DNA Fingerprinting and Anastomosis Grouping Reveal Similar Genetic Diversity in Rhizoctonia Species Infecting Turfgrasses in the Transition Zone of USA B

Total Page:16

File Type:pdf, Size:1020Kb

DNA Fingerprinting and Anastomosis Grouping Reveal Similar Genetic Diversity in Rhizoctonia Species Infecting Turfgrasses in the Transition Zone of USA B University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Agronomy & Horticulture -- Faculty Publications Agronomy and Horticulture Department 2013 DNA fingerprinting and anastomosis grouping reveal similar genetic diversity in Rhizoctonia species infecting turfgrasses in the transition zone of USA B. S. Amaradasa University of Nebraska-Lincoln B. J. Horvath University of Tennessee, Knoxville D. K. Lakshman Floral and Nursery Plants Research Unit, Beltsville Agricultural Research Center-West, Beltsville, Maryland, [email protected] S. E. Warnke Floral and Nursery Plants Research Unit, Beltsville Agricultural Research Center-West, Beltsville, Maryland, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/agronomyfacpub Part of the Agricultural Science Commons, Agriculture Commons, Agronomy and Crop Sciences Commons, Botany Commons, Horticulture Commons, Other Plant Sciences Commons, and the Plant Biology Commons Amaradasa, B. S.; Horvath, B. J.; Lakshman, D. K.; and Warnke, S. E., "DNA fingerprinting and anastomosis grouping reveal similar genetic diversity in Rhizoctonia species infecting turfgrasses in the transition zone of USA" (2013). Agronomy & Horticulture -- Faculty Publications. 851. https://digitalcommons.unl.edu/agronomyfacpub/851 This Article is brought to you for free and open access by the Agronomy and Horticulture Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Agronomy & Horticulture -- Faculty Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Mycologia, 105(5), 2013, pp. 1190–1201. DOI: 10.3852/12-368 # 2013 by The Mycological Society of America, Lawrence, KS 66044-8897 DNA fingerprinting and anastomosis grouping reveal similar genetic diversity in Rhizoctonia species infecting turfgrasses in the transition zone of USA B.S. Amaradasa nia solani AG 2-2IIIB was the most dominant Department of Agronomy and Horticulture, University pathogen in this study, followed by AG 1-IB. There of Nebraska, Lincoln, Nebraska 68583 was no relationship between the geographic origin of B.J. Horvath the isolates and clustering of isolates based on the Department of Plant Sciences, University of Tennessee, genetic associations. To our knowledge this is the first Knoxville, Tennessee 37996 time UP-PCR was used to characterize Rhizoctonia, 1 Waitea and Ceratobasidium isolates to their infra- D.K. Lakshman species level. S.E. Warnke Key words: binucleate Rhizoctonia,rDNA-ITS, Floral and Nursery Plants Research Unit, Beltsville Rhizoctonia solani, turfgrass, UP-PCR, Waitea circinata Agricultural Research Center-West, Beltsville, Maryland 20705 INTRODUCTION Abstract: Rhizoctonia blight is a common and serious Multiple Rhizoctonia species are responsible for disease of many turfgrass species. The most wide- causing leaf blight on turfgrasses. Both warm-season spread causal agent, Thanatephorus cucumeris (ana- and cool-season turfgrasses are susceptible to Rhizoc- morph: R. solani), consists of several genetically tonia blight with the warm humid and warm tropical different subpopulations. In addition, Waitea circi- climatic zones highly favoring the disease (Burpee nata varieties zeae, oryzae and circinata (anamorph: and Martin 1992). Rhizoctonia spp.) also can cause the disease. Accurate In the United States, cool-season turfgrasses dom- identification of the causal pathogen is important for inate northern states while warm-season turfgrasses effective management of the disease. It is challenging are adapted to the warm-humid or warm-arid condi- to distinguish the specific causal pathogen based on