Rat Submaxillary Gland

Total Page:16

File Type:pdf, Size:1020Kb

Rat Submaxillary Gland Biochem. J. (1980) 187, 269-272 269 Printed in Great Britain Substrate Stabilization of the Palmitoyl-Coenzyme A Hydrolase Activity of Rat Submaxillary Gland Thomas E. KNAUER,* John J. GURECKIt and Gleness R. KNAUER* *Department ofMedicine, Medical College of Virginia, Richmond, VA 23298, and tDepartment of Pharmacology-Physiology, University ofPittsburgh, School ofDental Medicine, Pittsburgh, PA 15261, U.S.A. (Received 2 January 1980) The long-chain acyl-CoA hydrolase (EC 3.1.2.2) activity of rat submaxillary salivary gland, found in the postmicrosomal supernatant fraction, has a pH optimum of 7.4. This hydrolase activity was found to be extremely labile, but inclusion of glycerol or the substrate palmitoyl-CoA in the preparations markedly stabilized the activity. Gel- filtration studies revealed multiple forms of the hydrolase, a lower-molecular-weight species of approx. 45000 and a higher-molecular-weight species of approx.- 130000 observed when glycerol (20%, v/v) or palmitoyl-CoA (10puM) were included in the eluting buffer. This phenomenon is similar to that observed with the palmitoyl-CoA hydrolase of rat brain, except that there is no evidence that the higher-molecular-weight species of the hydrolase of submaxillary gland is generated by substrate-induced dimerization of the lower-molecular-weight species. The submaxillary salivary gland of the rat is a 0.25 M-sucrose/0. lOM-potassium phosphate (pH 7.4) metabolically active secretory organ that utilizes with a Polytron ST1O homogenizer (Brinkman fatty acids both as precursors for complex-lipid Instruments, Westbury, NY, U.S.A.). The homo- synthesis and as sources of energy (Pritchard, 1970, genates were centrifuged for 5min at 700g (ra, 1972; Pritchard et al., 1971; Horak & Pritchard, 4.13 cm). Particulate and supernatant fractions were 1971). The lipid composition of rat submaxillary prepared by centrifuging the 700g supernatant for gland, which is approx. 5-6% lipid by wet weight, 60 min at 105OOOg (ra. 5.95 cm). Except as noted, includes all of the usual phospholipids, neutral lipids, all operations were carried out at 0-40C. cholesterol and its esters (Gilbertson et al., 1975). Our radioassay for palmitoyl-CoA hydrolase has Pritchard (1972) has presented evidence that the been described in detail previously (Knauer, 1979). increased energy demand of the submaxillary gland Briefly, 20-70,ug of submaxillary gland protein and during adrenaline-stimulated secretion is met by 88nmol of palmitoyl-CoA (containing 0.05#uCi of accelerated oxidation of fatty acids. Although no [1-14Clpalmitoyl-CoA) were incubated together at details were reported, Pritchard et al. (1971) noted 370C in a final volume of 1.Oml of 0.10M-potas- that palmitoyl-CoA was readily hydrolysed in vitro sium phosphate/lmM-EDTA (pH7.4). After 5- during incubations with subcellular fractions pre- 60min the incubations were extracted twice with pared from submaxillary gland. During our initial chloroform/methanol/acetic acid (50: 50: 1, by vol.), work we observed that the palmitoyl-CoA hydrolase the combined chloroform extracts washed with activity of submaxillary gland was extremely labile, water, dried under N2 and the residue was re- but could be stabilized by the addition of glycerol or dissolved in n-hexane. Portions of the n-hexane were palmitoyl-CoA to the preparations. This suggested taken for radioassay by liquid-scintillation spectro- that palmitoyl-CoA might have an effect on the metry or for analysis by chromatography on thin hydrolase similar to that observed with the hydro- layers of silica gel G with a developing solvent of lase of rat brain (Knauer, 1979). n-hexane/diethyl ether/acetic acid (70:30: 1, by vol.). Experimental The sources of the chemicals and supplies used in the present study were as previously reported Submaxillary glands were removed from groups (Knauer, 1979). Columns of Sephadex G-200 of four or more adult rats under light diethyl ether were calibrated