Nanoscale Deformation Twinning in Xenotime, a New Shocked Mineral, from the Santa Fe Impact Structure (New Mexico, USA) Aaron J

Total Page:16

File Type:pdf, Size:1020Kb

Nanoscale Deformation Twinning in Xenotime, a New Shocked Mineral, from the Santa Fe Impact Structure (New Mexico, USA) Aaron J Nanoscale deformation twinning in xenotime, a new shocked mineral, from the Santa Fe impact structure (New Mexico, USA) Aaron J. Cavosie1,2,3, Pedro E. Montalvo3, Nicholas E. Timms1, and Steven M. Reddy1 1TIGeR (The Institute for Geoscience Research), Department of Applied Geology, Curtin University, Perth, WA 6102, Australia 2NASA Astrobiology Institute, Department of Geoscience, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA 3Department of Geology, University of Puerto Rico–Mayagüez, Mayagüez, Puerto Rico 00681, USA ABSTRACT 105º 53’W 105º 50’W Shock microstructures in refractory accessory minerals such as zircon and monazite A provide crucial evidence for deciphering impact-related deformation in a wide variety of Santa planetary materials. Here we describe the first occurrence of shock deformation in xeno- Fe 14NM10 time, YPO4, from a shocked quartz–bearing shatter cone in granite at the Santa Fe impact 35º 44’N structure (New Mexico, USA). Backscattered electron imaging shows that shocked xenotime H grains near the surface of a shatter cone contain multiple orientations of closely spaced pla- 2 km nar fractures. High-resolution electron backscatter diffraction mapping reveals that some 475 of the planar microstructures in {112} contain deformation twin lamellae that range from 50 nm to 200 nm in width on the polished surface and occur in up to three crystallographic B orientations. Other features attributed to impact, such as planar low-angle boundaries and planar deformation bands, record crystal-plastic deformation. Shatter cone formation and co-existing shocked quartz constrain minimum shock pressure experienced by the xenotime grains to 5–10 GPa. An upper limit of 20 GPa is tentatively assigned based on the absence of YPO4 polymorphs and shock twins in co-existing zircon. We propose that {112} deforma- tion twins in xenotime constitute a diagnostic record of shock metamorphism, similar to {112} twins in zircon; they have not previously been reported in nature and occur in a rock with conspicuous evidence of shock deformation. Documentation of deformation twins in xenotime, a widely applied U-Pb geochronometer, can be used to identify hypervelocity deformation in shocked rocks, detrital grains, and other materials, and may be particularly ideal for recording low-pressure (<20 GPa) impact conditions that do not produce diagnostic 10 cm shock microstructures in zircon. C INTRODUCTION and supracrustal rocks of the southern Sangre Shocked zircon grains have long been rec- de Cristo Mountains, ~8 km northeast of Santa ognized in impact environments (Krogh et al., Fe, New Mexico, USA (Fig. 1A). Confirma- 1984), and discovery of diagnostic impact-gen- tion of an impact origin for the structure was erated microstructures such as {112} twinning based on discovery of well-developed shatter (Moser et al., 2011; Timms et al., 2012a; Erick- cones that contain shocked quartz; the quartz son et al., 2013a, 2013b; Thomson et al., 2014; grains were described as being confined to a Cavosie et al., 2015a) and reidite (e.g., Cavosie narrow zone within 1 mm of shatter cone sur- et al., 2015b; Reddy et al., 2015) has resulted in faces (Fackelman et al., 2008; French and Koe- 50 µm 50 µm its wide application for studying impact processes. berl, 2010). The structure is highly deformed Shock-deformed monazite grains have also been and may be deeply eroded, as shocked bedrock Figure 1. Location and sample photos. A: Loca- described at several terrestrial impact struc- has only been found along the southern mar- tion of shatter cone sample 14NM10 on State tures (Schärer and Deutsch, 1990; Moser, 1997; gin of a 2 × 3 km fault-bound block that con- Highway 475, 8 km northeast of Santa Fe, New Cavosie et al., 2010; Erickson et al., 2013a; Toh- tains shatter cones exposed along New Mexico Mexico, USA (see inset); horizontal rule defines ver et al., 2012; Erickson et al., 2016). Like zir- State Highway 475 (Fig. 1A). Fackelman et al. fault block where shatter cones (filled circles) are reported (after Fackelman et al., 2008). H— con, shocked monazite grains can contain a range (2008) interpreted the shatter cones as a rem- Hyde Memorial State Park. B: Granite shatter of microstructures, including deformation twins, nant of the central uplift of the impact structure, cone