The NOVA STAR MARCH 2009

Total Page:16

File Type:pdf, Size:1020Kb

The NOVA STAR MARCH 2009 The NOVA STAR MARCH 2009 In This Month’s Issue STAR STAFF 1. Scholarship Scoop Staff Editor: Stephen Haggerty 2. NOVA Stars RSO 3. Jane Says… Student STAR Team: Courtney 4. Reminders Spradling, Samantha Clark, and Glen Jones 5. Update on the Carnations 6. Stephen & D.C.! Want to see your name in the 7. Featured Article from news? Become a part of our Glen Jones team. Submit an article, 8. Contact Information picture, or idea to Samantha 9. RSO Event Wednesday!! Clark. The Scholarship Scoop Emily Wells and Courtney Spradling have been selected to represent EKU NOVA in a competition amongst 18 other Student Support Services projects. Emily was chosen to compete for the KAEOPP scholarship and Courtney for the Susan Adams Leadership Award. Congratulations and good luck to you both! The NOVA registered student organization “NOVA Stars” has officially been approved!! The next step is recruitment. We hope to see everyone at our first social event on April 1st! Check out our flyer on the last page for more details! NOVA is getting a new look for fall 2010! The NOVA Team is working hard on the NOVA Student Support Services grant proposal due in fall 2009. The new grant will not take effect until fall 2010. However, we are going ahead and implementing new initiatives now, and we are unveiling one component of our new look this spring. We are proud to announce NOVA now has an official Registered Student Organization on campus called NOVA Stars. The NOVA RSO was created by one of the service learning teams from the GSD 225 S service‐learning course offered by NOVA. The RSO will allow participants to be engaged in service and provide a social network allowing participants to continue to develop strong interpersonal skills and continue building their leadership skills. Jane Tinsley We are so proud of the NOVA Stars Service Learning Team for NOVA Program selecting the NOVA RSO for their service‐learning project. The Director members March of the 25, team 2009 include,Course Schedule Courtney Advising Spradling, officially Shayna begins Runyan, AprilPaige 8, Crabtree,2009 Sophmores Khyati may Patel, register TJ Best, Stephanie Barnett, AprilSamantha 10, 2009 Clark, All Continuing Sarah Conner, Freshmen Amber Wills, Josh Yeager, and DavidApril 30,Lannum. 2009 Course What schedulea great way advising to serve officially back ends for enrolled students. Advising resumes on August 20th to NOVA! Thanks to all of you. Stay tuned to next month’s edition of the NOVA Star as we unveil more insights into what NOVA will look like in fall 2010. Summer Registration Starts o Freshmen: April 10th o Sophomores: April 8th o Juniors: April 6th o Seniors: April 3rd April 30, 2009 Course Schedule Advising Ends th Advising resumes on August 20 KAYLA’S CARNATIONS: Service-Learning Spring Fling 2009 By: Samantha Clark Spring is slowly prevailing with warmer temperatures and blooming flowers. Particularly, one flower has caught the eye of Richmond’s community. The GSD 225 S team “Carnations” added a little color and fun to the lives of the senior citizens by hosting a Spring Fling Senior Citizen Prom on Friday, March 20th. Kayla Sergent is the Peer Leader for this team of seven including: Austin Anderson, Brittany Belcher, Brittany Guffey, Kenra Henry, Casey Huffman, Lindsey Morris, and Amy Walters. Participants laughed, ate, and cut a rug with the lovely Carnations. Dee Ditch, one of the seniors attending, said “It’s great what they have done. Sorry we are not as active, but we all appreciate it.” Anthony Calder, a volunteer for the center, explained, “We just lost a senior, so the morale is a little low; this is just the thing they needed” Heather Slone the Director of the Bettie Miller Senior Citizen Center was pleased with this service- learning event. She said, “They love being around young people, it gives them a chance to get out and relive their youth. I believe that socialization is the key to a long and happy life.” We are proud of the Carnations for representing NOVA and giving back to their community. Keep up the great work! MR. HAGGERTY GOES TO WASHINGTON! Stephen traveled to Washington, D.C. to attend the 29th Annual TRIO Policy Seminar. During this time, he had the chance to shout out loudly why TRIO and EKU Student Support Services (NOVA) need to be supported (along with over 700 other TRIO professionals). According to Stephen, “it got quite loud….but we need to be louder!” He represented our program well, and we all know he is going to be asking us to be NOVA Stars by supporting the cause for TRIO too! Go get out there and