The African Telatelist
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Campbell Island Seabirds: Operation Endurance November 2019
Rexer-Huber et al. 2020 Campbell seabirds Campbell Island seabirds: Operation Endurance November 2019 Kalinka Rexer-Huber, Kevin A. Parker, Graham C. Parker April 2020 Department of Conservation, Marine Species and Threats project BCBC 2019-03: Campbell Island Seabird Research 1 Rexer-Huber et al. 2020 Campbell seabirds Campbell Island seabirds: Operation Endurance November 2019 Final report to Department of Conservation, Marine Species and Threats April 2020 Kalinka Rexer-Huber 1*, Kevin A. Parker 2 & Graham C. Parker 1 1 Parker Conservation, 126 Maryhill Terrace, Dunedin, New Zealand 2 Parker Conservation, PO Box 130, Warkworth 0941, New Zealand * Corresponding author: [email protected] Please cite as: Rexer-Huber K., Parker K.A., Parker G.C. 2020. Campbell Island seabirds: Operation Endurance November 2019. Final report to Marine Species and Threats, Department of Conservation. Parker Conservation, Dunedin. 23 p. 2 Rexer-Huber et al. 2020 Campbell seabirds Summary Seabird population monitoring and survey on Campbell Island was enabled via Operation Endurance in November 2019. Specific objectives were to collect photo-point and ground-truthing data at Campbell and grey-headed albatross colonies, repeat whole-island counts of breeding Northern giant petrels, collect GLS trackers from Southern royal albatrosses, use sound recorders to record burrowing petrel distribution and check the bands of all banded birds seen. Photo-points for Campbell albatross and grey-headed albatross (Thalassarche impavida and T. chrysostoma) were revisited to take a new set of photographs for population monitoring. These photo-points have been used for counts since 1987, but some colonies have been photographed since the 1940s. -
Iucn Red Data List Information on Species Listed On, and Covered by Cms Appendices
UNEP/CMS/ScC-SC4/Doc.8/Rev.1/Annex 1 ANNEX 1 IUCN RED DATA LIST INFORMATION ON SPECIES LISTED ON, AND COVERED BY CMS APPENDICES Content General Information ................................................................................................................................................................................................................................ 2 Species in Appendix I ............................................................................................................................................................................................................................... 3 Mammalia ............................................................................................................................................................................................................................................ 4 Aves ...................................................................................................................................................................................................................................................... 7 Reptilia ............................................................................................................................................................................................................................................... 12 Pisces ................................................................................................................................................................................................................................................. -
Evaluating Threats to New Zealand Seabirds Report for the Department of Conservation
Evaluating threats to New Zealand seabirds Report for the Department of Conservation Authors: Edward Abraham Yvan Richard Katherine Clements PO Box 27535, Wellington 6141 New Zealand dragonfly.co.nz Cover Notes To be cited as: Abraham, Edward; Yvan Richard; Katherine Clements (2016). Evaluating threats to New Zealand seabirds, 19 pages. Report for the Department of Conservation. Crown copyright © This report is licensed for re-use under a Creative Commons Aribution 3.0 New Zealand Licence. This allows you to distribute, use, and build upon this work, provided credit is given to the original source. Cover image: hps://www.flickr.com/photos/4nitsirk/16121373851 EXECUTIVE SUMMARY The New Zealand Department of Conservation is developing a seabird threat framework, “to beer understand, and manage, at-sea threats to our seabirds”. This framework will allow the impact of threats on seabird populations to be qualitatively assessed, and will be used to prioritise a programme of seabird population monitoring. As a first stage in developing the framework, a database of demographic parameters and threats was prepared. In this project, a process was estab- lished for reviewing and synthesising this information. The demographic parameters were then used to develop an online tool, which allowed for the impact of changes in parameters on population growth rates to be assessed. In the future, this tool will allow the impact of current and potential threats on seabird populations to be promptly explored. The process was trialled on the 12 albatross taxa recognised -
An Assessment for Fisheries Operating in South Georgia and South Sandwich Islands