from outcrop near where sample 14NM10 that provide diagnostic evidence of impact (Erick- however no other supporting morphological was collected. C: Shocked quartz grains in son et al., 2016). Here we describe twinning and evidence for crater features has been reported. sample 14NM10. Arrows indicate orientation of other deformation microstructures in xenotime, an Estimates of impact age (ca. 1200–300 Ma) decorated planar deformation features. accessory rare-earth phosphate compositionally and crater diameter (6–13 km) thus remain similar to monazite yet isostructural with zircon. poorly constrained (Fackelman et al., 2008). SAMPLE AND ELECTRON The motivation of this study was to investi- BACKSCATTER DIFFRACTION THE SANTA FE IMPACT STRUCTURE gate accessory phases for shock deformation METHODS The Santa Fe structure is located in meta- in order to elucidate additional constraints on A shatter cone in shocked granite, sample morphosed 1.7–1.4 Ga Proterozoic granitoid impact conditions. 14NM10, was collected in 2014 from the same GEOLOGY, October 2016; v. 44; no. 10; p. 803–806 | Data Repository item 2016260 | doi:10.1130/G38179.1 | Published online 23 August 2016 GEOLOGY© 2016 Geological | Volume Society 44 | ofNumber America. 10 For | www.gsapubs.orgpermission to copy, contact [email protected]. 803 outcrop exposure along State Highway 475 described by Fackelman et al. (2008) (Figs. 1A and 1B). The hand sample contains conspicu- AB C ous striations defining shatter cone surfaces (Items DR1–DR3 in the GSA Data Repository1). A thin section cut normal to a shatter cone sur- face is dominated by alkali feldspar, with lesser amounts of quartz, plagioclase, muscovite, bio- tite, chlorite, and opaque oxides. The thin sec- tion contains shocked quartz grains with deco- rated planar deformation features (PDFs) (Fig. 1C) and muscovite with kink bands (Item DR1). Accessory minerals located by backscattered 5 µm 10 µm 10 µm electron (BSE) imaging and identified using c-axis t1 energy dispersive spectroscopy (EDS) include t3 zircon, xenotime, and other phases. No obvious c-axis impact-related microstructures were observed in t2 zircon (Item DR2). In contrast, five xenotime t1 t1 c grains with planar microstructures were found -a x is as inclusions in alkali feldspar and muscovite. twin The xenotime grains are small, 28–50 µm across, 200 nm located <2 mm from the shatter cone surface twin LAB LAB SCS LAB SCS SCS (Item DR2), and are the focus of this study. PDB 0˚ 5˚ 0˚ 6˚ Three representative xenotime grains (labeled 0˚ 5˚ 3, 4, and 5) were mapped by electron backscatter Figure 2. Backscattered electron (BSE) images (top) and orientation maps (bottom) of the three diffraction (EBSD) with a 50 nm step size, using shocked xenotime grains. A: Grain 3, with three orientations of planar fractures, indicated by conditions similar to those for zircon (Item DR3; arrows, and low-angle boundaries (LABs). B: Grain 4, with one orientation of planar fractures, Table DR1; Reddy et al., 2007). Xenotime and LABs, and single twin lamella (t1, inset). Faint oscillatory zoning is visible in BSE. C: Grain 5, zircon are isostructural [tetragonal, 4/m 2/m 2/m, with three orientations of planar fractures. Three sets of twin lamellae (t1–t3) are present, as are LABs and planar deformation bands (PDBs). Maps are colored for misorientation relative space group I41/amd and therefore yield simi- to reference orientation (red cross). SCS—shatter cone surface. lar EBSD patterns that are difficult for EBSD mapping systems to distinguish. For this reason, EDS maps were collected simultaneously dur- ing EBSD analysis to identify xenotime (Item DR4). EBSD patterns from the xenotime were of high quality and were indexed using a xeno- A B step size = 50 nm time match unit based on crystallographic data B for YPO4 from Milligan et al. (1982), yielding average mean angular deviation values from twin 1 0.32° to 0.34°. twin 3 200 nm RESULTS Xenotime Microstructures Several types of microstructures were observed in EBSD data for the three analyzed (001) (010) xenotime grains, including planar fractures with- twin boundary twin 2 2 µm out associated lattice misorientation, discrete (110) 10 µm low-angle (<5°) boundaries, planar deformation C (001) {110} {112} t2 bands (PDBs), and broad areas of lattice mis- t2 t1 orientation (Fig. 2C); each grain displays 5°–6° of cumulative misorientation accommodated by t3 t1 t3 these features (Fig. 2). Twin lamellae, found in t2 grains 4 and 5 (Figs. 2 and 3), are discussed t1 separately below. host t3 1 GSA Data Repository item 2016260, Item DR1 n=438,761 (field and sample images), Item DR2 (SEM images of 65°<110> aligned {112} zircon and xenotime), Item DR3 (sample location and analytical details), Item DR4 (additional EBSD maps Figure 3. Shock-twinned xenotime (grain 5). A: Orientation map using inverse pole figure and figures), and Table DR1 (analytical conditions), is color scheme (IPF-Y, where Y is vertical on the map). B: Closeup of inset in A showing three available online at www.geosociety.org/pubs/ft2016 orientations of twin lamellae. C: Pole figures showing host-twin relations. Stereonets are .htm, or on request from [email protected]. equal area, lower hemisphere projections. t1, t2, t3—twin set 1, 2, 3. 