raise your voices for TRIO!!! Our Mission The NOVA program at Eastern Kentucky University is a TRiO Student Support Services project providing instruction and individualized support services empowering limited income and first generation EKU learners to persist and graduate. SERVICE-LEARNING POSTER SHOWCASE ALERT!!! WEDNESDAY, MAY 6th WALNUT HALL LOUNGE Mark your calendars!!! Express yourself: Student Submissions Send us your thoughts! Gallimaufry of Glen By: Glen Smith For my first column in the monthly NOVA newsletter, I find myself reflecting on my wonderful spring break in my hometown of Corbin. Amongst the charm of my small town, where people frolicked in the plies of snow…Wait a minute, I’m supposed to be on spring break and there’s snow? Not just that, but when the temperature rose my holiday was met with freezing rain, not good for someone whose means of transportation is walking. It wasn’t until I tried calling up some old friends to hang out with that I realized how out of touch I had been. The ones who haven’t moved are all married with kids. It seemed like I was pulling teeth in order to get them to mingle. My pursuits of having a fulfilling spring break finally led me to the streets of Corbin to try and find a job for the summer. Walking around with an inward determination to find a job for the summer; five stores and two and a half miles later, that determination I had felt started to dim. Apparently the economic crisis was worse than I thought. Unable to find any sort of diminutive entertainment, I finished the day by returning home and slipping deeply into the comforts of Facebook, MySpace, and Messenger. The following day I got in contact with an old high school friend, Kendra. We both decided it would be fun to go see our old agriculture teacher Mr. Evans. The day after we went to my high school of Lynn Camp, we met up with Mr. Evans and a few other old teachers. Then it happened. A teacher asks me to shower my wealth of knowledge concerning college like a fountain into the reflecting pool of freshmen idolizing me like the amazing college student I am. Ok it probably was my awesome faux hawk more than my grand stature of collegiate excellence. I maneuvered from class to class talking to freshmen about my experiences in college. I told them what they didn’t really know about the ACT, housing, financial aid, student workers on campus, and even NOVA. Just so Mr. Haggerty knows I endorsed NOVA like a “Sham Wow” or one of Billy May’s unique and loud sales pitch. It’s kind of funny, I wanted so bad to have something to do this spring break and when something finally fell into my lap I didn’t really want to do it. But I didn’t realize the impact it had on the students of Lynn Camp until I looked back on all the helpful information I gave them. Just goes to show, “There is always something to be done and always an impact waiting to be made… you just have to be the one to do it” Funding Statement The EKU NOVA program is a Student Support Services TRIO project, funded at $338,199 in federal funds from the U.S. Department of Education for the 2008/09 fiscal year to serve 206 eligible EKU students. This disclosure is made in compliance with Public L Law 108-477 Sec. 506.aw 108-447. Jane Tinsley Stephen Haggerty Sharon Lee Valerie Merlin --- EKU TRIO Student Support Services NOVA Program Eastern Kentucky University 2nd Floor, Turley House Richmond, KY 40475 (859) 622-1047 Eastern Kentucky University is an Equal Opportunity/Affirmative Action employer and educational institution and does not discriminate on the basis of age, race, color, religion, sex, sexual orientation, disability, national origin, or Vietnam era or other veteran status, in the admission to, or participation in, any educational program or activity which it conducts, or in any employment policy or practice. Any complaint arising by reason of alleged discrimination should be directed to the: Equal Opportunity Office, Eastern Kentucky University, Jones Building, Room 106, Coates CPS 37A, Richmond, Kentucky 40475-3102, (859)622-8020 (V/TDD), or the Director of the Office for Civil Rights, U.S. Department of Education: Philadelphia, PA. It might be April Fool’s… but we’re not fooling you! The NOVA STARs We are inviting you to join us at our opening celebration of the first NOVA registered student organization. This event will kick off our recruitment campaign. Come for the pizza and brownies; come to play games and meet other NOVAs; Come to make history! We hope to see YOU there! When: April 1st from 4:00-6:30 Where: Turley House lawn (rain location: Turley Kitchen) RSVP to: [email protected] (Public Relations Coordinator) .