tions of the southern states. The central part of the disease symptoms or macroscopic and microscopic country that is at the northern range of adaptation of morphology. Traditional methods such as anastomo- the warm-season grasses and at the southern range of sis reactions with tester isolates are time consuming adaptation of the cool-season grasses is known as the and sometimes difficult to interpret. In the present transition zone. Although none of the turfgrass types study universally primed PCR (UP-PCR) fingerprint- are well adapted to the transition zone, both are ing was used to assess genetic diversity of Rhizoctonia routinely grown and managed in this region. spp. infecting turfgrasses. Eighty-four Rhizoctonia Rhizoctonia blight poses a major threat to successful isolates were sampled from diseased turfgrass leaves growth and maintenance of several important turf- from seven distinct geographic areas in Virginia and grass species in both southern and transition zones Maryland. Rhizoctonia isolates were characterized by (Burpee and Martin 1992). The most common ribosomal DNA internal transcribed spacer (rDNA- Rhizoctonia species, R. solani Ku¨hn (teleomorph: ITS) region and UP-PCR. The isolates formed seven Thanatephorus cucumeris (Frank) Donk), is responsi- clusters based on ITS sequences analysis and un- ble for causing brown patch on cool-season grasses weighted pair group method with arithmetic mean and large patch on warm-season grasses. Both R. zeae (UPGMA) clustering of UP-PCR markers, which Voorhees (teleomorph: Waitea circinata var. zeae corresponded well with anastomosis groups (AGs) Warcup and Talbot) and R. oryzae Ryker and Gooch of the isolates. Isolates of R. solani AG 1-IB (n 5 18), (teleomorph: W. circinata var. oryzae Warcup and AG 2-2IIIB (n 5 30) and AG 5 (n 5 1) clustered Talbot) are responsible for leaf and sheath spot separately. Waitea circinata var. zeae (n 5 9) and var. disease. Unlike other Rhizoctonia diseases, yellow circinata (n 5 4) grouped separately. A cluster of six patch caused by R. cerealis van der Hoeven (tele- isolates of Waitea (UWC) did not fall into any known omorph: Ceratobasidium cereale Murray and Burpee; Waitea variety. The binucleate Rhizoctonia-like fungi anastomosis group: AG-D) favors cool and wet (BNR) (n 5 16) clustered into two groups. Rhizocto- weather (Smiley et al. 2005, de la Cerda et al. 2007). Another recently identified causal agent, Waitea Submitted 2 Nov 2012; accepted for publication 8 Apr 2013. circinata var. circinata, is responsible for brown ring 1 Corresponding author. E-mail: [email protected] patch in golf courses (de la Cerda et al. 2007). All 1190 AMARADASA ET AL.: UP-PCR ANALYSIS OF RHIZOCTONIA ISOLATES 1191 aforementioned species have multinucleate cells (Boysen et al. 1996, Kuninaga et al. 1997, Kuninaga et al. except R. cerealis, which is a binucleate species. There 2000, Gonzalez et al. 2001, Hsiang and Dean 2001, are reports of other binucleate Rhizoctonia-like fungi Pannecoucque and Ho¨fte 2009). Although analysis of the (BNR) being isolated from turfgrass swards or soils ITS region is a well tested method for identifying (Hurd and Grisham 1983, Burpee and Goulty 1984, Rhizoctonia species, it can be cost prohibitive for Burpee and Martin 1992). Those isolates differ from investigating a large number of samples. Some isolates R. cerealis in physiological characters and anastomosis are difficult to sequence without cloning, which adds time reactions. In general, diseased turfgrasses develop and cost to the analysis. The advancement of technology circular areas of blighted brown leaves. Therefore, and automated sequencing has made the analysis of DNA reliance on field symptoms to identify Rhizoctonia fingerprinting profiles significantly less expensive than ITS causal agents can be misleading. Microscopically all sequencing. Various PCR-based DNA fingerprinting Rhizoctonia species look similar in the asexual state methods have been used for identification and classifica- and typically characterized by nonsporulating mycelia tion of Rhizoctonia species (Lu¨beck and Poulsen 2001, with 90 degree branches having dolipore septa Sharon et al. 2006). Some fingerprinting techniques are (Smiley et al. 2005). The sexual stage of the causal more suited for characterizing individuals within an AG pathogens is rare in nature and difficult to induce in rather than among different AGs (Cubeta and Vilgalys vitro. 