804 www.gsapubs.org | Volume 44 | Number 10 | GEOLOGY Planar fractures, visible in BSE images and DISCUSSION located further away (~1.5 mm), tentatively EBSD maps of all three grains, form closely supporting the suggestion by Fackelman et al. spaced (~0.25–1 µm) sets of parallel features Xenotime Deformation (2008) that higher pressure shock deformation that extend nearly across the grains and occur occurs near shatter cone surfaces.
Recommended publications
  • Crystal Chemistry of the Monazite and Xenotime Structures Yuxxnnc Nr
    American Mineralogist, Volume 80, pages2I-26, 1995 Crystal chemistry of the monazite and xenotime structures YuxxnNc Nr, JonN M. Hucnns Department of Geology, Miami University, Oxford, Ohio 45056' U.S.A. ANrrrotvv N. M.q'nr,lNo 48 PageBrook Road, Carlisle, Massachusetts01741' U.S.A. Arsrnlcr Monazite and xenotime, the RE(PO,) dimorphs, are the most ubiquitous rare earth (RE) minerals, yet accuratestructure studiesof the natural phaseshave not been reported. Here we report the results of high-precision structure studies of both the natural phasesand the synthetic RE(PO4)phases for all individual stable rare earth elements. Monazite is monoclinic, P2r/n, and xenotime is isostructural with zircon (spacegroup 14r/amd)- Both atomic arrangementsare basedon [001] chains of intervening phosphate tetrahedra and RE polyhedra, with a REO, polyhedron in xenotime that accommodates the heavy lanthanides(Tb-Lu in the synthetic phases)and a REO, polyhedron in monazite that preferentially incorporatesthe larger light rare earth elements(Ia-Gd). As the struc- ture "transforms" from xenotime to monazite, the crystallographic properties are com- parable along the [001] chains, with structural adjustments to the different sizes of RE atoms occurring principally in (001). There are distinct similarities betweenthe structuresthat are evident when their atomic arrangementsare projected down [001]. In that projection, the chains exist i! (100) planes, with two planes per unit cell. In monazite the planes are offset by 2.2 A along [010], relative to those in xenotime, in order to accommodate the larger light RE atoms. The shift of the planes in monazite allows the RE atom in that phaseto bond to an additional 02' atom to complete the REO' polyhedron.
    [Show full text]
  • Shatter Cone and Its Surface Mesh-Structure Formed by Impact
    SHATTER CONE AND ITS SURFACE MESHED- STRUCTURE FORMED BY IMPACT MELT-GASIFICATION IN XISHAN TAIHU LAKE CHINA H.N. Wang1, Y. Chen1, X.F. Shen1 L.Y. Zhou1 and Y.W. Wang2 11Department of Earth & Planetary Sciences, Nanjing University, Nanjing, China 210093 ([email protected]) 2 Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Champaign Introduction: Meshed--structure shatter cone: Discuss ion: Shatter cones are represented by a range of curved to The height of these cones is generally 50 to 70 cm. The 1. Meshed-structure are related to the melt- curvilinear fractures decorated with divergent striations. striation radiates from the original point at the top of cone, gasification of carbonates target rock: Striations radiate from an apex of a conical feature or from a similar to the longitude meridian. Meanwhile, cone surface Carbonates are brittle, fusible and volatile. Under the narrow apical area. Shatter cones are the only distinct meso shock wave, it is easy to be granulated. Its melting point presents hoopline around the cone. (Fig.D) The grid on is as low as 500-600°C. When the shock wave pass to macroscopic recognition criterion for impact structures. cone surface is generally in centimeter scale (2-4cm x Despite being known for 110 yrs, the formation mechanism through, it melts instantly and forms the atherosclerotic 2-3cm), latitude and longitude lines form a grid meshed- fluid, leaving a meshed structure and imprints after of shatter cone remains unclear. Different hypotheses for structure. This is an important and unique phenomenon cooling.
