells • Surface barriers breached by nicks or cuts – Antimicrobial proteins (interferons and - second line of defense must protect complement proteins) deeper tissues – Fever – Inflammatory response (macrophages, mast cells, WBCs, and inflammatory chemicals) © 2013 Pearson Education, Inc. © 2013 Pearson Education, Inc. Phagocytes Mechanism of Phagocytosis • Neutrophils most abundant but die fighting • Phagocyte must adhere to particle – Become phagocytic on exposure to infectious – Some microorganisms evade adherence with material capsule • Macrophages develop from monocytes – chief • Opsonization marks pathogens—coating by phagocytic cells – robust cells complement proteins or antibodies • Free macrophages wander through tissue spaces, • Cytoplasmic extensions bind to and engulf e.g., alveolar macrophages • Fixed macrophages permanent residents of some particle in vesicle called phagosome organs; e.g., stellate macrophages (liver) and • Phagosome fuses with lysosome microglia (brain) phagolysosome © 2013 Pearson Education, Inc. © 2013 Pearson Education, Inc. 2 10/9/2014 Figure 21.2a Phagocytosis. Figure 21.2b Phagocytosis. Slide 1 1 Phagocyte Innate defenses Internal defenses adheres to pathogens or debris. 2 Phagocyte forms pseudopods that Phagosome eventually engulf the (phagocytic particles, forming a vesicle) phagosome. Lysosome 3 Lysosome fuses with the phagocytic vesicle, forming a phagolysosome. Acid hydrolase enzymes 4 Lysosomal enzymes digest the particles, leaving a residual body. 5 Exocytosis of the A macrophage (purple) uses its cytoplasmic vesicle removes extensions to pull rod-shaped bacteria indigestible and (green) toward it. Scanning electron residual material. micrograph (4800x). Events of phagocytosis. © 2013 Pearson Education, Inc. © 2013 Pearson Education, Inc. Mechanism of Phagocytosis Natural Killer (NK) Cells • Pathogens killed by acidifying and digesting with • Nonphagocytic large granular lymphocytes lysosomal enzymes • Attack cells that lack "self" cell-surface • Helper T cells cause release of enzymes of receptors respiratory burst, which kill pathogens resistant to lysosomal enzymes by – Induce apoptosis in cancer cells and virus- infected cells – Releasing cell-killing free radicals – Producing oxidizing chemicals (e.g., H2O2) • Secrete potent chemicals that enhance – Increasing pH and osmolarity of phagolysosome inflammatory response • Defensins (in neutrophils) pierce membrane © 2013 Pearson Education, Inc. © 2013 Pearson Education, Inc. Inflammatory Response Inflammatory Response • Triggered whenever body tissues injured • Cardinal signs of acute inflammation: • Prevents spread of damaging agents 1. Redness • Disposes of cell debris and pathogens 2. Heat • Alerts adaptive immune system 3. Swelling 4. Pain • Sets the stage for repair (Sometimes 5. Impairment of function) © 2013 Pearson Education, Inc. © 2013 Pearson Education, Inc. 3 10/9/2014 Inflammatory Response Inflammatory Response • Begins with chemicals released into ECF • Inflammatory mediators by injured tissues, immune cells, blood – Kinins, prostaglandins (PGs), and proteins complement • Macrophages and epithelial cells of • Dilate local arterioles (hyperemia) boundary tissues bear Toll-like receptors – Causes redness and heat of inflamed region (TLRs) • Make capillaries leaky • 11 types of TLRs recognize specific • Many attract leukocytes to area classes of infecting microbes • Some have inflammatory roles • Activated TLRs trigger release of cytokines that promote inflammation © 2013 Pearson Education, Inc. © 2013 Pearson Education, Inc. Inflammatory Response: Edema Inflammatory Response • Capillary permeability exudate to • Clotting factors form fibrin mesh tissues – Scaffold for repair – Fluid containing clotting factors and – Isolates injured area so invaders cannot antibodies spread – Causes local swelling (edema) – Swelling pushes on nerve endings pain • Pain also from bacterial toxins, prostaglandins, and kinins – Moves foreign material into lymphatic vessels – Delivers clotting proteins and complement © 2013 Pearson Education, Inc. © 2013 Pearson Education, Inc. Figure 21.3 Inflammation: flowchart of events. Innate defenses Internal defenses Phagocyte Mobilization Initial stimulus Physiological response Signs of inflammation Tissue injury Result • Neutrophils lead; macrophages follow Release of inflammatory chemicals Release of leukocytosis- (histamine, complement, inducing factor kinins, prostaglandins, etc.) – As attack continues, monocytes arrive Leukocytosis (increased numbers of white • 12 hours after leaving bloodstream blood cells in bloodstream) Arterioles Increased capillary Attract neutrophils, macrophages dilate permeability monocytes, and lymphocytes to Leukocytes migrate to area (chemotaxis) injured area • These "late-arrivers" replace dying neutrophils and Local hyperemia Capillaries (increased blood leak fluid Margination remain for clean up prior to repair flow to area) (exudate formation) (leukocytes cling to capillary walls) Diapedesis • If inflammation due to pathogens, Leaked protein-rich Leaked clotting (leukocytes pass through fluid in tissue spaces proteins form interstitial capillary walls) clots that wall off area to prevent injury to complement activated; adaptive immunity surrounding tissue Phagocytosis of pathogens Heat Redness Pain Swelling and dead tissue cells (by neutrophils, short-term; by macrophages, long-term) elements arrive Locally increased Possible temporary Temporary fibrin Pus may form temperature increases impairment of patch forms metabolic rate of cells function scaffolding for repair Area cleared of debris Healing © 2013 Pearson Education, Inc. © 2013 Pearson Education, Inc. 4 10/9/2014 Figure 21.4 Phagocyte mobilization. Slide 1 Phagocyte Mobilization Innate defenses Internal defenses • Steps for phagocyte mobilization 1. Leukocytosis: release of neutrophils from bone marrow in response to leukocytosis- Inflammatory inducing factors from injured cells chemicals diffusing 4 Chemotaxis. 2. Margination: neutrophils cling to walls of from the Neutrophils follow inflamed chemical trail. capillaries in inflamed area in response to site act as CAMs chemotactic Capillary wall agents. Basement 3. Diapedesis of neutrophils membrane Endothelium 4. Chemotaxis: inflammatory chemicals (chemotactic agent) promote positive chemotaxis of neutrophils 1 Leukocytosis. 2 Margination. 3 Diapedesis. Neutrophils enter Neutrophils cling Neutrophils flatten blood from bone to capillary wall. and squeeze out of marrow. capillaries. © 2013 Pearson Education, Inc. © 2013 Pearson Education, Inc. Antimicrobial Proteins Interferons • Include interferons and complement • Family of immune modulating proteins proteins – Have slightly different physiological effects • Some attack microorganisms directly • Viral-infected cells secrete IFNs (e.g., IFN • Some hinder microorganisms' ability to alpha and beta) to "warn" neighboring reproduce cells – IFNs enter neighboring cells produce proteins that block viral reproduction
Recommended publications
  • Cells, Tissues and Organs of the Immune System
    Immune Cells and Organs Bonnie Hylander, Ph.D. Aug 29, 2014 Dept of Immunology [email protected] Immune system Purpose/function? • First line of defense= epithelial integrity= skin, mucosal surfaces • Defense against pathogens – Inside cells= kill the infected cell (Viruses) – Systemic= kill- Bacteria, Fungi, Parasites • Two phases of response – Handle the acute infection, keep it from spreading – Prevent future infections We didn’t know…. • What triggers innate immunity- • What mediates communication between innate and adaptive immunity- Bruce A. Beutler Jules A. Hoffmann Ralph M. Steinman Jules A. Hoffmann Bruce A. Beutler Ralph M. Steinman 1996 (fruit flies) 1998 (mice) 1973 Discovered receptor proteins that can Discovered dendritic recognize bacteria and other microorganisms cells “the conductors of as they enter the body, and activate the first the immune system”. line of defense in the immune system, known DC’s activate T-cells as innate immunity. The Immune System “Although the lymphoid system consists of various separate tissues and organs, it functions as a single entity. This is mainly because its principal cellular constituents, lymphocytes, are intrinsically mobile and continuously recirculate in large number between the blood and the lymph by way of the secondary lymphoid tissues… where antigens and antigen-presenting cells are selectively localized.” -Masayuki, Nat Rev Immuno. May 2004 Not all who wander are lost….. Tolkien Lord of the Rings …..some are searching Overview of the Immune System Immune System • Cells – Innate response- several cell types – Adaptive (specific) response- lymphocytes • Organs – Primary where lymphocytes develop/mature – Secondary where mature lymphocytes and antigen presenting cells interact to initiate a specific immune response • Circulatory system- blood • Lymphatic system- lymph Cells= Leukocytes= white blood cells Plasma- with anticoagulant Granulocytes Serum- after coagulation 1.