1997, Sharon et al. 2006). The universally primed PCR Rhizoctonia species and anastomosis groups (AGs) (UP-PCR) is a fingerprinting technique that generates vary in sensitivity to commonly applied fungicides multiple DNA fragments from an organism without prior (Martin et al. 1984a, b; Carling et al. 1990; Kataria et knowledge of its DNA sequence. The main difference al. 1991; Kataria and Gisi 1996; Campion et al. 2003). between UP-PCR and the well known random amplified In addition, different Rhizoctonia species have differ- polymorphic DNA (RAPD) technique is the length of the ent temperature ranges most conducive for causing primers used. Universal primers (UP) are longer (15– disease. Therefore accurate identification of the 21 nt) than conventional RAPD primers (typically 10 nt) causal pathogen is important to predict disease and designed to anneal under more stringent conditions progression and make future disease management (52–60 C) ensuring higher reproducibility of banding decisions. Moreover, knowledge on the prevalence profiles (Trigiano et al. 2004, Lu¨beck and Lu¨beck 2005). and distribution of pathogenic Rhizoctonia isolates is Lu¨beck and Poulsen (2001) found considerable variation important for selecting appropriate turfgrass germ- in UP-PCR banding profiles among isolates of R. solani plasm with resistance to Rhizoctonia blight. from AGs and AG subgroups. However they
Recommended publications
  • Major Clades of Agaricales: a Multilocus Phylogenetic Overview
    Mycologia, 98(6), 2006, pp. 982–995. # 2006 by The Mycological Society of America, Lawrence, KS 66044-8897 Major clades of Agaricales: a multilocus phylogenetic overview P. Brandon Matheny1 Duur K. Aanen Judd M. Curtis Laboratory of Genetics, Arboretumlaan 4, 6703 BD, Biology Department, Clark University, 950 Main Street, Wageningen, The Netherlands Worcester, Massachusetts, 01610 Matthew DeNitis Vale´rie Hofstetter 127 Harrington Way, Worcester, Massachusetts 01604 Department of Biology, Box 90338, Duke University, Durham, North Carolina 27708 Graciela M. Daniele Instituto Multidisciplinario de Biologı´a Vegetal, M. Catherine Aime CONICET-Universidad Nacional de Co´rdoba, Casilla USDA-ARS, Systematic Botany and Mycology de Correo 495, 5000 Co´rdoba, Argentina Laboratory, Room 304, Building 011A, 10300 Baltimore Avenue, Beltsville, Maryland 20705-2350 Dennis E. Desjardin Department of Biology, San Francisco State University, Jean-Marc Moncalvo San Francisco, California 94132 Centre for Biodiversity and Conservation Biology, Royal Ontario Museum and Department of Botany, University Bradley R. Kropp of Toronto, Toronto, Ontario, M5S 2C6 Canada Department of Biology, Utah State University, Logan, Utah 84322 Zai-Wei Ge Zhu-Liang Yang Lorelei L. Norvell Kunming Institute of Botany, Chinese Academy of Pacific Northwest Mycology Service, 6720 NW Skyline Sciences, Kunming 650204, P.R. China Boulevard, Portland, Oregon 97229-1309 Jason C. Slot Andrew Parker Biology Department, Clark University, 950 Main Street, 127 Raven Way, Metaline Falls, Washington 99153- Worcester, Massachusetts, 01609 9720 Joseph F. Ammirati Else C. Vellinga University of Washington, Biology Department, Box Department of Plant and Microbial Biology, 111 355325, Seattle, Washington 98195 Koshland Hall, University of California, Berkeley, California 94720-3102 Timothy J.
