Magnetars Unleash Mammoth Bursts of Energy, but How and Why? Astronomers Are Working to Understand These Bizarre Stellar Objects

Total Page:16

File Type:pdf, Size:1020Kb

Magnetars Unleash Mammoth Bursts of Energy, but How and Why? Astronomers Are Working to Understand These Bizarre Stellar Objects In search of the galaxy’s magnetic Magnetars unleash mammoth bursts of energy, but how and why? Astronomers are working to understand these bizarre stellar objects. By Steve Nadis monsters n 1987, when Robert Duncan and Chris- the 5-day event, seemingly lumped in the objects constitute a distinct class of pul- Blasts from beyond IN a magNetar’S gIaNt flareS, magnetic field lines break and reconnect, releasing a burst of topher Thompson first contemplated the fringe category. sars. They are rapidly spinning, intensely Scientists’ now believe magnetars exist energy. This process resembles solar-flare formation, except magnetars’ flares are much more existence of ultramagnetized neutron Six years later, in 2004, colleagues magnetic neutron stars — dense remnants because of a confluence of theory and obser- powerful. Don Dixon for Astronomy stars (later dubbed “magnetars”), they finally recognized Duncan and Thompson of massive stars that expired in fiery vational data from some of nature’s most had a hard time convincing themselves (now at the University of Texas and the supernova blasts. impressive high-energy displays. For astron- magnetic field of about a million billion powerful flare from outside our solar sys- I that the notion made sense. Five years University of Toronto, respectively) for Armed with this knowledge, researchers omers, says Thompson, the turning point (1015) gauss. (Earth’s magnetic field reaches tem astronomers had ever recorded. In later, when they got their first opportunity their theoretical work on magnetars. Join- then turned their attention to a broad range came in 1998. just 0.6 gauss.) just 0.2 second, the magnetar released to present their ideas at a scientific confer- ing them was Chryssa Kouveliotou of the of questions, such as: Where do these curi- In May of that year, a team led by Then, in August 1998, a powerful blast more energy than the Sun gives off in ence, they were given just 3 minutes to National Space Science and Technology ous objects, with the most powerful mag- Kouveliotou showed that the soft gamma of gamma rays and X rays zapped Earth’s 250,000 years. make their case. Later, in 1998, at a meet- Center (NSSTC) in Huntsville, Alabama, netic fields known to exist, come from? Or, repeater (SGR) 1806–20, a pulsing X-ray outer atmosphere. The burst came from An international group of astronomers ing of the American Astronomical Society, for observations that confirmed the sce- put in other terms, why do some stars source about 50,000 light-years from SGR 1900+14, some 20,000 light-years analyzing the December 27 event supported Duncan was the last scheduled speaker at nario. The three received the Bruno Rossi become magnetars rather than black holes Earth, was likely a magnetar. Kouveliotou’s away in the direction of Aquila. Kouve- Duncan and Thompson’s hypothesis that Prize for outstanding contributions to or other kinds of neutron stars? Answering team measured the rate at which the neu- liotou and her colleagues showed, based on magnetar flares arise from twisting mag- Steve Nadis is a frequent Astronomy contributor. high-energy astrophysics. these questions can tell astronomers how tron star’s spin was slowing down. A mag- the object’s spin-down rate, that it, too, netic fields. These fields warp and strain the He is a co-author of the forthcoming book The Thus, after almost two decades of abundant magnetically powered stars are, netic field could supply the drag to slow must be a