FAO International Plan of Action-Seabirds: An assessment for fisheries operating in South Georgia and South Sandwich Islands by Nigel Varty, Ben Sullivan and Andy Black BirdLife International Global Seabird Programme Cover photo – Fishery Patrol Vessel (FPV) Pharos SG in Cumberland Bay, South Georgia This document should be cited as: Varty, N., Sullivan, B. J. and Black, A. D. (2008). FAO International Plan of Action-Seabirds: An assessment for fisheries operating in South Georgia and South Sandwich Islands. BirdLife International Global Seabird Programme. Royal Society for the Protection of Birds, The Lodge, Sandy, Bedfordshire, UK. 2 Executive Summary As a result of international concern over the cause and level of seabird mortality in longline fisheries, the United Nations Food and Agricultural Organisation (FAO) Committee of Fisheries (COFI) developed an International Plan of Action-Seabirds. The IPOA-Seabirds stipulates that countries with longline fisheries (conducted by their own or foreign vessels) or a fleet that fishes elsewhere should carry out an assessment of these fisheries to determine if a bycatch problem exists and, if so, to determine its extent and nature. If a problem is identified, countries should adopt a National Plan of Action – Seabirds for reducing the incidental catch of seabirds in their fisheries. South Georgia and the South Sandwich Islands (SGSSI) are a United Kingdom Overseas Territory and the combined area covered by the Territorial Sea and Maritime Zone of South Georgia is referred to as the South Georgia Maritime Zone (SGMZ) and fisheries within the SGMZ are managed by the Government of South Georgia and South Sandwich Islands (GSGSSI) within the framework of the Convention on the Conservation of Antarctic Marine Living (CCAMLR). -
Nasal Salt Secretion in Falconiform Birds
NASAL SALT SECRETION IN FALCONIFORM BIRDS TOM J. CADE and LEWIS GREENWALD Falconers have long known that various raptors, especially accipiters and eagles, exude a clear fluid from their nares while eating. We were reminded of this fact while handling a melanistic Gabar Goshawk (1Micronisus g&r), which we trapped in the Kalahari Desert in August 1964. As the hawk ate his prey, the small droplets of fluid that collected on our gloves had a strong salty taste. This discovery led us to look for nasal secretions in 16 species and 10 genera of Accipitridae and in eight species and three genera of Falconidae. We have studied behavioral and physiolog- ical aspects of nasal secretion in these raptors with reference to Schmidt-Nielsen’s (1964) hypothesis regarding the general necessity for birds to utilize an extrarenal mechanism of salt excretion, as an adjunct to efficient water reabsorption from the cloaca in concentrating uric acid, and also in connection with the overall water economy of carnivorous birds. MATERIALS AND METHODS We obtained birds and information from various sources. Our initial observa- tions were made on an adult male Gabar Goshawk, an adult female Red-necked Falcon (F&o chiqueru), and a pair of adult Pigmy Falcons (Polihierax semitor- quatus), which we trapped in the Kalahari Gemsbok National Park in the Republic of South Africa and subsequently transported to our laboratory at Syracuse Uni- versity. In addition, we obtained the following hawks from a bird dealer in New York: an immature Savannah Hawk (Heterospizias meridionalis) and a juvenile Yellow-headed Caracara (M&ago chimuchima), both from South America, and an immature Saker (F&o chewug) and an adult Laggar (Fake jugger) from India. -
Energetics and Morphometrics of Non-Breeding Albatrosses Henry Battam University of Wollongong
University of Wollongong Research Online University of Wollongong Thesis Collection University of Wollongong Thesis Collections 2010 Energetics and morphometrics of non-breeding albatrosses Henry Battam University of Wollongong Recommended Citation Battam, Henry, Energetics and morphometrics of non-breeding albatrosses, Doctor of Philosophy thesis, University of Wollongong. School of Biological Sciences, University of Wollongong, 2010. http://ro.uow.edu.au/theses/3245 Research Online is the open access institutional repository for the University of Wollongong. For further information contact Manager Repository Services: [email protected]. Thesis Certification CERTIFICATION I, Henry Battam, declare that this thesis, submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Biological Sciences, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. The document has not been submitted for qualifications at any other academic institution. Henry Battam 27 August 2010 Energetics and Morphometrics of non‐ breeding albatrosses A thesis submitted in partial fulfilment of the requirements for the award of the degree Doctor of Philosophy from UNIVERSITY OF WOLLONGONG by Henry Battam B.E. (Hons) School of Biological Sciences 2010 Abstract The synchronous catastrophic mortality in the semelparous cuttlefish (Sepia apama), is an annual winter event in the coastal waters of southern Australia. This creates an abundant food resource that attracts large numbers of -
BYC-08 INF J(A) ACAP: Update on the Conservation Status