    [Show full text]
  • Nuclear Distribution and Behaviour Throughout the Life Cycles of Thanatephoru8, Waitea, and Ceratoba8idiujj1 Species
    NUCLEAR DISTRIBUTION AND BEHAVIOUR THROUGHOUT THE LIFE CYCLES OF THANATEPHORU8, WAITEA, AND CERATOBA8IDIUJJ1 SPECIES By N. T. Ih,ENTJE,* HELENA M. STRETTON,* and E. J. HAWN,!, [Manuscript rece-ived November 7, ID62] Summary Nuclear distribution and behaviour throughout the life cycles of Thanateplwrus, Waitea, and Ceratobasidium species was studied in both living and stained preparations. In the vegetative phase young cells of Thanateplwrus and Waitea commonly contained 4--12 nuclei, whereas those of Ceratobasidium were binucleate. The multinucleate condition of the vegetative cells was independent of the origin of the isolates, whether naturally occurring in the field or derived from single basidiospol'cs. In aU three genera nuclear division in the vegetative cells was found to be conjugate, followed by au even segregation of the daughter nuclei. Frequent malfunction of t.he conjugate division resulting in uneven segregation of the daughter nuclei was almost certainly the reason for different numbers of nuclei in sueeessive cells of young hyphae. No nuclear migration through septa was observed. In older hyphae, secondary septa formed without nuclear division, resulting in reduced numbers of nuclei per cell. The change from vegetative to reproductive phase was associated with septation of hyphae cutting off eells with only two nuelei. In the basidia karyogamy and meiosis oceurred, resulting in four haploid nuclei which migrated through the four sterigmata to fonn four uninucleate spores. Aberrations also occurred in the reproductive phase; three nuclei instead of two were sometimes included initially in t.he basidium or two nuclei sometimes migrated from the basidium into one spore. These aberrations complicate any genetical analysis based on single-spore cultures.
    [Show full text]
  • AFLP Fingerprinting for Identification of Infra-Species Groups of Rhizoctonia Solani and Waitea Circinata Bimal S
    atholog P y & nt a M l i P c r Journal of f o o b l i a o Amaradasa et al., J Plant Pathol Microb 2015, 6:3 l n o r g u y DOI: 10.4172/2157-7471.1000262 o J Plant Pathology & Microbiology ISSN: 2157-7471 Research Article Open Access AFLP Fingerprinting for Identification of Infra-Species Groups of Rhizoctonia solani and Waitea circinata Bimal S. Amaradasa1*, Dilip Lakshman2 and Keenan Amundsen3 1Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA 2Floral and Nursery Plants Research Unit and the Sustainable Agricultural Systems Lab, Beltsville Agricultural Research Center-West, Beltsville, MD 20705, USA 3Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583 USA Abstract Patch diseases caused by Thanatephorus cucumeris (Frank) Donk and Waitea circinata Warcup and Talbot varieties (anamorphs: Rhizoctonia species) pose a serious threat to successful maintenance of several important turfgrass species. Reliance on field symptoms to identify Rhizoctonia causal agents can be difficult and misleading. Different Rhizoctonia species and Anastomosis Groups (AGs) vary in sensitivity to commonly applied fungicides and they also have different temperature ranges conducive for causing disease. Thus correct identification of the causal pathogen is important to predict disease progression and make future disease management decisions. Grouping Rhizoctonia species by anastomosis reactions is difficult and time consuming. Identification of Rhizoctonia isolates by sequencing Internal Transcribed Spacer (ITS) region can be cost prohibitive. Some Rhizoctonia isolates are difficult to sequence due to polymorphism of the ITS region. Amplified Fragment Length Polymorphism (AFLP) is a reliable and cost effective fingerprinting method for investigating genetic diversity of many organisms.