by using pure proteins obtained from anaesthesia and chilled in ice-cold 0.9% NaCl. Boehringer Mannheim, Indianapolis, IN, U.S.A. Homogenates (10 or 20%, w/v) were prepared in Columns of Sephadex G-25 were used for desalting Vol. 187 0306-3275/80/040269-04$01.50/1 © 1980 The Biochemical Society 270 T. E. KNAUER, J. J. GURECKI AND G. R. KNAUER protein samples. All gel-filtration procedures were calibrated columns of Sephadex G-200 and eluted performed at 2-40C. Protein was determined by the with 0.lOM-potassium phosphate/imm EDTA method of Lowry et al. (1951), with crystalline (pH 7.4) (Fig. la), the major peak of hydrolase bovine serum albumin as the standard. Radioactive activity, preceded by a broad shoulder, eluted in a samples were counted in a Beckman LS250 liquid- region consistent with a molecular weight of approx. scintillation spectrometer with external standardiza- 45000. An additional peak of activity in the void tion for determining counting efficiencies. volume of the column probably represents the long-chain acyl-CoA thioesterase activity of the Results and Discussion fatty acid synthetase complex (Kumar, 1975; Lornitzo et al., 1975). Recovery of activity was low, Activity ofsubmaxillary gland hydrolase in vitro approximately 5-10% of that applied, and was not Under the conditions of the radioassay, the increased by including dithiothreitol (3mM) in the hydrolysis of palmitoyl-CoA was linearly dependent eluting buffer. on protein concentration and incubation time up to at least 25% hydrolysis of the substrate. The optimal pH for hydrolysis was approx. 7.4. When particulate and soluble fractions prepared from cell-free homo- genates of submaxillary gland were assayed for hydrolase activity, over 82% of the activity was found in the 105 OOOg supernatant fraction. This fraction was used as the source of palmitoyl-CoA hydrolase during the remainder ofthese studies. 8 j 6 I--. Stabilization of hydrolase activity by glycerol and 0 palmitoyl-CoA 4 *g- The hydrolase was found to be sensitive to 2 Z manipulation and considerable activity was lost after 20o .*2 wcn dilution, dialysis or column desalting. For example, 0 only 40 ± 4% (mean ± S.E.M., n = 5) of the original 00 0 hydrolase activity remained 3 h after 50-fold dilution 12 vc of the 105 000g supernatant (5-7 mg of protein/ml) 10 in 0.1OM-potassium-phosphate, pH7.4. However, 10. similar dilutions retained full potency for 3 h when glycerol (20%, v/v) was included in the buffer. 6 E The hydrolase activity was found to be heat-labile and was completely inactivated by exposure to 600C 2 for 10min. However, during studies concerning the effect of temperature on the assay of the hydrolase 140 220 300 380 460 540 in vitro, we observed that in the standard incubation Elution volume (ml) system a substantial portion of the original hydro- Fig. 1. Gel filtration of the 105 000g supernatant frac- lase activity remained even after 30min at 600C. To tion ofsubmaxillary gland determine if the presence of the substrate stabilized (a) A portion (6ml) of the 105OOg supernatant the hydrolase activity against heat inactivation, we prepared from a 20% (w/v) homogenate of sub- heated of maxillary gland was applied to a column (2.6cm x portions submaxillary gland protein at 98cm) of Sephadex G-200 equilibrated and eluted 600C for 10min with and without added palmitoyl- by ascending flow (14 ml/h) with 0. 10M-potassium CoA (401M). Subsequent radioassays revealed that phosphate/1.0mM-EDTA (pH 7.4). Column frac- the preparations heated with palmitoyl-CoA retained tions were assayed for hydrolase activity by the 63 ± 5% (mean + S.E.M., n = 3) of the original standard method described in the text. One unit of activity, whereas preparations heated without pal- enzyme activity will hydrolyse 1 nmol of palmitoyl- mitoyl-CoA had virtually no hydrolase activity CoA/min. Recovery of hydrolase activity for this (2%). column was 5% ofthe applied activity. (b) A portion (7 ml) of the 105 000g supernatant prepared from a Gel-filtration studies 10% (w/v) homogenate