Recommended publications
  • When the Sun Dies, It Will Make
    When the Sun dies, it will make: 1. A red giant 2. A planetary nebula 3. A white dwarf 4. A supernova 5. 1, 2, and 3 When the Sun dies, it will make: 1. A red giant 2. A planetary nebula 3. A white dwarf 4. A supernova 5. 1, 2, and 3 A white dwarf star: 1. Is the core of the star from which it formed, and contains most of the mass 2. Is about the size of the earth 3. Is supported by electron degeneracy 4. Is so dense that one teaspoonful would weigh about as much as an elephant 5. All of the above A white dwarf star: 1. Is the core of the star from which it formed, and contains most of the mass 2. Is about the size of the earth 3. Is supported by electron degeneracy 4. Is so dense that one teaspoonful would weigh about as much as an elephant 5. All of the above What keeps a white dwarf from collapsing further? 1. It is solid 2. Electrical forces 3. Chemical forces 4. Nuclear forces 5. Degeneracy pressure What keeps a white dwarf from collapsing further? 1. It is solid 2. Electrical forces 3. Chemical forces 4. Nuclear forces 5. Degeneracy pressure If a white dwarf in a binary has a companion close enough that some material begins to spill onto it, the white dwarf can: 1. Be smothered and cool off 2. Disappear behind the material 3. Have new nuclear reactions and become a nova 4. Become much larger 5.
    [Show full text]
  • Introduction to Astronomy from Darkness to Blazing Glory
    Introduction to Astronomy From Darkness to Blazing Glory Published by JAS Educational Publications Copyright Pending 2010 JAS Educational Publications All rights reserved. Including the right of reproduction in whole or in part in any form. Second Edition Author: Jeffrey Wright Scott Photographs and Diagrams: Credit NASA, Jet Propulsion Laboratory, USGS, NOAA, Aames Research Center JAS Educational Publications 2601 Oakdale Road, H2 P.O. Box 197 Modesto California 95355 1-888-586-6252 Website: http://.Introastro.com Printing by Minuteman Press, Berkley, California ISBN 978-0-9827200-0-4 1 Introduction to Astronomy From Darkness to Blazing Glory The moon Titan is in the forefront with the moon Tethys behind it. These are two of many of Saturn’s moons Credit: Cassini Imaging Team, ISS, JPL, ESA, NASA 2 Introduction to Astronomy Contents in Brief Chapter 1: Astronomy Basics: Pages 1 – 6 Workbook Pages 1 - 2 Chapter 2: Time: Pages 7 - 10 Workbook Pages 3 - 4 Chapter 3: Solar System Overview: Pages 11 - 14 Workbook Pages 5 - 8 Chapter 4: Our Sun: Pages 15 - 20 Workbook Pages 9 - 16 Chapter 5: The Terrestrial Planets: Page 21 - 39 Workbook Pages 17 - 36 Mercury: Pages 22 - 23 Venus: Pages 24 - 25 Earth: Pages 25 - 34 Mars: Pages 34 - 39 Chapter 6: Outer, Dwarf and Exoplanets Pages: 41-54 Workbook Pages 37 - 48 Jupiter: Pages 41 - 42 Saturn: Pages 42 - 44 Uranus: Pages 44 - 45 Neptune: Pages 45 - 46 Dwarf Planets, Plutoids and Exoplanets: Pages 47 -54 3 Chapter 7: The Moons: Pages: 55 - 66 Workbook Pages 49 - 56 Chapter 8: Rocks and Ice:
    [Show full text]
  • Luminous Blue Variables
    Review Luminous Blue Variables Kerstin Weis 1* and Dominik J. Bomans 1,2,3 1 Astronomical Institute, Faculty for Physics and Astronomy, Ruhr University Bochum, 44801 Bochum, Germany 2 Department Plasmas with Complex Interactions, Ruhr University Bochum, 44801 Bochum, Germany 3 Ruhr Astroparticle and Plasma Physics (RAPP) Center, 44801 Bochum, Germany Received: 29 October 2019; Accepted: 18 February 2020; Published: 29 February 2020 Abstract: Luminous Blue Variables are massive evolved stars, here we introduce this outstanding class of objects. Described are the specific characteristics, the evolutionary state and what they are connected to other phases and types of massive stars. Our current knowledge of LBVs is limited by the fact that in comparison to other stellar classes and phases only a few “true” LBVs are known. This results from the lack of a unique, fast and always reliable identification scheme for LBVs. It literally takes time to get a true classification of a LBV. In addition the short duration of the LBV phase makes it even harder to catch and identify a star as LBV. We summarize here what is known so far, give an overview of the LBV population and the list of LBV host galaxies. LBV are clearly an important and still not fully understood phase in the live of (very) massive stars, especially due to the large and time variable mass loss during the LBV phase. We like to emphasize again the problem how to clearly identify LBV and that there are more than just one type of LBVs: The giant eruption LBVs or h Car analogs and the S Dor cycle LBVs.