    [Show full text]
  • First Report of Rhizoctonia Zeae on Turfgrass in Ontario T
    NEWBlackwell Publishing Ltd DISEASE REPORTS Plant Pathology (2007) 56, 350 Doi: 10.1111/j.1365-3059.2006.01467.x First report of Rhizoctonia zeae on turfgrass in Ontario T. Hsiang* and P. Masilamany Department of Environmental Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada In May 2004, a disease appeared on Poa annua and Agrostis stolonifera this organism is similarly confused since R. zeae is considered to be a sub- at a golf course near Toronto. Narrow yellow rings enclosing areas up to species of Waitea circinata which contains at least two other subspecies 30 cm across appeared after air temperatures reached 25°C. The disease including R. oryzae (Oniki et al., 1985; Leiner & Carling, 1994). More resembled yellow patch caused by Rhizoctonia cerealis, but the weather work is required to clarify the taxonomic disposition of R. zeae. was too warm for normal occurrences of that disease. The rings persisted until the end of July. In late May 2005, the disease appeared again after the Acknowledgements weather became hot. A mixture of azoxystrobin and chlorothalonil was applied which seemed to suppress the disease within a week, until it reap- We are grateful for the financial support of the Natural Sciences and peared in July. Samples were collected, and leaves with symptoms were Engineering Research Council of Canada, the Ontario Ministry of surface sterilized in 1% hypochlorite, and transferred to potato dextrose Agriculture and Food, as well as technical support from Darcy Olds and agar (PDA) amended with streptomycin. After one week at 25°C, the Russ Gowan. plates contained white colonies 5 cm diameter.
    [Show full text]
  • Brown Ring Patch Disease Control on Annual Bluegrass Putting Greens 2021 Report
    Brown Ring Patch Disease s Control on Annual Bluegrass Putting Greens 2021 Report R E S E AR C H R E P O R T B R O UG HT T O Y O U B Y : Brown Ring Patch Disease Control on Annual Bluegrass Putting Greens 2021 Report Pawel Petelewicz1, Pawel Orlinski2, Marta Pudzianowska2, Matteo Serena2, Christian Bowman2, and Jim Baird2 1Agronomy Department University of Florida, Gainesville, FL 2Department of Botany and Plant Sciences University of California, Riverside, CA 951-333-9052; [email protected] The Bottom Line: Thirty-one combinations of experimental and commercially available fungicide treatments were tested against an untreated control for their ability to control brown ring patch (BRP) disease (Waitea circinata var. circinata) on an annual bluegrass (Poa annua) putting green in Riverside, CA. All treatments were applied curatively on January 24, 2021 and repeated either two (February 7) or three (February 16) weeks later. A combination of natural disease decline and treatment effects resulted in almost no disease symptoms present on February 16. On April 8, disease symptoms returned on select plots including the untreated control (disease severity = 2.4 on a scale of 0-5, and 3.4 nine days later). Treatments containing Premion (PCNB, tebuconazole) + Par SG (pigment), Oximus (azoxystrobin, tebuconazole), Ascernity (benzovindiflupyr, difenoconazole), or Mirage Stressgard (tebuconazole) exhibited the longest residual activity against BRP as evidenced by no disease activity at 69 days since previous treatment. Both BRP disease control and Poa seedhead control (likely from DMI fungicides) contributed to turfgrass visual quality differences among treatments. All treatments were applied again on April 19 and most were effective in controlling BRP even though disease activity in the control also subsided naturally.
    [Show full text]
  • Course Disease Alert!
    FEATURE TURF DISEASES Course disease alert! Dr Kate Entwistle offers details of two new diseases which have been identified on UK golf courses Rapid Blight Brown Ring Patch Two newly emerging turf loss of Poa annua and Agrostis spp Symptoms can develop when 4), but lack of recovery prompted an ABOVE: Fig. 5. General diseases have recently been from the sward. temperatures rise above 15C analysis that eventually identified symptoms of Brown Ring confirmed in samples received Analysis of the turf identified the and salinity levels are >2.0dS/m the real problem. Patch (Waitea Patch) in the UK, 2011 (photograph courtesy T from golf courses in the UK presence of a non-fungal organism (although Labyrinthula has been Due to the way in which Kvedaras, ITS Ltd) and Ireland and it is suspected called Labyrinthula within the isolated from turf growing in much Labyrinthula affects the plant, the that they are more prevalent plant tissues and a disease known lower salinity conditions). sward initially becomes yellow, Further in areas of fine turf than are as Rapid Blight was recorded for Because the causal organism is then becomes red in colour before information currently recorded. the first time in Europe. Subse- not a fungus, most fungicides will the tissues eventually ‘rot’ and the Douhan, G. W., Olsen, M. During 2012, The Turf Disease quent collaboration between The have no effect either on the organ- sward thins. The symptoms can W., Herrell, A., Winder, C., Centre will be collating information Turf Disease Centre and Dr Mary ism or on the development of symp- appear very much like Anthrac- Wong, F., and Entwistle, K.