    [Show full text]
  • Monazite, Rhabdophane, Xenotime & Churchite
    Monazite, rhabdophane, xenotime & churchite: Vibrational spectroscopy of gadolinium phosphate polymorphs Nicolas Clavier, Adel Mesbah, Stephanie Szenknect, N. Dacheux To cite this version: Nicolas Clavier, Adel Mesbah, Stephanie Szenknect, N. Dacheux. Monazite, rhabdophane, xenotime & churchite: Vibrational spectroscopy of gadolinium phosphate polymorphs. Spec- trochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Elsevier, 2018, 205, pp.85-94. 10.1016/j.saa.2018.07.016. hal-02045615 HAL Id: hal-02045615 https://hal.archives-ouvertes.fr/hal-02045615 Submitted on 26 Feb 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Monazite, rhabdophane, xenotime & churchite : vibrational spectroscopy of gadolinium phosphate polymorphs N. Clavier 1,*, A. Mesbah 1, S. Szenknect 1, N. Dacheux 1 1 ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Site de Marcoule, BP 17171, 30207 Bagnols/Cèze cedex, France * Corresponding author: Dr. Nicolas CLAVIER ICSM, CEA, CNRS, ENSCM, Univ Montpellier Site de Marcoule BP 17171 30207 Bagnols sur Cèze France Phone : + 33 4 66 33 92 08 Fax : + 33 4 66 79 76 11 [email protected] - 1 - Abstract : Rare-earth phosphates with the general formula REEPO4·nH2O belong to four distinct structural types: monazite, rhabdophane, churchite, and xenotime.
    [Show full text]
  • Mineral Collecting Sites in North Carolina by W
    .'.' .., Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie RUTILE GUMMITE IN GARNET RUBY CORUNDUM GOLD TORBERNITE GARNET IN MICA ANATASE RUTILE AJTUNITE AND TORBERNITE THULITE AND PYRITE MONAZITE EMERALD CUPRITE SMOKY QUARTZ ZIRCON TORBERNITE ~/ UBRAR'l USE ONLV ,~O NOT REMOVE. fROM LIBRARY N. C. GEOLOGICAL SUHVEY Information Circular 24 Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie Raleigh 1978 Second Printing 1980. Additional copies of this publication may be obtained from: North CarOlina Department of Natural Resources and Community Development Geological Survey Section P. O. Box 27687 ~ Raleigh. N. C. 27611 1823 --~- GEOLOGICAL SURVEY SECTION The Geological Survey Section shall, by law"...make such exami­ nation, survey, and mapping of the geology, mineralogy, and topo­ graphy of the state, including their industrial and economic utilization as it may consider necessary." In carrying out its duties under this law, the section promotes the wise conservation and use of mineral resources by industry, commerce, agriculture, and other governmental agencies for the general welfare of the citizens of North Carolina. The Section conducts a number of basic and applied research projects in environmental resource planning, mineral resource explora­ tion, mineral statistics, and systematic geologic mapping. Services constitute a major portion ofthe Sections's activities and include identi­ fying rock and mineral samples submitted by the citizens of the state and providing consulting services and specially prepared reports to other agencies that require geological information. The Geological Survey Section publishes results of research in a series of Bulletins, Economic Papers, Information Circulars, Educa­ tional Series, Geologic Maps, and Special Publications.
    [Show full text]
  • A Geological and Geochemical Study of a Sedimentary-Hosted Turquoise Deposit at the Iron Mask Mine, Orogrande, New Mexico Josh C
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/65 A geological and geochemical study of a sedimentary-hosted turquoise deposit at the Iron Mask mine, Orogrande, New Mexico Josh C. Crook and Virgil W. Lueth, 2014, pp. 227-233 Supplemental data available: http://nmgs.nmt.edu/repository/index.cfm?rid=2014004 in: Geology of the Sacramento Mountains Region, Rawling, Geoffrey; McLemore, Virginia T.; Timmons, Stacy; Dunbar, Nelia; [eds.], New Mexico Geological Society 65th Annual Fall Field Conference Guidebook, 318 p. This is one of many related papers that were included in the 2014 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download.