of submaxillary gland was Gel-filtration adjusted to 20% (v/v) glycerol and applied to a studies revealed multiple forms of column (2.6 cm x 96 cm) of Sephadex G-200 equilib- the palmitoyl-CoA hydrolase activity of sub- rated and eluted by ascending flow (13 ml/h) with maxillary gland. (Column profiles are representative potassium phosphate/EDTA buffer containing 20% of several experiments.) When portions of the (v/v) glycerol. Recovery of hydrolase activity from 105 OOOg supernatant fraction were applied to this column was 22% ofthe applied activity 1980 RAPID PAPERS 271 In an attempt to increase the recovery of activity glycerol columns (Fig. lb) were treated similarly, no during gel filtration, we added glycerol (20%, v/v) to hydrolase activity was recovered from the Sephadex the eluting buffer. Two major peaks of activity G-200 column. Thus for either brain (Knauer, 1979) emerged from the columns eluted with glycerol or submaxillary gland, removal of glycerol results in buffer (Fig. lb). The recovery of hydrolase activity a 95-100% loss of hydrolase activity, whereas a was increased to 20-25% of that applied, with the substantial portion (>65%) of their original activities bulk of this increased activity appearing as a new remains after excess (non-protein bound) palmitoyl- peak between the void volume and the peak CoA has been removed by column desalting. corresponding to a molecular weight of approx. Since a higher-molecular-weight form of the 45000. Similarly, including palmitoyl-CoA (10puM) hydrolase of rat brain is generated from a lower- in the eluting buffer promoted the appearance of an molecular-weight form by exposure to palmitoyl- additional peak of hydrolase activity between the CoA (Knauer, 1979), we examined the possibility void volume and the peak of mol.wt.
Recommended publications
  • METACYC ID Description A0AR23 GO:0004842 (Ubiquitin-Protein Ligase
    Electronic Supplementary Material (ESI) for Integrative Biology This journal is © The Royal Society of Chemistry 2012 Heat Stress Responsive Zostera marina Genes, Southern Population (α=0.
    [Show full text]
  • Effect of Physical Exercise on Lipolysis in White Adipocytes
    J Phys Fitness Sports Med, 1(2): 351-356 (2012) JPFSM: Short Review Article Effect of physical exercise on lipolysis in white adipocytes Junetsu Ogasawara1*, Takuya Sakurai1, Takako Kizaki1, Kazuto Takahashi2, Hitoshi Ishida2, Tetsuya Izawa3, Koji Toshinai4, Norihiko Nakano5 and Hideki Ohno1 1 Department of Molecular Predictive Medicine and Sport Science, Kyorin University, School of Medicine,6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan 2 Third Department of Internal Medicine, Kyorin University, School of Medicine,6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan 3 Department of Sports Biochemistry, Faculty of Health and Sports Science, Doshisha University, Tataramiyakodani, Kyotanabe, Kyoto 610-0394, Japan 4 Neurology, Respirology, Endocrinology, and Metabolism, Division of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan 5 Aino Institute of Regeneration and Rehabilitation, Aino University, 4-5-4 Higashiohara, Ibaraki, Osaka 567-0012, Japan Received: April 27, 2012 / Accepted: June 12, 2012 Abstract Fatty acids are derived from the hydrolysis of triacylglycerol (TG) found in white adipose tissue, muscle tissue and circulating lipoproteins. The mobilization of free fatty acids (FFA) from white adipose tissue contributes to about 50% of the FFA utilized during moderate- intensity exercise. The delivery of FFA from white adipose tissue is improved by hormone- stimulated lipolytic events in white adipocytes (WA). Thus, the lipolysis in WA that provides fuel for metabolism has been a highly conserved function throughout the course of evolution. This short review outlines our current understanding of the molecular regulation of TG lipases via the lipolytic cascade in WA, as well as provides an account of our recent findings concern- ing changes in the lipolytic molecules of WA that result from acute and habitual exercise.