    [Show full text]
  • Isolation and Identification of Mycorrhizal Fungi from Eleven Terrestrial Orchids
    Isolation and Identification of Mycorrhizal Fungi from Eleven Terrestrial Orchids Pornpimon Athipunyakom1,2, Leka Manoch2 and Chitrapan Piluek3 ABSTRACT Mycorrhizal fungi were isolated from eleven terrestrial orchid species, namely Calanthe rubens, Calanthe rosea, Cymbidium sinense, Cymbidium tracyanum, Goodyera procera, Ludisia discolor, Paphiopedilum concolor, P. exul, P. godefroyae, P. niveum and P. villosum. Healthy roots of orchid hosts were collected from various parts of the country. Isolation of mycorrhizal fungi from pelotons was carried out using a modification of Masuhara and Katsuya method. Identification was based on morphological characteristics. Nuclei were stained with safranin O using Bandoni’s method. Seven genera and fourteen species of mycorrhizal fungi were identified: Ceratorhiza cerealis, C. goodyerae-repentis,C. pernacatena, C. ramicola, Ceratorhiza sp., Epulorhiza calendulina, E. repens, Rhizoctonia globularis, Sistotrema sp., Trichosporiella multisporum, Tulasnella sp. Waitea circinata and two Rhizoctonia species. Nuclear staining revealed that all strains were binucleate except for W. circinata which was multinucleate. Pure cultures were maintained on PDA slant and liquid paraffin at the Culture Collection, Department of Plant Pathology, Kasetsart University. Key words : Ceratorhiza, Epulorhiza, Rhizoctonia, mycorrhizal fungi, terrestrial orchids INTRODUCTION in order to develop and mature successfully (Currah et al., 1990). Thailand is one of few countries in the Mycorrhizal fungi are associated with the world that is rich in orchid species. They are found root systems of more than 90% of terrestrial plant in all different habitats with approximate a total of species in a mutual symbiosis. The fungi obtain 170 genera and 1,230 species of which 150 species sugars from photosynthesis by the host plant in are considered endemic to the country.
    [Show full text]
  • Lawrence Elliott Datnoff
    CURRICULUM VITA Lawrence Elliott Datnoff Current Position and Contact Information: Professor and Head, Department of Plant Pathology and Crop Physiology, Louisiana State University, 302 Life Sciences Bldg., Baton Rouge, LA 70803, Phone: 225-578- 1366, FAX: 225-578-1415, EMAIL: [email protected] Education: Ph.D. Plant Pathology, University of Illinois, Champaign-Urbana, 1985; M.S. Plant Pathology, VPI & SU, Blacksburg, 1981; B.S. Horticulture & Plant Pathology, University of Georgia, Athens, 1976 Professional Experience: LSU / LSU AgCenter, Department of Plant Pathology & Crop Physiology, Professor & Head, 2008-present; LSU AgCenter, Interim Director, International Programs, 2013-2014; University of Florida, Gainesville, Professor, 2003-2008; University of Florida, Belle Glade, Assist., Assoc. & Professor, 1988-2003; USDA-ARS, Ft. Detrick, MD, Research Affiliate, 1986-1988; North Carolina State University, Visiting Scientist, 1985, Jul-Nov; University of Illinois, Graduate Research Assistant, 1981-1985; USAID- Zambian Agriculture, Research Associate, Lusaka, Zambia, 1983-1984; VPI & SU, Graduate Student, 1978- 1981; and Peace Corps/Brazil, Horticulturist, 1976-1978 Honors and Awards: American Phytopathological Society (APS)-International Service Award, 2012; APS- Caribbean Division Frederick L. Wellman Award, 2012; Research Award for contributions to the scientific understanding of Silicon in Agriculture, V Simposio Brasileiro sobre Silicio no Agricultura, Vicosa, MG, Brazil, 2010; Florida Phytopathological Society Service Award,
    [Show full text]