INTER-AMERICAN TROPICAL TUNA COMMISSION SCIENTIFIC ADVISORY COMMITTEE NINTH MEETING La Jolla, California (USA) 14-18 May 2018 DOCUMENT BYC-08 INF J(a) UPDATE ON THE CONSERVATION STATUS, DISTRIBUTION AND PRIORITIES FOR ALBATROSSES AND LARGE PETRELS Agreement on the Conservation of Albatrosses and Petrels (ACAP) and BirdLife International 1. STATUS AND TRENDS OF ALBATROSSES AND PETRELS Seabirds are amongst the most globally-threatened of all groups of birds, and conservation issues specific to albatrosses and large petrels led to drafting of the multi-lateral Agreement on the Conservation of Albatrosses and Petrels (ACAP). A review of the conservation status and priorities for albatrosses and large petrels was recently published in Biological Conservation (Phillips et al. 2016). There are currently 31 species listed in Annex 1 of the Agreement. Of these, 21 (68%) are classified at risk of extinction, a stark contrast to the overall rate of 12% for the 10,694 bird species worldwide (Croxall et al. 2012, Gill & Donsker 2017). Of the 22 species of albatrosses listed by ACAP, three are listed as Critically Endangered (CR), six are Endangered (EN), six are Vulnerable (VU), six are Near Threatened (NT), and one is of Least Concern (LC). Of the nine petrel species, one is listed as CR, one as EN, four as VU, one as NT and two species as LC. The population trends of ACAP species over the last twenty years (since the mid-1990s) were re-examined in 2017 by the ACAP Population and Conservation Status Working Group (PaCSWG). Thirteen ACAP species (42%) are currently showing overall population declines. -
The Chatham Island Mollymawk (Diomedea Eremita) in Australia
NOTORNIS 44 SHORT NOTE The Chatham Island Mollymawk (Diomedea eremita) in Australia The Chatham Island Mollymawk (Diomedea eremita) is generally considered either a rare vagrant, or occasional visitor, in southeast Australian waters (Marchant & Higgins 1990). There is only one previously published record of the species for Australia (Brothers & Davis 1985), despite many thousands of hours of ohsewations (Cox 1976; Barton 1979; Wood 1992; Reid et al. in press). On a world scale, Chatham Island Mollymawks are very rare, with 3-4,000 breeding pairs (Gales 1993; Tennyson et al. 1993), so an understanding of their distribution is important in order to study their ecological requirements, and potential threats to the populations. In this paper, two records from Australian waters are detailed, while all previous records are discussed. On 1February 1995 we observed a Chatham Island Mollymawk from the Australian Antarctic Division vessel the RV Aurora Australis. The ship was stationary conducting oceanographic experiments 23 nautical miles south of the Mewstone, off the south coast of Tasmania. The position was 44"07'S, 146"13'E, over water 1,000 m deep with a sea surface temperature of 15.1% and salinity of 35.18 ppt. A wind of 10 to 15 knots was blowing from the northwest. Many other albatrosses were attending the ship; these included 30 Wandering Albatrosses (D. exularzs), three Southern Royal Albatrosses (D. epomophora epomophora), one Northern Royal Albatross (D. e. sanfordi), 40 Shy Mollymawks (D. cauta cauta or D. c. steadi) and 30 New Zealand Black-browed Mollymawks (D. melanoph ys impavida). One Southern Buller's Mollymawk (D. -
Phoebetria Palpebrata) for the Maritime Antarctic
Polar Biol (2009) 32:1811–1813 DOI 10.1007/s00300-009-0705-3 SHORT NOTE First breeding record of the light-mantled sooty albatross (Phoebetria palpebrata) for the maritime Antarctic Simeon Lisovski · Václav Pavel · Karel Weidinger · Hans-Ulrich Peter Received: 28 April 2009 / Revised: 24 July 2009 / Accepted: 27 July 2009 / Published online: 7 August 2009 © Springer-Verlag 2009 Abstract The light-mantled sooty albatross is a medium- are restricted to the sub-Antarctic latitudes, occurring at sized albatross with a circumpolar distribution in the Southern nine island groups close to the Antarctic convergence Ocean. The known breeding sites are restricted to Islands in between 46° and 53°S (Fig. 1). The largest numbers breed sub-Antarctic latitudes close to the Antarctic convergence on South Georgia, Kerguelen and Auckland Islands; fur- between 46° and 53°S. In the austral summer season 2008/ thermore, several hundred breeding pairs are recorded on 2009 we discovered a new breeding colony with at least Prince Edward and Marion, Crozet, Heard and McDonald, two conWrmed and three probable nests at Fildes Peninsula, Macquarie, Campbell and Antipodes Islands (Brooke King George Island, South Shetland Islands, Antarctica 2004). Compared with many other albatross species, the (62°12ЈS, 59°01ЈW). The new breeding colony of light- LMSA have shown recent increases at two sites, but reli- mantled sooty albatross described here represents the able trend data are unavailable for the majority of the global southernmost breeding place of any albatross species ever population: the world population is tentatively estimated at recorded. c. 22,000 breeding pairs (Brooke 2004; Crawford et al. -
The Functional Alterations of the Avian Salt Gland Subsequent to Osmotic Stress Zeinab M