    [Show full text]
  • When Neutron Stars Melt, What’S Left Behind Is Spectacular Explosion
    Space oddity implodes. The outer layers are cast off in a When neutron stars melt, what’s left behind is spectacular explosion. What’s left behind is truly strange. Anil Ananthaswamy reports a rapidly spinning neutron star, which as the name implies is made mainly of neutrons, with a crust of iron. Whirling up to 1000 times per second, a neutron star is constantly shedding magnetic fields. Over time, this loss of energy causes the star to spin slower and slower. As it spins down, the centrifugal forces that kept gravity at bay start weakening, allowing gravity to squish the star still further. In what is a blink of an eye in cosmic time, the neutrons can be converted to strange N 22 September last year, the website of fundamental building blocks of matter in quark matter, which is a soup of up, down and The Astronomer’s Telegram alerted ways that even machines like the Large strange quarks. In theory, this unusual change Oresearchers to a supernova explosion in Hadron Collider cannot. happens when the density inside the neutron a spiral galaxy about 84 million light years Astrophysicists can thank string theorist star starts increasing. New particles called away. There was just one problem. The same Edward Witten for quark stars. In 1984, he hyperons begin forming that contain at least object, SN 2009ip, had blown up in a similarly hypothesised that protons and neutrons one strange quark bound to others. spectacular fashion just weeks earlier. Such may not be the most stable forms of matter. However, the appearance of hyperons stars shouldn’t go supernova twice, let alone Both are made of two types of smaller marks the beginning of the end of the neutron in quick succession.
    [Show full text]
  • PRODUCT CATALOG Our Journey
    2020 PRODUCT CATALOG Our Journey NOVA OPENS 2,500 LAUNCH OF RETAIL CHICAGO DISTRIBUTION SQUARE FT WAREHOUSE BATHROOM SAFETY CENTER OPENS IN EL SEGUNDO, CA PRODUCT LINE 1993 1995 2001 2004 1994 1999 2003 SUE STARTS NOVA THE NOVA BRAKES NOVA EXPANDS WITH AND RON JOINS A NOVA COMES OUT REVAMP AND BECOME LOS ANGELES FEW MONTHS LATER WITH A RED ROLLATOR THE BEST IN CLASS DISTRIBUTION CENTER NOVA THROUGH THE YEARS NOVA Circa 1993 live! LAUNCH OF THE FIRST KICK OFF RETAIL NOVALIVE! LAUNCHED TO ATLANTA DISTRIBUTION SPINNING CANE RACK - REVOLUTION AND LOSE THE TRAIN EVERYONE FROM CENTER OPENS THE CANE CAROUSEL TENNIS BALLS CAMPAIGNS ANYWHERE 2009 2013 2018 2005 2011 2015 2020 NOVA’S LOGO GETS A BIG NOVA’S RETAIL STORE RETAIL MAKEOVERS MAKEOVER IN 5 COLORS PACKAGING GOES GREEN PASS 500 LOCATIONS Contents amazing EDUCATION & MARKETING .................................. 6 wow PLANOGRAMS & DISPLAYS .................................. 10 style CANES ......................................................... 12 independence WALKERS ...................................................... 34 individuality MOBILITY ACCESSORIES .................................... 50 TABLE OF CONTENTS togetherness TRANSPORT CHAIRS & WHEELCHAIRS ................... 57 safety BATHROOM SAFETY .......................................... 68 comfort CUSHIONS ..................................................... 84 sleep PILLOWS & WEDGES ........................................ 99 well-being LIFE AIDS ..................................................... 105 CHOOSEamazing Our Education
    [Show full text]
  • Predictions of Variable Mass Loss for Luminous Blue Variables