    [Show full text]
  • Effect of Dermcidin, an Antimicrobial Peptide, on Body Fat Mobilization in Normal Mice
    111 Effect of dermcidin, an antimicrobial peptide, on body fat mobilization in normal mice Kyung-Ah Kim1,*, Sun-O Ka1,*, Woo Sung Moon2, Ho-Keun Yi3, Young-Hoon Lee4, Kang-Beom Kwon5, Jin-Woo Park1 and Byung-Hyun Park1 Departments of 1Biochemistry and 2Pathology, Medical School and Institute for Medical Sciences, 3Biochemistry and 4Oral Anatomy, Dental School and Institute of Oral Biosciences, Chonbuk National University, Jeonju, Jeonbuk 561-756, South Korea 5Department of Physiology, School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 570-749, South Korea (Correspondence should be addressed to B-H Park; Email: [email protected]) *(K-A Kim and S-O Ka contributed equally to this work) Abstract Dermcidin (DCD), an antimicrobial peptide that is secreted tissues obtained from Ad-b-gal-injected mice. The gene by sweat glands, is reportedly a human homolog of mouse expression profiles revealed an upregulation of hormone- proteolysis-inducing factor. This study was conducted to sensitive lipase and adipose fatty acid-binding protein, both of investigate the effect of DCD on body fat mobilization. The which are involved in adipocyte lipolysis, in Ad-DCD- expression level of DCD in the livers of Ad-DCD-injected injected mice, and this lipolytic effect of DCD paralleled the mice was higher than in those of Ad-b-galactosidase (Ad-b- increase of circulating tumor necrosis factor-a (TNF-a)level gal)-injected mice 7 days after injection. In addition, injection that was observed. The perilipin levels in adipose tissue were with the Ad-DCD virus led to decreased body weight and decreased in Ad-DCD-injected mice when compared with epididymal fat mass when compared with controls.
    [Show full text]
  • Hyperleukocytosis (Re)Visited- Is It Case Series Always Leukaemia: a Report of Two Pathology Section Cases and Review of Literature Short Communication
    Review Article Clinician’s corner Original Article Images in Medicine Experimental Research Miscellaneous Letter to Editor DOI: 10.7860/JCDR/2020/40556.13409 Case Report Postgraduate Education Hyperleukocytosis (Re)Visited- Is it Case Series always Leukaemia: A Report of Two Pathology Section Cases and Review of Literature Short Communication ASHUTOSH RATH1, RICHA GUPTA2 ABSTRACT Hyperleukocytosis is defined as total leukocyte count of more than 100×109/L. Commonly seen in leukaemic conditions, non- leukaemic causes are usually not encountered and thought of. We report two such non-malignant cases of hyperleukocytosis. A six-year old girl presented with fever, cough and respiratory distress with a leukocyte count of 125.97×109/L. Another case is of a two-month old female infant, who presented with fever and respiratory distress and a leukocyte count of 112.27×109/L. The present case thrives to highlight various possible causes of hyperleukocytosis with an emphasis on non-malignant causes. Also, important complications and management of hyperleukocytosis are discussed. Keywords: Benign, Leukocytosis, Leukostasis CASE REPORT 1 for methicillin-resistant Staphylococcus aureus and was started A six-year-old girl was admitted with complaints of fever, non- on intravenous Vancomycin along with supportive care. Serial productive cough for one week and severe respiratory distress for monitoring of TLC revealed a gradual reduction and it returned to the the past one day. There was no other significant history. On physical baseline of 15×109/L after eight days. The patient was discharged examination, the patient had mild pallor. Respiratory examination after 10 days of hospital stay.