magnetar. star’s crust, creating shearing stress across a Shape of Inner Space, tentatively scheduled to be doubts, astrophysicists at last acknowl- thereby providing clues to their astronomi- the star’s rotation, but it had to be incred- On December 27, 2004, SGR 1806–20 region several kilometers long. This shear published in 2010 by W. W. Norton. edged magnetars are real. These unusual cal importance. ibly powerful. The scientists estimated a let loose again. The eruption was the most zone in some ways resembles a geological © 2010 Kalmbach Publishing Co. This material may not be reproduced in any form 64 The Milky Way | without 2009 permission from the publisher. www.Astronomy.com www.Astronomy.com 65 SGR 1900+14SGR 1900+14 fault that gives rise to an earthquake. Eventu- AXP 1EAXP 1841–045 1E 1841–045 AXP 1EAXP 1048.1–5937 1E 1048.1–5937 ally, the star’s crust cracks open. AXP 4UAXP 0142+61 4U 0142+61 SGR 1806–20SGR 1806–20 AXP CXOAXP J164710.2–455216 CXO J164710.2–455216 This work answered some questions about Two types of bursters SGR 0501+4516SGR 0501+4516 the magnetar flares. But where do these over- Magnetars break into two subclasses: soft AXP 1EAXP 1547.0–5408 1E 1547.0–5408 magnetized neutron stars come from? “You gamma repeaters (SGRs) and anomalous can’t see anything directly related to the pro- X-ray pulsars (AXPs). Scientists know of six genitor [star] by looking at the flare,” Duncan probable SGRs (four of which have been explains. Nevertheless, he adds, you can get confirmed) and 10 likely AXPs. Fourteen hints simply by seeing where astronomers of these 16 magnetars are in our galaxy; find magnetars. the Large and Small Magellanic Clouds hold one each. SGR 1801–23SGR 1801–23 AXP 1EAXP 2259+586 1E 2259+586 SGR 1627–41SGR 1627–41 Digging deeper for answers As their name implies, SGRs emit “soft,” AXP XTEAXP J1810–197 XTE J1810–197 or low-energy, gamma rays. Soft gamma AXP AXAXP J1845–0258 AX J1845–0258 AXP 1RXSAXP J170849–4009101RXS J170849–400910 That’s the approach Bryan Gaensler, then of rays have slightly higher energy than Harvard Smithsonian Center for Astrophys- “hard” X rays. The giant flares from AXPs LargeLarge Magellanic Magellanic Cloud Cloud ics, took when he searched the vicinity of a aren’t as intense as those from SGRs, magnetar called AXP 1E 1048.1–5937, although they’re still more intense than Soft gammaSoft gamma repeater repeater (SGR) (SGR) located roughly 9,000 light-years away in those from run-of-the-mill pulsars. AnomalousAnomalous X-ray X-raypulsar pulsar (AXP) (AXP) Small SmallMagellanic Magellanic Cloud Cloud SGR 0526–66SGR 0526–66 Carina. “It occurred to me that the environ- — Liz Kruesi ments around magnetars might tell us some- Known and suspected magnetars thing about them,” Gaensler recalls. AXP CXOUAXP CXOU J010043.1–721134 J010043.1–721134 Gaensler’s team studied the region’s hydro- moSt MAGNETAR CaNDIDATES lie in the Milky Way’s disk along the gen emissions using Australia’s Parkes radio inferred that SGR 1806–20’s progenitor had magnetar galactic plane, where the most massive stars now reside. Two other telescope and the Australia Telescope Com- to be bigger than the biggest stars still stand- came from even known magnetars are extragalactic, with one in the Large Magellanic pact Array. The astronomers found a cavity ing in the star cluster; this implied a mass of though that star disap- Cloud (LMC) and the other in the Small Magellanic Cloud (SMC). carved out, they think, by stellar outflows at least 50 Suns. peared long before X-ray Astronomy: Roen Kelly; background: 2MASS/J. Carpenter, M. Skrutskie, R. Hurt from the magnetar’s original star. Knowing Michael Muno, then of the University of astronomy began.” aSTROspeak that the star’s mass is proportional to the cav- California