    [Show full text]
  • Optimization of Lipase Production in Burkholderia Glumae
    Optimization of lipase production in Burkholderia glumae Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften der Fakultät für Biologie an der Internationalen Graduiertenschule Biowissenschaften der Ruhr-Universität Bochum angefertigt am Institut für Molekulare Enzymtechnologie vorgelegt von Anke Beselin aus Frankfurt a. Main Bochum August 2005 Optimierung der Lipaseproduktion in Burkholderia glumae Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften der Fakultät für Biologie an der Internationalen Graduiertenschule Biowissenschaften der Ruhr-Universität Bochum angefertigt am Institut für Molekulare Enzymtechnologie vorgelegt von Anke Beselin aus Frankfurt a. Main Bochum August 2005 Die vorliegende Arbeit wurde im Rahmen des Europäischen Graduiertenkollegs der Ruhr- Universität Bochum (EGC 795): Regulatory Circuits in Cellular Systems: Fundamentals and Biotechnological Applications angefertigt. Referent: Prof. Dr. K.-E. Jäger Korreferent: Prof. Dr. W. J. Quax Tag der mündlichen Prüfung: 28.10.2005 ___________________________________________________________________________ Danksagungen Herrn Prof. Dr. K.-E. Jäger danke ich für die Überlassung des interessanten und aktuellen Themas, für das rege Interesse am Fortschritt meiner Arbeit, die konstruktiven Diskussionen und die mir gebotene Möglichkeit, die experimentelle Arbeit frei und selbständig zu gestalten. I would like to thank Prof. Dr. W. J. Quax, Laboratory of Pharmaceutical Biology- Rijksuniversität Groningen (NL) for agreeing to co-supervise
    [Show full text]
  • (10) Patent No.: US 8119385 B2
    US008119385B2 (12) United States Patent (10) Patent No.: US 8,119,385 B2 Mathur et al. (45) Date of Patent: Feb. 21, 2012 (54) NUCLEICACIDS AND PROTEINS AND (52) U.S. Cl. ........................................ 435/212:530/350 METHODS FOR MAKING AND USING THEMI (58) Field of Classification Search ........................ None (75) Inventors: Eric J. Mathur, San Diego, CA (US); See application file for complete search history. Cathy Chang, San Diego, CA (US) (56) References Cited (73) Assignee: BP Corporation North America Inc., Houston, TX (US) OTHER PUBLICATIONS c Mount, Bioinformatics, Cold Spring Harbor Press, Cold Spring Har (*) Notice: Subject to any disclaimer, the term of this bor New York, 2001, pp. 382-393.* patent is extended or adjusted under 35 Spencer et al., “Whole-Genome Sequence Variation among Multiple U.S.C. 154(b) by 689 days. Isolates of Pseudomonas aeruginosa” J. Bacteriol. (2003) 185: 1316 1325. (21) Appl. No.: 11/817,403 Database Sequence GenBank Accession No. BZ569932 Dec. 17. 1-1. 2002. (22) PCT Fled: Mar. 3, 2006 Omiecinski et al., “Epoxide Hydrolase-Polymorphism and role in (86). PCT No.: PCT/US2OO6/OOT642 toxicology” Toxicol. Lett. (2000) 1.12: 365-370. S371 (c)(1), * cited by examiner (2), (4) Date: May 7, 2008 Primary Examiner — James Martinell (87) PCT Pub. No.: WO2006/096527 (74) Attorney, Agent, or Firm — Kalim S. Fuzail PCT Pub. Date: Sep. 14, 2006 (57) ABSTRACT (65) Prior Publication Data The invention provides polypeptides, including enzymes, structural proteins and binding proteins, polynucleotides US 201O/OO11456A1 Jan. 14, 2010 encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides.