    A&A 393, 543–553 (2002) Astronomy DOI: 10.1051/0004-6361:20021009 & c ESO 2002 Astrophysics Predictions of variable mass loss for Luminous Blue Variables Jorick S. Vink1;2 and A. de Koter3 1 Imperial College, Blackett Laboratory, Prince Consort Road, London, SW7 2BZ, UK 2 Astronomical Institute, Utrecht University, PO Box 80000, 3508 TA Utrecht, The Netherlands 3 Astronomical Institute “Anton Pannekoek”, University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands Received 16 April 2002 / Accepted 8 July 2002 Abstract. We present radiation-driven wind models for Luminous Blue Variables (LBVs) and predict their mass-loss rates. We study the effects of lower masses and modified abundances in comparison to the normal OB supergiants, and we find that the main difference in mass loss is due to the lower masses of LBVs. In addition, we find that the increase in helium abundance changes the mass-loss properties by small amounts (up to about 0.2 dex in log M˙ ), while CNO processing is relatively unimportant for the mass-loss rate. A comparison between our mass loss predictions and the observations is performed for four relatively well-studied LBVs. The comparison shows that (i) the winds of LBVs are driven by radiation pressure on spectral lines, (ii) the variable mass loss behaviour of LBVs during their S Doradus-type variation cycles is explained by changes in the line driving efficiency, notably due to the recombination/ionisation of Fe iv/iii and Fe iii/ii, and finally, (iii) the winds of LBVs can be used to derive their masses, as exemplified by the case of AG Car, for which we derive a present-day mass of 35 M .
    [Show full text]
  • Blasts from the Past Historic Supernovas
    BLASTS from the PAST: Historic Supernovas 185 386 393 1006 1054 1181 1572 1604 1680 RCW 86 G11.2-0.3 G347.3-0.5 SN 1006 Crab Nebula 3C58 Tycho’s SNR Kepler’s SNR Cassiopeia A Historical Observers: Chinese Historical Observers: Chinese Historical Observers: Chinese Historical Observers: Chinese, Japanese, Historical Observers: Chinese, Japanese, Historical Observers: Chinese, Japanese Historical Observers: European, Chinese, Korean Historical Observers: European, Chinese, Korean Historical Observers: European? Arabic, European Arabic, Native American? Likelihood of Identification: Possible Likelihood of Identification: Probable Likelihood of Identification: Possible Likelihood of Identification: Possible Likelihood of Identification: Definite Likelihood of Identification: Definite Likelihood of Identification: Possible Likelihood of Identification: Definite Likelihood of Identification: Definite Distance Estimate: 8,200 light years Distance Estimate: 16,000 light years Distance Estimate: 3,000 light years Distance Estimate: 10,000 light years Distance Estimate: 7,500 light years Distance Estimate: 13,000 light years Distance Estimate: 10,000 light years Distance Estimate: 7,000 light years Distance Estimate: 6,000 light years Type: Core collapse of massive star Type: Core collapse of massive star Type: Core collapse of massive star? Type: Core collapse of massive star Type: Thermonuclear explosion of white dwarf Type: Thermonuclear explosion of white dwarf? Type: Core collapse of massive star Type: Thermonuclear explosion of white dwarf Type: Core collapse of massive star NASA’s ChANdrA X-rAy ObServAtOry historic supernovas chandra x-ray observatory Every 50 years or so, a star in our Since supernovas are relatively rare events in the Milky historic supernovas that occurred in our galaxy. Eight of the trine of the incorruptibility of the stars, and set the stage for observed around 1671 AD.