  • UNIVERSITY of CALIFORNIA RIVERSIDE The
    UNIVERSITY OF CALIFORNIA RIVERSIDE The Geographic Distribution, Genetic Structure and Cultural Management of Waitea circinata var. circinata, the Causal Agent of Brown Ring Patch Isolated from Turf Grass in the U.S. A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Plant Pathology by Chi-Min Chen August 2011 Dissertation Committee: Dr. Greg W. Douhan, Chairperson Dr. Frank P. Wong Dr. Michael E. Stanghellini Copyright by Chi-Min Chen 2011 The Dissertation of Chi-Min Chen is approved: __________________________________________________________ __________________________________________________________ __________________________________________________________ Committee Chairperson University of California, Riverside Acknowledgements First and foremost I want to thank my advisor Prof. Frank Wong. It has been an honor to be his Ph.D. student. He has always encouraged me and has taught me, both consciously and un-consciously, how a research should be done. I appreciate all his contributions of time, ideas, and funding to make my Ph.D. experience productive, diverse and stimulating. And I will always remember all of those drawings after discussion, those extreme early field trips and the most important question of the day. Special thanks are due to my co-advisor and the chair of my dissertation committee, Prof. Greg Douhan, who not only supported me with resources, but he encouraged and challenged me through my academic program. I appreciate all his time and teaching which lead my successfully solve the problems I had during the experiments. I also wish to express my appreciation to Prof. Michael Stanghellini for his support through the program and as my oral defense and dissertation committee.
    [Show full text]
  • Ceratobasidium Cereale D
    CA LIF ORNIA D EPA RTM EN T OF FOOD & AGRICULTURE California Pest Rating Proposal for Ceratobasidium cereale D. Murray & L.L. Burpee 1984 Yellow patch of turfgrass/sharp eye spot of cereals Current Pest Rating: Z Proposed Pest Rating: C Kingdom: Fungi; Phylum: Basidiomycota Class: Agaricomycetes; Subclass: Agaricomycetidae Order: Ceratobasidiales; Family: Ceratobasidiaceae Comment Period: 3/24/2020 through 5/8/2020 Initiating Event: On 1/29/2020, a regulatory sample for nursery cleanliness from a commercial sod farm was submitted by an agricultural inspector in San Joaquin County to the CDFA plant diagnostics center. The turf was grown from a 90% tall dwarf fescue and 10% bluegrass seed mix. On February 10, 2020, CDFA plant pathologist Suzanne Rooney-Latham detected Ceratobasidium cereale (syn. Rhizoctonia cerealis) in culture from yellow leaf blades. This fungus causes yellow patch disease on turfgrass. Due to previous reports of this pathogen from University of California farm advisors, it was assigned a temporary Z rating. The risk to California from Ceratobasidium cereale is assessed herein and a permanent rating is proposed. History & Status: Background: The name Ceratobasidium cereale was proposed by Murray and Burpee in 1984 after they were able to induce otherwise sterile isolates that had been classified as Corticium gramineum or Rhizoctonia cerealis to form the basidia (sexual state) on agar. Their work resulted in the name Corticium gramineum being reduced to a nomen dubium (doubtful name). However, because the production of basidia has not been observed under field conditions, many still use the name Rhizoctonia cerealis to CA LIF ORNIA D EPA RTM EN T OF FOOD & AGRICULTURE describe a pathogen that does not produce spores and is composed only of sterile hyphae and sclerotia.