    [Show full text]
  • Insulin Controls Triacylglycerol Synthesis Through Control of Glycerol Metabolism and Despite Increased Lipogenesis
    nutrients Article Insulin Controls Triacylglycerol Synthesis through Control of Glycerol Metabolism and Despite Increased Lipogenesis Ana Cecilia Ho-Palma 1,2 , Pau Toro 1, Floriana Rotondo 1, María del Mar Romero 1,3,4, Marià Alemany 1,3,4, Xavier Remesar 1,3,4 and José Antonio Fernández-López 1,3,4,* 1 Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; [email protected] (A.C.H.-P.); [email protected] (P.T.); fl[email protected] (F.R.); [email protected] (M.d.M.R.); [email protected] (M.A.); [email protected] (X.R.) 2 Faculty of Medicine, Universidad Nacional del Centro del Perú, 12006 Huancayo, Perú 3 Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain 4 Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBER-OBN), 08028 Barcelona, Spain * Correspondence: [email protected]; Tel: +34-93-4021546 Received: 7 February 2019; Accepted: 22 February 2019; Published: 28 February 2019 Abstract: Under normoxic conditions, adipocytes in primary culture convert huge amounts of glucose to lactate and glycerol. This “wasting” of glucose may help to diminish hyperglycemia. Given the importance of insulin in the metabolism, we have studied how it affects adipocyte response to varying glucose levels, and whether the high basal conversion of glucose to 3-carbon fragments is affected by insulin. Rat fat cells were incubated for 24 h in the presence or absence of 175 nM insulin and 3.5, 7, or 14 mM glucose; half of the wells contained 14C-glucose. We analyzed glucose label fate, medium metabolites, and the expression of key genes controlling glucose and lipid metabolism.
    [Show full text]
  • Fed State Insulin Insulin Fasted State/ Starvation
    Overview of Carbohydrate Metabolism Glycogen Glycogen Synthesis UDP-Glucose Glycogen Degradation Glucose-1-P Glucose Glucose-6-P Pentose Phosphate Pathway Glycolysis Gluconeogenesis Triose Phosphates 2 Pyruvate 2 Lactate 2 Acetyl-CoA Oxaloacetate Citrate Citric Acid Cycle C02, H20, 12 ~P Overview of Carbohydrate Metabolism Glycogen Glycogen Synthesis Fed State UDP-Glucose Glycogen Degradation Insulin Glucose-1-P Glucose Glucose-6-P Pentose Phosphate Pathway Glycolysis Gluconeogenesis Triose Phosphates Insulin 2 Pyruvate 2 Lactate 2 Acetyl-CoA Oxaloacetate Citrate Citric Acid Cycle C02, H20, 12 ~P Overview of Carbohydrate Metabolism Glycogen Glucagon/ Glycogen Synthesis Epinephrine Fasted State/ UDP-Glucose Glycogen Degradation Glucose-1-P Starvation Glucose Glucose-6-P Pentose Phosphate Glucagon/ Pathway Glycolysis Epinephrine Gluconeogenesis Triose Phosphates Glucagon/ Epinephrine 2 Pyruvate 2 Lactate 2 Acetyl-CoA Oxaloacetate Citrate Citric Acid Cycle C02, H20, 12 ~P 1 Hexokinase/ * Glucokinase Phosphofructo- * kinase-1 Pyruvate * kinase * HEXOKINASE inhibited by Glu 6-P * GLUCOKINASE USED IN LIVER Fructose 6-P reduces activity by causing enzyme to translocate to nucleus * * Phosphofructo- kinase-1 * + Fructose 2,6- bisP AMP - ATP, citrate - Glucagon & Epinephrine in Liver * 2 * * Pyruvate Kinase + fructose-1,6-bisP - ATP, alanine * - glucagon & epinephrine Glucokinase Liver: PFK-1 Insulin Increases Transcription Of Genes Encoding These Enzymes Pyruvate Kinase * * * PFK-2/ Liver: PFK-1 Glucagon Epinephrine Pyruvate Kinase * 3 * * PFK-2/
    [Show full text]
  • Dupont Industrial Biosciences, Dupont Australia
    From: Sent: Wednesday, 20 February 2019 1:00 PM To: standards management Subject: FSANZ Submission Form Received (Internet) - Danisco Singapore Pte Ltd Attachments: Technical information of Lipase 3 for application in cereal-based food and beverages.pdf The linked image cannot be displayed. The file may have been moved, renamed, or deleted. Verify that the link points to the correct file and location. Application/Proposal Number: A1159 Organisation Name: Danisco Singapore Pte Ltd Organisation Type: Food Manufacturer Representing: DuPont Industrial Biosciences, DuPont Australia Street Address: Postal Address: Contact Person: Contact Number: Email Address: Submission Text: DuPont would like to request an amendment to the proposed use applications for the enzyme Triacylglycerol lipase from Trichoderma reesei, subject of A1159, to include “cereal based food and beverages” (retailed in both liquid and solid forms). This request would not involve any new usage of the enzyme, but gives food manufactures more flexibility in final format of 1 food produced, i.e. fermented vs non-fermented, liquid vs dried. As described in FSANZ Technical and safety assessment report of Application A1159, Triacylglycerol lipase in brewing assists to reduce lipid concentration and improve mash separation, specifically for non-malted cereals. The same function could be adopted by food manufactures out of brewing industry using malt and cereal as raw material. After mash separation, the wort (liquid) can either be fermented in subsequent steps to manufacture beer, or going through other manufacturing processes to make non-alcoholic drink. For example, the resultant process liquors (worts) can be evaporated for concentration into a malt syrup which can further be spray-dried to produce a malt flour.
    [Show full text]
  • Triacylglycerol Metabolism, Function and Accumulation in Plant Vegetative Tissues
    BNL-111805-2016-JA Triacylglycerol Metabolism, Function and Accumulation in Plant Vegetative Tissues Changcheng Xu and John Shanklin Submitted to Annual Review June 2016 Biology Department Brookhaven National Laboratory U.S. Department of Energy DOE Office of Basic Energy Sciences Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE- SC00112704 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
    [Show full text]
  • WO 2013/185069 Al 12 December 2013 (12.12.2013) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2013/185069 Al 12 December 2013 (12.12.2013) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 48/00 (2006.01) A61K 9/00 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/US20 13/044771 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR, 7 June 2013 (07.06.2013) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (25) Filing Language: English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/657,452 8 June 2012 (08.06.2012) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicants: SHIRE HUMAN GENETIC THERAPIES, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, INC. [US/US]; 300 Shire Way, Lexington, Massachusetts UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 0242 1 (US).
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,017,963 B2 Sanders Et Al
    US009017963B2 (12) United States Patent (10) Patent No.: US 9,017,963 B2 Sanders et al. (45) Date of Patent: *Apr. 28, 2015 (54) METHOD FOR DETECTING (52) U.S. Cl. MCROORGANISMS CPC. CI2O I/04 (2013.01); C12O I/37 (2013.01); CI2O I/54 (2013.01); C12O 1/10 (2013.01); (75) Inventors: Mitchell C. Sanders, West Boylston, CI2O 1/14 (2013.01); C12O 1/34 (2013.01); MA (US); Adrian M. Lowe, Newton, CI2O I/44 (2013.01) MA (US); Maureen A. Hamilton, (58) Field of Classification Search Littleton, MA (US); Gerard J. Colpas, CPC ............... C12Q 1/04; C12O 1/10; C12O 1/14 Holden, MA (US) USPC ............................................................ 435/36 See application file for complete search history. (73) Assignee: Woundchek Laboratories (US), Inc., Fall River, MA (US) (56) References Cited (*) Notice: Subject to any disclaimer, the term of this U.S. PATENT DOCUMENTS patent is extended or adjusted under 35 4,242,447 A 12/1980 Findl et al. U.S.C. 154(b) by 1508 days. 4.259,442 A 3/1981 Gayral This patent is Subject to a terminal dis- (Continued) claimer. FOREIGN PATENT DOCUMENTS (21) Appl. No.: 10/502,882 DE 1961 73.38 11, 1997 (22) PCT Filed: Jan. 31, 2003 EP O 122 028 A1 10, 1984 (Continued) (86). PCT No.: PCT/US03/03172 OTHER PUBLICATIONS S371 (c)(1), Holliday, M.G., et al., 1999, Journal of Clinical Microbiology, 38. (2), (4) Date: Feb. 23, 2005 1190-1192. (87) PCT Pub. No.: WO03/063693 (Continued) PCT Pub. Date: Aug. 7, 2003 Primary Examiner — Sharmila G.