    [Show full text]
  • Impact Structures and Events – a Nordic Perspective
    107 by Henning Dypvik1, Jüri Plado2, Claus Heinberg3, Eckart Håkansson4, Lauri J. Pesonen5, Birger Schmitz6, and Selen Raiskila5 Impact structures and events – a Nordic perspective 1 Department of Geosciences, University of Oslo, P.O. Box 1047, Blindern, NO 0316 Oslo, Norway. E-mail: [email protected] 2 Department of Geology, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia. 3 Department of Environmental, Social and Spatial Change, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark. 4 Department of Geography and Geology, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen, Denmark. 5 Division of Geophysics, University of Helsinki, P.O. Box 64, FIN-00014 Helsinki, Finland. 6 Department of Geology, University of Lund, Sölvegatan 12, SE-22362 Lund, Sweden. Impact cratering is one of the fundamental processes in are the main reason that the Nordic countries are generally well- the formation of the Earth and our planetary system, as mapped. reflected, for example in the surfaces of Mars and the Impact craters came into the focus about 20 years ago and the interest among the Nordic communities has increased during recent Moon. The Earth has been covered by a comparable years. The small Kaalijärv structure of Estonia was the first impact number of impact scars, but due to active geological structure to be confirmed in northern Europe (Table 1; Figures 1 and processes, weathering, sea floor spreading etc, the num- 7). First described in 1794 (Rauch), the meteorite origin of the crater ber of preserved and recognized impact craters on the field (presently 9 craters) was proposed much later in 1919 (Kalju- Earth are limited.
    [Show full text]
  • Download This PDF File
    The Ohio Journal of Volume 116 No. 1 April Program ANSCIENCE INTERNATIONAL MULTIDISCIPLINARY JOURNAL Abstracts The Ohio Journal of SCIENCE Listing Services ISSN 0030-0950 The Ohio Journal of Sciencearticles are listed or abstracted in several sources including: EDITORIAL POLICY AcadSci Abstracts Bibliography of Agriculture General Biological Abstracts The Ohio Journal of Scienceconsiders original contributions from members and non-members of the Academy in all fields of science, Chemical Abstracts technology, engineering, mathematics and education. Submission Current Advances in Ecological Sciences of a manuscript is understood to mean that the work is original and Current Contents (Agriculture, Biology & unpublished, and is not being considered for publication elsewhere. Environmental Sciences) All manuscripts considered for publication will be peer-reviewed. Deep Sea Research and Oceanography Abstracts Any opinions expressed by reviewers are their own, and do not Environment Abstracts represent the views of The Ohio Academy of Science or The Ohio Journal of Science. Environmental Information Center Forest Products Abstracts Forestry Abstracts Page Charges Geo Abstracts Publication in The Ohio Journal of Science requires authors to assist GEOBASE in meeting publication expenses. These costs will be assessed at $50 per page for nonmembers. Members of the Academy do not Geology Abstracts pay page charges to publish in The Ohio Journal of Science. In GeoRef multi-authored papers, the first author must be a member of the Google Scholar Academy at the time of publication to be eligible for the reduced Helminthological Abstracts member rate. Papers that exceed 12 printed pages may be charged Horticulture Abstracts full production costs. Knowledge Bank (The Ohio State University Libraries) Nuclear Science Abstracts Submission Review of Plant Pathology Electronic submission only.