    [Show full text]
  • Design, Development, and Characterization of Novel Antimicrobial Peptides for Pharmaceutical Applications Yazan H
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 8-2013 Design, Development, and Characterization of Novel Antimicrobial Peptides for Pharmaceutical Applications Yazan H. Akkam University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Biochemistry Commons, Medicinal and Pharmaceutical Chemistry Commons, and the Molecular Biology Commons Recommended Citation Akkam, Yazan H., "Design, Development, and Characterization of Novel Antimicrobial Peptides for Pharmaceutical Applications" (2013). Theses and Dissertations. 908. http://scholarworks.uark.edu/etd/908 This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Design, Development, and Characterization of Novel Antimicrobial Peptides for Pharmaceutical Applications Design, Development, and Characterization of Novel Antimicrobial Peptides for Pharmaceutical Applications A Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Cell and Molecular Biology by Yazan H. Akkam Jordan University of Science and Technology Bachelor of Science in Pharmacy, 2001 Al-Balqa Applied University Master of Science in Biochemistry and Chemistry of Pharmaceuticals, 2005 August 2013 University of Arkansas This dissertation is approved for recommendation to the Graduate Council. Dr. David S. McNabb Dissertation Director Professor Roger E. Koeppe II Professor Gisela F. Erf Committee Member Committee Member Professor Ralph L. Henry Dr. Suresh K. Thallapuranam Committee Member Committee Member ABSTRACT Candida species are the fourth leading cause of nosocomial infection. The increased incidence of drug-resistant Candida species has emphasized the need for new antifungal drugs.
    [Show full text]
  • Practice Parameter for the Diagnosis and Management of Primary Immunodeficiency
    Practice parameter Practice parameter for the diagnosis and management of primary immunodeficiency Francisco A. Bonilla, MD, PhD, David A. Khan, MD, Zuhair K. Ballas, MD, Javier Chinen, MD, PhD, Michael M. Frank, MD, Joyce T. Hsu, MD, Michael Keller, MD, Lisa J. Kobrynski, MD, Hirsh D. Komarow, MD, Bruce Mazer, MD, Robert P. Nelson, Jr, MD, Jordan S. Orange, MD, PhD, John M. Routes, MD, William T. Shearer, MD, PhD, Ricardo U. Sorensen, MD, James W. Verbsky, MD, PhD, David I. Bernstein, MD, Joann Blessing-Moore, MD, David Lang, MD, Richard A. Nicklas, MD, John Oppenheimer, MD, Jay M. Portnoy, MD, Christopher R. Randolph, MD, Diane Schuller, MD, Sheldon L. Spector, MD, Stephen Tilles, MD, Dana Wallace, MD Chief Editor: Francisco A. Bonilla, MD, PhD Co-Editor: David A. Khan, MD Members of the Joint Task Force on Practice Parameters: David I. Bernstein, MD, Joann Blessing-Moore, MD, David Khan, MD, David Lang, MD, Richard A. Nicklas, MD, John Oppenheimer, MD, Jay M. Portnoy, MD, Christopher R. Randolph, MD, Diane Schuller, MD, Sheldon L. Spector, MD, Stephen Tilles, MD, Dana Wallace, MD Primary Immunodeficiency Workgroup: Chairman: Francisco A. Bonilla, MD, PhD Members: Zuhair K. Ballas, MD, Javier Chinen, MD, PhD, Michael M. Frank, MD, Joyce T. Hsu, MD, Michael Keller, MD, Lisa J. Kobrynski, MD, Hirsh D. Komarow, MD, Bruce Mazer, MD, Robert P. Nelson, Jr, MD, Jordan S. Orange, MD, PhD, John M. Routes, MD, William T. Shearer, MD, PhD, Ricardo U. Sorensen, MD, James W. Verbsky, MD, PhD GlaxoSmithKline, Merck, and Aerocrine; has received payment for lectures from Genentech/ These parameters were developed by the Joint Task Force on Practice Parameters, representing Novartis, GlaxoSmithKline, and Merck; and has received research support from Genentech/ the American Academy of Allergy, Asthma & Immunology; the American College of Novartis and Merck.