    [Show full text]
  • Quark Nova with the Producing of Color-Flavor Locked Quark Matter
    Quark Nova with the Producing of Color-Flavor Locked Quark Matter Jia-rui Guo NanKai University, Tianjin 300071, China ∗ September 3, 2021 Abstract In this paper, we suggest that the process in quark nova explosion may exist widely in various kinds of supernova, although it only happens in a small part in the core in most cases. And the contribution to the en- ergy releasing of whole supernova explosion can also be provided by QCD interacting term. In this way we derive a general equation of energy quan- tity to be released in quark nova process related to several parameters. After quark nova explosion process, the remnant can be a quark star, or a neutron star with quark matter core if this process only happens in a small part inside the compact star instead of a \full" quark nova. We will also use a more generalized approach to analyse the strangelets released from quark nova and will draw a possible interpretation of why effects caused by strangelets have not been observed yet. Our result suggests that the ordinary matter can only spontaneously transform into strange quark matter by crushing them into high pressure under the extreme con- dition in compact star, although generally the reaction would really be exergonic. I Introduction Quark nova is a secondary collapsing after neutron stars preliminary formed and it can possibly give a considerable effect to the whole supernova event. It releases energy because the quark matter state is believed to be the ground state of matter [1]. In an environment of high density and high pressure, the quark matter is believed to be in Color-Flavor Locked (CFL) phase in the compact stars [2].
    [Show full text]
  • The Swirling Hydrogen Gas on the Surface of the Star Rho Gassiopeia Is Turbu at Best; a Seething, Frothing Mass, Normally Radiating at a Temperature of Z,OOO Kelvin
    ASTRONOMY N('YY The swirling hydrogen gas on the surface of the star Rho Gassiopeia is turbu at best; a seething, frothing mass, normally radiating at a temperature of Z,OOO Kelvin. Keith Cooper explains what happens when, periodically, Rho Gassiopeia's turbulence gets the better of it. he onset of an eruption is sig- naled when gas begins to swirl and fall in towards the centre of the star.The pressure rises, compressingand heating the gas,causing the starto brightenbriefly.Essentially, the star is coiling up like a spring on a trampo- line and.within months.it bouncesback. In the summer of the year 2000hydro- gen gas measuringten thousandEarth masseswas blastedout from the surface ofRho Cas,the largestsurface eruption ever observed on a star. A shock wave of material now encircles the star that could form aplanetarynebulaearound Rho Cas similar to the Homunculus Nebula around the star Eta Carinae.During the eruption Rho Cas'surface temperature dropped three thousand degreesto a relatively cool4,000It andalreadythe star's surface is recoiling again,perhaps preparing for The constellation of Cassiopeia, home of the hypergiant Rho Cas. lmage: Nik Szymanek. an evenbigger eruption. Welcometo the explosivelife of ahypergiant. ity of these stars,the individual stepson of a solar mass,and in the spaceof ten Rho Casbelongs to a rare breed of stars the path to this void haveyet to be seen. thousandyears it will undergo two hun- known as'hypergiants', of which only Very little is known about the stellar dred eruptions. In total, if each eruption twelve are known to exist in the Galaxy, mechanics involved, or even whether is similar in size,this will accumulateto 'yellow and only sevenare hypergiants' hypergiants can actually reach the Void the equivalent of twenty solar masses like Rho Cas.These stars are extremely before they blow themselvesapart in a ejected from the star.
    [Show full text]
  • Astronomy General Information
    ASTRONOMY GENERAL INFORMATION HERTZSPRUNG-RUSSELL (H-R) DIAGRAMS -A scatter graph of stars showing the relationship between the stars’ absolute magnitude or luminosities versus their spectral types or classifications and effective temperatures. -Can be used to measure distance to a star cluster by comparing apparent magnitude of stars with abs. magnitudes of stars with known distances (AKA model stars). Observed group plotted and then overlapped via shift in vertical direction. Difference in magnitude bridge equals distance modulus. Known as Spectroscopic Parallax. SPECTRA HARVARD SPECTRAL CLASSIFICATION (1-D) -Groups stars by surface atmospheric temp. Used in H-R diag. vs. Luminosity/Abs. Mag. Class* Color Descr. Actual Color Mass (M☉) Radius(R☉) Lumin.(L☉) O Blue Blue B Blue-white Deep B-W 2.1-16 1.8-6.6 25-30,000 A White Blue-white 1.4-2.1 1.4-1.8 5-25 F Yellow-white White 1.04-1.4 1.15-1.4 1.5-5 G Yellow Yellowish-W 0.8-1.04 0.96-1.15 0.6-1.5 K Orange Pale Y-O 0.45-0.8 0.7-0.96 0.08-0.6 M Red Lt. Orange-Red 0.08-0.45 *Very weak stars of classes L, T, and Y are not included. -Classes are further divided by Arabic numerals (0-9), and then even further by half subtypes. The lower the number, the hotter (e.g. A0 is hotter than an A7 star) YERKES/MK SPECTRAL CLASSIFICATION (2-D!) -Groups stars based on both temperature and luminosity based on spectral lines.