    [Show full text]
  • Roscherite-Group Minerals from Brazil
    ■ ■ Roscherite-Group Minerals yÜÉÅ UÜté|Ä Daniel Atencio* and José M.V. Coutinho Instituto de Geociências, Universidade de São Paulo, Rua do Lago, 562, 05508-080 – São Paulo, SP, Brazil. *e-mail: [email protected] Luiz A.D. Menezes Filho Rua Esmeralda, 534 – Prado, 30410-080 - Belo Horizonte, MG, Brazil. INTRODUCTION The three currently recognized members of the roscherite group are roscherite (Mn2+ analog), zanazziite (Mg analog), and greifensteinite (Fe2+ analog). These three species are monoclinic but triclinic variations have also been described (Fanfani et al. 1977, Leavens et al. 1990). Previously reported Brazilian occurrences of roscherite-group minerals include the Sapucaia mine, Lavra do Ênio, Alto Serra Branca, the Córrego Frio pegmatite, the Lavra da Ilha pegmatite, and the Pirineus mine. We report here the following three additional occurrences: the Pomarolli farm, Lavra do Telírio, and São Geraldo do Baixio. We also note the existence of a fourth member of the group, an as-yet undescribed monoclinic Fe3+-dominant species with higher refractive indices. The formulas are as follows, including a possible formula for the new species: Roscherite Ca2Mn5Be4(PO4)6(OH)4 • 6H2O Zanazziite Ca2Mg5Be4(PO4)6(OH)4 • 6H2O 2+ Greifensteinite Ca2Fe 5Be4(PO4)6(OH)4 • 6H2O 3+ 3+ Fe -dominant Ca2Fe 3.33Be4(PO4)6(OH)4 • 6H2O ■ 1 ■ Axis, Volume 1, Number 6 (2005) www.MineralogicalRecord.com ■ ■ THE OCCURRENCES Alto Serra Branca, Pedra Lavrada, Paraíba Unanalyzed “roscherite” was reported by Farias and Silva (1986) from the Alto Serra Branca granite pegmatite, 11 km southwest of Pedra Lavrada, Paraíba state, associated with several other phosphates including triphylite, lithiophilite, amblygonite, tavorite, zwieselite, rockbridgeite, huréaulite, phosphosiderite, variscite, cyrilovite and mitridatite.
    [Show full text]
  • Geophysical Methods in Impact Crater Hunting – Case Summanen
    Geophysical methods in impact crater hunting – Case Summanen L.J. Pesonen1, S. Hietala2*, J. Plado3, T. Kreitsmann3, J. Lerssi2, and J. Nenonen2 1 Solid Earth Geophysics Laboratory, Physics Department, University of Helsinki, Finland 2 Geological Survey of Finland, Kuopio, Finland 3 Department of Geology, University of Tartu, Estonia, *correspondence: [email protected] Abstract Impact cratering is a ubiquitous process in our solar system affecting all planetary surfaces throughout geologic time. On Earth, there are currently 190 confirmed impact structures, which are distributed unevenly. The Fennoscandian Shield houses 17 % of them. The large amount of impact structures makes Fennoscandia one of the most densely cratered terrains on Earth. A dozen (12) impact structures have been discovered in Finland. The latest discovery, Lake Summanen is located in Central Finland, about 9 km southeast of city Saarijärvi. An impact generated structure was first hinted by airborne geophysical mapping by the Geological Survey of Finland in the early 2000`s (Lerssi et al., 2007) that revealed a circular ~2.6 km wide striking aeroelectromagnetic resistivity anomaly. Recent studies in 2017-2018 confirmed its impact origin based on the findings of shatter cone-bearing rocks and the identification of planar deformation features in quartz. 1. INTRODUCTION Summanen impact crater (62°39’00’’N, 25°22’30’’E) is located within the Paleoproterozoic Central Finland Granite Belt and is covered with the Lake Summanen. The lake is somewhat elliptical (8 km x 9 km x 4 km) in shape, whereby the longest axis extends in NW–SE direction due to the erosional influence of the latest (Weichselian) glaciation.
    [Show full text]
  • Shatter Cones of the Haughton Impact Structure, Canada
    SHATTER CONES OF THE HAUGHTON IMPACT STRUCTURE, CANADA Gordon R. Osinski(1) and John G. Spray(2) (1)Canadian Space Agency, 6767 Route de l'Aeroport, St-Hubert, QC J3Y 8Y9 Canada, Email: [email protected]: (2)2Planetary and Space Science Centre, Department of Geology, University of New Brunswick, 2 Bailey Drive, Fredericton, NB E3B 5A3, Canada, Email: [email protected] ABSTRACT workers suggested that shatter cones are tensile fractures that form due to interference between the Despite being one of the most distinctive products of incident shock wave and reflected stress waves [5]. hypervelocity impact events, shatter cones remain Two new models have also been proposed. The first enigmatic. Several contrasting models for their model by Baratoux and Melosh [6] builds upon formation have been presented, none of which appear earlier suggestions [4] invoking heterogeneities in to account for all of the observations. In this rocks as initiation points for shatter cone formation. preliminary study, we present an overview of the These authors suggest that the interference of a distribution and characteristics of shatter cones at the scattered elastic wave by heterogeneities results in Haughton impact structure, one of the best preserved tensional stresses, which produces conical fractures. and best exposed terrestrial impact sites. Shatter In contrast, Sagy et al. [7, 8], favour a model in cones are abundant and well developed at Haughton, which shatter cones are fractures produced by due in part to the abundance of fine-grained nonlinear waves that propagate along a fracture front. carbonates in the target sequence. They occur in three main settings: within the central uplift, within 3.