    [Show full text]
  • Lipid Biosynthesis
    Lipid Biosynthesis Objectives: I. Describe how excess carbohydrate and/or amino acid consumption leads to fatty acid and triacylglycerol production. II. What is the precursor of fatty acid biosynthesis (lipogenesis)? A. Where is it generated? B. How is it transported to the site of fatty acid biosynthesis? C. What other necessary precursors can be / are generated as part of the transport process? III. Describe how the precursor is activated for the biosynthesis pathway. IV. The Fatty Acid Biosynthesis Complex. A. Describe the Fatty Acid Biosynthesis Complex. B. Describe the six recurring reactions of fatty acid biosynthesis. C. What coenzymes are required for lipogenesis D. What is the final product of the Fatty Acid Biosynthesis Complex? V. What other reactions are necessary for the complete biosynthesis of the fatty acids needed by the cell? VI. Compare / Contrast β-oxidation of fatty acids and fatty acid biosynthesis. A. State at least three differences between lipogenesis (fatty acid synthesis) and β oxidation. VII. Describe the control points of fatty acid biosynthesis. A. Allosteric control B. Control by Reversible Covalent Modification C. Hormonal control 1. How does the control of lipogenesis integrate with the control of β-oxidation? 2. What is the Triacylglycerol Cycle and Glyceroneogenesis? VIII.Integrate fatty acid biosynthesis with carbohydrate metabolism. A. Describe the regulation of lipid and carbohydrate metabolism in relation to the liver, adipose tissue, and skeletal muscle B. Summarize the antagonistic effects of glucagon and insulin. IX. Describe the synthesis of A. Phosphatidate. B. The Triacylglycerols. C. The Phosphoglycerides. D. Sphingosine / Ceramide. X. Cholesterol Biosynthesis. A. In general terms, describe the synthesis of cholesterol.
    [Show full text]
  • Triacylglycerol Lipase from Fusarium Oxysporum Produced In
    GRAS Notice (GRN) No. 631 http://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/default.htm ORIGINAL SUBMISSION 000001 AB Enzymes GmbH – Feldbergstrasse 78 , D-6412 Darmstadt February 1, 2016 Office of Food Additive Safety (HFS-255), Center for Food Safety and Applied Nutrition, Food and Drug Administration, 5100 Paint Branch Parkway, College Park, MD 20740. RE: GRAS NOTIFICATION FOR TRIACYLGLYCEROL LIPASE FROM A GENETICALLY MODIFIED STRAIN OF TRICHODERMA REESEI Pursuant to proposed 21 C.F.R § 170.36, AB Enzymes GmbH is providing in electronic media format (determined to be free of computer viruses), based on scientific procedures – a generally recognized as safe (GRAS) notification for triacylglycerol lipase enzyme preparation from Trichoderma reesei (T.reesei) strain expressing the gene encoding triacylglycerol from Fusarium oxysporum for use in baking processes. The triacylglycerol lipase enzyme preparation described herein when used as described above and in the attached GRAS notice is exempt from the premarket approval requirements applicable to food additives set forth in Section 409 of the Food, Drug, and Cosmetic Act and corresponding regulations. Please contact the undersigned by telephone or email if you have any questions or additional information is required. Candice Cryne Regulatory Affairs Specialist (The Americas) Toronto, Ontario Canada M6K3L9 1 647-919-3964 [email protected] 000002 AB Enzymes AB Enzymes GmbH- Feldbergstrasse 78 , D-6412 Darmstadt February 1, 2016 Office of Food Additive Safety
    [Show full text]