    [Show full text]
  • X-Ray Counterpart of Gws Due to Binary Neutron Star Mergers
    X-ray counterpart of GWs due to binary neutron star mergers -- light curves, luminosity function and event rate density Hui Sun (Peking University, NAOC) Collaborators: Bing Zhang (University of Nevada, Las Vegas), He Gao (Beijing Normal University) The X-ray Universe 2017 Italy_Rome June 6-9 Gravitational Wave detections Abbott et al. 2016c, LRR, 19,1 The X-ray Universe June/6-9/2017 Gravitational Wave detections Abbott et al. 2016c, LRR, 19,1 The X-ray Universe June/6-9/2017 NS-NS merger BH NS HMNS Ms> Mmax(Pi) merger NS SMNS Ms: gravitational mass of the merger remnant MTOV: maximum mass for non-rotating NS Stable NS Mmax(Pi) : maximum mass for rotating NS with initial period Pi The X-ray Universe June/6-9/2017 EM counterparts following NS-NS mergers BH as post-merger product Magnetar as post-merger product BH (Metzger & Berger 2012) Magnetar (Gao et al. 2013 ) Gamma-ray sGRB sGRB Optical Kilo-nova (Li & Paczyński 1998, Tanvir+2013) Merger-nova (Yu et al. 2013) Radio Radio Afterglow (Nakar & Piran 2011) Radio Afterglow (Gao et al. 2013 ) X-ray ------------ The X-ray Universe June/6-9/2017 EM counterparts following NS-NS mergers BH as post-merger product Magnetar as post-merger product X-ray emission BH (Metzger & Berger 2012) Magnetar (Gao et al. 2013 ) Gamma-ray sGRB sGRB Optical Kilo-nova (Li & Paczyński 1998, Tanvir+2013) Merger-nova (Yu et al. 2013) Radio Radio Afterglow (Nakar & Piran 2011) Radio Afterglow (Gao et al. 2013 ) X-ray ------------ X-ray emission (Zhang 2013) The X-ray Universe June/6-9/2017 Magnetar ‘Smoking gun’ GRB 090515 Rowlinson et al.
    [Show full text]
  • Supernova Blastwaves and Pre-Supernova Winds: Their
    SUPERNOVA BLASTWAVES AND PRESUPERNOVA WINDS THEIR COSMIC RAY CONTRIBUTION Peter L Biermann Max Planck Institut f urRadioastronomie Bonn Germany Sho cks in stellar winds can accelerate particles energetic particles are ob served through nonthermal radio emission in novae OB stars and Wolf Rayet stars Sup ernova explosions into predecessor stellar winds can lead to parti cle acceleration which we suggest can explain most of the observed cosmic rays of the nuclei of Helium and heavier elements from GeV in particle en 9 ergies up to near GeV as well as electrons ab ove ab out GeV We go through the following steps to make the case Using a p ostulate for an underlying principle that leads to transp ort co ecients in a turbulent plasma we derive the prop erties of energetic particles accelerated in spher ical sho cks in a stellar wind We suggest that a dynamo working in the inner convection zone of an upp er main sequence star can lead to high mag netic eld strengths which may b ecome directly observable in massive white dwarfs massive red giant stars and Wolf Rayet stars Such magnetic elds may put additional momentum into stellar winds from the pressure gradient of the toroidal eld with reduced angular momentum loss We use the statistics of Wolf Rayet stars and radiosup ernovae to derive a lower limit for the magnetic eld strengths This limit gives supp ort to the wind driv ing argument as well as the derivation of the maximum particle energy that can b e reached From a comparison of the radioluminosities of various stars radio sup
    [Show full text]