    [Show full text]
  • Extraction and Chromatographic Studies on Rare-Earth Elements (Rees) from Their Minerals: the Prospect of Rees Production in Indonesia?
    Proceedings of the 2nd International Seminar on Chemistry 2011 (pp.421-430 ) Jatinangor, 24-25 November 2011 ISBN 978-602-19413-1-7 Extraction and chromatographic studies on rare-earth elements (REEs) from their minerals: the prospect of REEs production in Indonesia? Husein H. Bahti*, Yayah Mulyasih, Anni Anggraeni Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran Jalan Raya Bandung-Sumedang Km. 19, Jatinangor, Indonesia *Corresponding author: [email protected] Abstract Rare-earth elements, which are important materials in numerous high technology applications, are relatively abundant in Indonesia, but have not been exploited for optimal economic benefit. One of our research group’s objectives of the studies on REEs is to develop extraction and chromatographic method(s) to prepare both mixture of REEs (or concentrates) and single rare-earth elements with sufficient purity, using di-n-butyldithiocarbamic (DBDTC) and with di-n-butyldithiophosphoric (DBDTP) acids as chelate-forming ligands. The complex formation reaction between each element under investigation (i.e. the rare-earth elements commonly constituting the minerals monazite and xenotime: Nd, Y, Ce, La, Gd) and each of the acidic ligands was studied for the first time. To prepare REEs concentrates, REE mineral samples were digested with different oxidizing reagents and experimental conditions. In one of the procedures, a mineral sample was digested with sulphuric acid, to produce REEs in their ionic forms, which were then separated from both insoluble and soluble non REEs. The resulted REEs were precipitated from their solution as oxalates, which were converted into hydroxides. The REE hydroxides were then calcinated to result in REE oxides.
    [Show full text]
  • BCGS IC1997-03.Pdf
    For information on the contents of this document contact: Ministry of Employment and Investment Energy and Minerals Division British Columbia Geological Survey Branch 5 - 1810 Blanshard Street PO Box 9320, Stn Prov Gov't Victoria, BC, V8W 9N3 Attn: W.J. McMillan, Manager, Map ing Section Fax: 250-952-0381 [mail: [email protected] or; B. Grant, Editor, GSB Fax: 250-952-0451 E-mail : [email protected]. bc.ca Canadian Cataloguing in Publication Data I Main entry under title: Specifications and guidelines for bedrock mapping in British Columbia Includes bibliographical references: p. ISBN 0-7726-2950-1 1. Geological mapping - British Columbia. 2. Geology, Structural - British Columbia. 3. Geology - Maps - Symbols. I. British Columbia. Geological Survey Branch. Victoria British Columbia May 1997 October, 1996 TaMb Off GmQmQs Introduction . 3 Fission Track Dating Technique . 36 Part 1: Fundamental Bedrock Mapping Concepts 5 Usual Application of Geochronology . 36 Part 2: Mapping and Field Survey Procedures. 7 Materials Suitable for Dating. 36 2-1 Overview. 7 Rubidium-strontium Dating . 38 2-2 Bedrock Field Survey Databases . 10 Uranium-Lead Dating . 3 8 2-3 Quality Control, Correlation, and Map Lead Isotope Analysis . 38 Reliability . 11 Fission Track Dating . 38 Part 3: Data Representation On Bedrock Maps 13 Analytical Procedure . 39 3-1 Title Block . 13 Quaternary Dating Methods . 39 3-2 Base Map Specifications . 15 Radiocarbon Dating . 39 3-3 Reliability Diagrams . 15 Potassium-Argon Dating of Quaternary 3-4 Legend . 16 Volcanic Rocks. 40 3-5 Map Attributes . 17 Fission Track Dating . 40 3-6 Symbols. 17 Sampling . 41 3-7 Map-unit Designations .
    [Show full text]