    [Show full text]
  • Integrated Management of Damping-Off Diseases. a Review Jay Ram Lamichhane, Carolyne Durr, André A
    Integrated management of damping-off diseases. A review Jay Ram Lamichhane, Carolyne Durr, André A. Schwanck, Marie-Hélène Robin, Jean-Pierre Sarthou, Vincent Cellier, Antoine Messean, Jean-Noel Aubertot To cite this version: Jay Ram Lamichhane, Carolyne Durr, André A. Schwanck, Marie-Hélène Robin, Jean-Pierre Sarthou, et al.. Integrated management of damping-off diseases. A review. Agronomy for Sustainable De- velopment, Springer Verlag/EDP Sciences/INRA, 2017, 37 (2), 25 p. 10.1007/s13593-017-0417-y. hal-01606538 HAL Id: hal-01606538 https://hal.archives-ouvertes.fr/hal-01606538 Submitted on 16 Mar 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Copyright Agron. Sustain. Dev. (2017) 37: 10 DOI 10.1007/s13593-017-0417-y REVIEW ARTICLE Integrated management of damping-off diseases. A review Jay Ram Lamichhane1 & Carolyne Dürr2 & André A. Schwanck3 & Marie-Hélène Robin4 & Jean-Pierre Sarthou5 & Vincent Cellier 6 & Antoine Messéan1 & Jean-Noël Aubertot3 Accepted: 8 February 2017 /Published online: 16 March 2017 # INRA and Springer-Verlag France 2017 Abstract Damping-off is a disease that leads to the decay of However, this still is not the case and major knowledge gaps germinating seeds and young seedlings, which represents for must be filled.
    [Show full text]
  • Rhizoctonia and Waitea Diseases
    Rhizoctonia and Waitea diseases Rhizoctonia solani (brown patch) Brown patch on bermuda R. cerealis (yellow patch) R. zeae and R. oryzae (sheath spot) Waitea circinata var. circinata (brown ring patch) DAMAGE CAUSED Chlorotic (yellow) or necrotic (dying) rings or solid patches of various sizes. Sometimes green rings form after fungicide application Brown patch on kikuyugrass PLANTS ATTACKED All turf types and cultural conditions PESTS/CONDITIONS THAT CAUSE SIMILAR DAMAGE • Fairy ring • Pythium blight PREDICTING DISEASE Waitea on Poa annua Threat temperatures: • Brown patch (Rhizoctonia solani): 60F • Yellow patch (Rhizoctonia cerealis) 55F • Sheath spot (Rhizoctonia oryzae and R. zeae) 65F (insensitive to thiophanate methyl) • Brown ring patch (Waitea circinata var circinata) 60F Waitea mycelium on rye (insensitive to thiophanate methyl) overseeded bermudagrass CONDUCIVE ENVIRONMENTAL CONDITIONS • High relative humidity or leaf wetness • Low light levels • High soil nitrogen levels MONITORING TECHNIQUES Monitor air temperatures and begin scouting for early Micrograph of Rhizoctonia hypha signs of damage when threat temperatures (see above) are reached Focus scouting efforts on areas with a known history of disease IPM Planning Guide 1 Rhizoctonia and Waitea diseases THRESHOLDS In most cases, curative application of effective fungicides at the first signs of disease will provide good control. If there is a history of Rhizoctonia disease, preventive application of fungicides may be needed to prevent serious damage and to reduce fungicide inputs. If the disease becomes established, multiple fungicide applications will be needed. MANAGEMENT STRATEGIES Always consult the most recent version of all product labels before use. TYPE PRACTICE • Adequate nitrogen (0.1 – 0.2 lb nitrogen / 1000 ft2 / wk [0.5 – 1.0 g nitrogen/ m2 / wk] during season), but do not exceed 20 ppm total Cultural nitrogen in soil • Maintain soil salinity below 3.0 dS/m for cool season turf • Avoid excessive irrigation and leaf wetness during warm conditions.
    [Show full text]