    [Show full text]
  • Analysis of the Solution Structure of the Human Antibiotic Peptide Dermcidin and Its Interaction with Phospholipid Vesicles
    BMB reports Analysis of the solution structure of the human antibiotic peptide dermcidin and its interaction with phospholipid vesicles Hyun Ho Jung1, Sung-Tae Yang2, Ji-Yeong Sim1, Seungkyu Lee1, Ju Yeon Lee1, Ha Hyung Kim3, Song Yub Shin4 & Jae Il Kim1,* 1Department of Life Science, Gwangju Institute of Science and Technology, Gwangju, 2Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, 3College of Pharmacy, Chung-Ang University, Seoul, 4Department of Bio-Materials, Graduate School and Department of Cellular & Molecular Medicine, School of Medicine, Chosun University, Gwangju 501-759, Korea Dermcidin is a human antibiotic peptide that is secreted by the of the modes of action of various antimicrobial peptides have sweat glands and has no homology to other known antimicro- revealed that their cationic nature contributes to their initial bial peptides. As an initial step toward understanding dermci- binding to negatively charged bacterial membranes through din’s mode of action at bacterial membranes, we used homo- electrostatic interaction, while their amphipathic structures en- nuclear and heteronuclear NMR to determine the conforma- hance peptide-lipid interactions at the water-bilayer interface, tion of the peptide in 50% trifluoroethanol solution. We found ultimately leading to cell death via pore formation or mem- that dermcidin adopts a flexible amphipathic α-helical struc- brane disintergration (9-14). ture with a helix-hinge-helix motif, which is a common molec- Dermcidin (DCD) is an antimicrobial peptide found in hu- ular fold among antimicrobial peptides. Spin-down assays of man sweat.
    [Show full text]
  • Persistent Infection by Yersinia Pseudotuberculosis
    Persistent infection by Yersinia pseudotuberculosis Kemal Avican Department of Molecular Biology Umeå Centre for Microbial Research (UCMR) Laboratory for Molecular Infection Sweden (MIMS) Umeå University Umeå 2015 Copyright © Kemal Avican Responsible publisher under swedish law: the Dean of the Medical Faculty This work is protected by the Swedish Copyright Legislation (Act 1960:729) ISBN: 978-91-7601-335-9 ISSN: 0346-6612 New Series No: 1748 Cover Picture: Transcriptome of Yersinia pseudotuberculosis Cover Design: Kemal Avican Electronic version is avaliable at http://umu.diva-portal.org/ Printed by: Print & Media Umeå, Sweden 2015 To my parents… ! Table of contents Abstract ................................................................................................... i List of Abbreviations ............................................................................. ii Papers in This Thesis ........................................................................... iv 1! Introduction ...................................................................................... 1! 1.1! Emergence of Bacterial Pathogens ................................................................ 3! 1.1.1! Emergence of pathogenic properties ............................................................................ 3! 1.1.1.1! Bacteria–protozoa interactions .............................................................................. 3! 1.1.1.2! Genome plasticity .................................................................................................