The Egyptian Journal of Hospital Medicine (April 2013) Vol. 51, Page 346– 360 The Functional Alterations of The Avian Salt Gland Subsequent to Osmotic Stress Zeinab M. El–Gohary, Fawkeia I. El-Sayad, Hanaa Ali Hassan and Aya Mohammed Magdy Hamoda Zoology Dept., Faculty of Science, Mansoura University, Egypt Abstract: Background: Many terrestrial non-marine birds have functional salt glands. Their salt glands are usually quiescent. However, such glands show remarkable levels of phenotypic plasticity both morphological and physiological as a consequence of drinking saline water. Objective: The current investigation was conducted to reveal in more detail the different functional alterations of the duck`s salt glands subsequent to high salt osmotic stress. Material and methods: The selected avian species were the domestic female (Anas platyrhyncha) and the wild migratory (Anas clypeata ) ducks. Two groups of domestic and one group of wild ducks were considered in the present study , each of which included nine adult ducks. The high salt osmotic stress was induced by replacing drinking tap water of the domestic ducks with 1% sodium chloride solution for two consecutive weeks. The measured parameters were included some electrolytes in both serum and glandular tissue. Also, Na-K- ATPase activity and aldosterone concentrations were considered. Results: The present study elucidated that serum sodium, potassium, chloride and uric acid of the wild migratory ducks were markedly higher than those of both salt-stressed and control ducks. In addition, serum aldosterone concentration of the wild migratory ducks was distinctly higher in comparison with those of the control and the salt-stressed ones. Moreover, salt gland tissue homogenate electrolyte contents followed the same pattern as those of serum electrolyte concentrations. -
Birds in Marine and Saline Environments: Living in Dry Habitats
Revista Chilena de Historia Natural 73: 401-410, 2000 Birds in marine and saline environments: living in dry habitats Aves en ambientes marinos y salinos: viviendo en habitats secos PABLOSABAT Departamento de Ciencias Ecologicas, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile, e-mail: psabat@ abello.dic. uchile.cl ABSTRACT For birds, saline environments such as maritime and salt marsh habitats are essentially dry habitats. When birds drink saline water or consume salt-loaded preys, the osmolarity of their body fluids increases. In order to maintain the osmotic equilibrium, they have to eliminate the excess of electrolytes ingested with preys or water. Marine birds use salt glands, which produce excretion solutions more concentrated than seawater to eliminate excess salt. The physiology and phenotypic plasticity of nasal glands appears to be correlated with the ecological features of species. Birds can also minimize osmotic stress by choosing hypo-osmotic preys, preys with reduced water content, and/or by decreasing salt intake. Although the kidney of birds is clearly less efficiently in its capacity to concentrate the urine than that of mammals, there are interspecific differences in renal structure and physiology that may be correlated with the birds ecological habits, and hence to represent adaptive mechanism to prevent water loss. The kidney may be especially important in taxa that lack active salt gland, such as passerines. Passerines, which are supposed to have limited ability to use saline habitats, include several marine and salt-marsh species. In this review I show that the interaction of the kidney and rectum in osmoregulatory physiology, coupled with selective feeding behavior play a major role in the maintenance of water and salt balance of passerines living in salty environments. -
Evaluating and Treating the Kidneys
16_Nephrology.qxd 8/23/2005 10:41 AM Page 451 CHAPTER 16 Evaluating and Treating the Kidneys M. SCOTT ECHOLS, DVM, D ipl ABVP-A vian Renal diseases and their various classifications are well documented in the avian literature. The precise patho- genesis of avian renal disease, however, is not nearly as well described as it is in mammals. Renal disease has been shown to be fairly common in avian species. In studied poultry, as much as 29.6% of all disease condi- tions had abnormal pathology associated with or attrib- utable to renal disorders.20,214,251 Amyloidosis, urate nephrosis and gout were the most common diseases associated with mortality in a 4-year retrospective study conducted at a waterfowl park in Ontario, Canada.210 Thirty-seven percent of all avian cases presenting with renal tissue for histopathological examination, included over a 15-month period at the Schubot Exotic Bird Health Center, had one or more histologically identified kidney lesions.187 Nine of 75 pheasants (Phasianus colchicus) died with nephritis, one or both ureters impacted, and visceral gout in another comprehensive study on avian mortality.186 These case reports and retro- spective studies support the conclusion that renal dis- eases are relatively common and are clinically significant in multiple avian species. When compared to mammalian counterparts, the avian urogenital system has many structural and functional differences, which have been described previously.77,90,118,181,187,227 Differences including gross anatomy, renal portal blood flow and protein waste elimination should be considered when reviewing this chapter, as findings obtained from mammalian studies may not necessarily be applicable to birds.