    [Show full text]
  • Microbial Mechanisms of Pathogenicity 661
    Chapter 15 | Microbial Mechanisms of Pathogenicity 661 Chapter 15 Microbial Mechanisms of Pathogenicity Figure 15.1 Although medical professionals rely heavily on signs and symptoms to diagnose disease and prescribe treatment, many diseases can produce similar signs and symptoms. (credit left: modification of work by U.S. Navy) Chapter Outline 15.1 Characteristics of Infectious Disease 15.2 How Pathogens Cause Disease 15.3 Virulence Factors of Bacterial and Viral Pathogens 15.4 Virulence Factors of Eukaryotic Pathogens Introduction Jane woke up one spring morning feeling not quite herself. Her throat felt a bit dry and she was sniffling. She wondered why she felt so lousy. Was it because of a change in the weather? The pollen count? Was she coming down with something? Did she catch a bug from her coworker who sneezed on her in the elevator yesterday? The signs and symptoms we associate with illness can have many different causes. Sometimes they are the direct result of a pathogenic infection, but in other cases they result from a response by our immune system to a pathogen or another perceived threat. For example, in response to certain pathogens, the immune system may release pyrogens, chemicals that cause the body temperature to rise, resulting in a fever. This response creates a less-than-favorable environment for the pathogen, but it also makes us feel sick. Medical professionals rely heavily on analysis of signs and symptoms to determine the cause of an ailment and prescribe treatment. In some cases, signs and symptoms alone are enough to correctly identify the causative agent of a disease, but since few diseases produce truly unique symptoms, it is often necessary to confirm the identity of the infectious agent by other direct and indirect diagnostic methods.
    [Show full text]
  • The Antimicrobial Effect of Dermcidin Investigated by Computational Electrophysiology Molecular Dynamics Simulations
    The antimicrobial effect of dermcidin investigated by computational electrophysiology molecular dynamics simulations Björn Forsberg Department of Biochemistry and Biophysics Stockholm University 2013 Supervisor(s): Erik Lindahl (SU) / Bert de Groot (MPI-BPC) Conducted in the group for biomolecular dynamics at the dept. of theoretical and computational biophysics, Max-Planck Institute for biophysical Chemistry, Göttingen, Germany The barber put a hand on top of my head to turn me for a better look. Then he said to the guard, "Did you get your deer, Charles?" I liked this barber. We weren’t acquainted well enough to call each other by name, but when I came in for a haircut he knew me and knew I used to fish, so we’d talk fishing. I don’t think he hunted, but he could talk on any subject and was a good listener. In this regard he was a good barber. "Bill, it’s a funny story. The damnedest thing," the guard said. He removed the toothpick and laid it in the ashtray. He shook his head. "I did and yet I didn’t. So yes and no to your question." - Raymond Carver, The Calm 2 Contents 1 Popular science description 4 2 Abstract 5 3 Introduction 6 4 Introduction to the biological system under study 6 4.1 Cellular membranes . 6 4.1.1 Lipids . 6 4.1.2 Additional components . 7 4.1.3 Bacterial membranes . 7 4.2 AntiMicrobial Peptides (AMPs)and the antimicrobial effect . 8 4.3 Human dermcidin . 9 4.3.1 Prevalence and function . 9 4.3.2 Structure .
    [Show full text]
  • The Structure of the Antimicrobial Human Cathelicidin LL-37 Shows
    www.nature.com/scientificreports OPEN The structure of the antimicrobial human cathelicidin LL‑37 shows oligomerization and channel formation in the presence of membrane mimics Enea Sancho‑Vaello1,7, David Gil‑Carton2, Patrice François 3, Eve‑Julie Bonetti3, Mohamed Kreir4,8, Karunakar Reddy Pothula 5, Ulrich Kleinekathöfer 5 & Kornelius Zeth6* The human cathelicidin LL‑37 serves a critical role in the innate immune system defending bacterial infections. LL‑37 can interact with molecules of the cell wall and perforate cytoplasmic membranes resulting in bacterial cell death. To test the interactions of LL‑37 and bacterial cell wall components we crystallized LL‑37 in the presence of detergents and obtained the structure of a narrow tetrameric channel with a strongly charged core. The formation of a tetramer was further studied by cross‑ linking in the presence of detergents and lipids. Using planar lipid membranes a small but defned conductivity of this channel could be demonstrated. Molecular dynamic simulations underline the stability of this channel in membranes and demonstrate pathways for the passage of water molecules. Time lapse studies of E. coli cells treated with LL‑37 show membrane discontinuities in the outer membrane followed by cell wall damage and cell death. Collectively, our results open a venue to the understanding of a novel AMP killing mechanism and allows the rational design of LL‑37 derivatives with enhanced bactericidal activity. Te increase in antibiotic resistance is one of the biggest health challenges our society is currently facing1. As a consequence, the discovery of new bactericidal drug candidates from any source including antimicrobial peptides (AMPs) is urgent2–4.
    [Show full text]
  • Original Article Anemia, Leukocytosis and Eosinophilia in a Resource-Poor
    Original Article Anemia, leukocytosis and eosinophilia in a resource-poor population with helmintho-ectoparasitic coinfection Daniel Pilger1, Jörg Heukelbach2, Alexander Diederichs1, Beate Schlosser1, Cinthya Pereira Leite Costa Araújo3, Anne Keysersa1, Oliver Liesenfeld1, Hermann Feldmeier1 1Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Institute of Microbiology and Hygiene, D-12203 Berlin, Germany 2Department of Community Health, School of Medicine, Federal University of Ceará, Fortaleza, CE 60430-140, Brazil 3Department of Hematology, Estate University of Health Science of Alagoas, Alagoas, CEP 57010-300, Brazil Abstract Introduction: Eosinophilia and anemia are very common hematological alterations in the tropics but population-based studies scrutinizing their value for diagnosing parasitic infections are rare. Methodology: A cross-sectional study was conducted in a rural district in northeast Brazil where parasitic infections are common. Stool and blood samples were collected and individuals were clinically examined for the presence of ectoparasites. Results: In total, 874 individuals were examined. Infection with intestinal helminths occurred in 70% (95% CI 67 – 75), infestation with ectoparasites in 45% (95% CI 42 - 49) and co-infection with both helminths and ectoparasites was found in 33% (95% CI 29% - 36%) of all inhabitants. Eosinophil counts ranged from 40/µl to 13.800/µl (median: 900/µl). Haemoglobin levels ranged from 4.8 g/dl to 16.8 g/dl (median: 12.5 g/dl), and anemia was present in 24% of the participants. Leukocytosis was found in 13%, eosinophilia in 74%, and hypereosinophilia in 44% of the participants. Eosinophilia was more pronounced in individuals co-infected with intestinal helminths and ectoparasites (p < 0.001) and correctly predicted parasitic infection in 87% (95% CI 84%-90.7%) of all cases.
    [Show full text]
  • Leukocytosis & Lymphocytosis
    Leukocytosis Leukocytosis >11 (Repeated) Blood Smear AND History & EMERGENT REFERRAL Refer to Blasts on Smear Physical Exam Lymphocytes >4 Page Hematologist On-Call Lymphocytosis Algorithm Include nodes and spleen Myeloid Cells Basophils Monocytes Neutrophils Eosinophils CONCERNING FEATURES CONCERNING FEATURES CONCERNING FEATURES » Count >2 or increasing, or persistent » Count >50 » Count >2 or increasing or persistent » Not explained by infection » Promyelocytes and myelocytes » Dysplasia YES » Dysplasia » Dysplasia YES » Anemia » Immature forms » Basophilia » New organ damage » Anemia/thrombo-cytopenia » Splenomegaly » NOT explained by infection, allergies » Splenomegaly » NOT associated with acute infection or collagen vascular disease NO NO NO Consider Consider » Cancer Reactive Causes » drugs NO » Collagen VD YES e.g. Infection / inflammation, NO NO » Infections YES » Chronic infection autoimmune, drugs esp. steroids » Allergies » Marrow recovery » Collagen Vascular Disease Refer to Hematology Treat and Observe for recovery Refer to Hematology Treat and Observe for recovery © Blood Disorder Day Pathways are subject to clinical judgement and actual practice patterns may not always follow the proposed steps in this pathway. Lymphocytosis Lymphocytosis >4 (Repeated) Concerning Features “Reactive” Lymphocytes Asymptomatic » Lymphocytes >30 Patient symptoms of infection or acute illness » Hgb <100 » Night sweats/ weight loss » Splenomegaly Flow Cytometry AND Flow Cytometry IF PERSISTENT Work-up for secondary causes »Immunization »Viral
    [Show full text]