at Los Angeles, used a similar Both Muno and Gaensler believe the Neutron star ity’s size and expansion speed, the team de- technique. While surveying the massive star association of magnetars with massive star The dense remnant of a once- duced that the progenitor star contained at cluster Westerlund 1 with NASA’s Chandra clusters looks strong. Moreover, both magne- massive star’s core formed in a super- least 40 times the Sun’s mass. X-ray Observatory, he found an X-ray pulsar tars and high-mass clusters are rare, which Once Figer spots the clusters, others in Gaensler, on the other hand, argues that if nova. Such stars may contain more Donald Figer, then of the Space Telescope lurking in the cluster’s center. Based on the makes chance alignments less likely. the team will perform follow-up X-ray magnetars are actually spawned by stars larger than twice the Sun’s mass crammed Science Institute in Baltimore, probed the object’s luminosity and spectrum, Muno Muno’s next step was to confirm that his observations with Chandra. They’ll look for than 40 times the mass of the Sun, scientists into a sphere roughly 12 miles (20 connections between magnetars, their deemed it a probable magnetar. mystery source is, indeed, a magnetar. He pulsing X-ray sources and monitor their have already found most of them. In 2007, he, kilometers) across. masses, and star clusters. Prior to SGR 1806– His survey showed that Westerlund 1 is observed AXP CXO J164710.2–455216 inter- spin-down rates. So far, the team has been Muno, and Andrei Nechita, then a Harvard 20’s massive blast, Figer explored a cluster teeming with high-mass stars, all roughly the mittently over the course of a year using the granted 11 hours on Chandra — enough to University undergraduate, completed a broad Pulsar A rapidly rotating (many times a sec- filled with massive young stars that, coinci- same age. This survey placed a lower limit of European Space Agency’s XMM-Newton and cover four objects. With any success, they’ll archival search through XMM-Newton and ond) neutron star whose radiation dentally, contained that same magnetar. The about 40 solar masses on the magnetar’s pre- NASA’s Chandra X-ray observatories to see then seek approval to plow through the Chandra data to look for periodic pulsing X- beam passes Earth on each rotation, most massive stars die first as supernovae, decessor.
Recommended publications
  • Astronomie in Theorie Und Praxis 8. Auflage in Zwei Bänden Erik Wischnewski
    Astronomie in Theorie und Praxis 8. Auflage in zwei Bänden Erik Wischnewski Inhaltsverzeichnis 1 Beobachtungen mit bloßem Auge 37 Motivation 37 Hilfsmittel 38 Drehbare Sternkarte Bücher und Atlanten Kataloge Planetariumssoftware Elektronischer Almanach Sternkarten 39 2 Atmosphäre der Erde 49 Aufbau 49 Atmosphärische Fenster 51 Warum der Himmel blau ist? 52 Extinktion 52 Extinktionsgleichung Photometrie Refraktion 55 Szintillationsrauschen 56 Angaben zur Beobachtung 57 Durchsicht Himmelshelligkeit Luftunruhe Beispiel einer Notiz Taupunkt 59 Solar-terrestrische Beziehungen 60 Klassifizierung der Flares Korrelation zur Fleckenrelativzahl Luftleuchten 62 Polarlichter 63 Nachtleuchtende Wolken 64 Haloerscheinungen 67 Formen Häufigkeit Beobachtung Photographie Grüner Strahl 69 Zodiakallicht 71 Dämmerung 72 Definition Purpurlicht Gegendämmerung Venusgürtel Erdschattenbogen 3 Optische Teleskope 75 Fernrohrtypen 76 Refraktoren Reflektoren Fokus Optische Fehler 82 Farbfehler Kugelgestaltsfehler Bildfeldwölbung Koma Astigmatismus Verzeichnung Bildverzerrungen Helligkeitsinhomogenität Objektive 86 Linsenobjektive Spiegelobjektive Vergütung Optische Qualitätsprüfung RC-Wert RGB-Chromasietest Okulare 97 Zusatzoptiken 100 Barlow-Linse Shapley-Linse Flattener Spezialokulare Spektroskopie Herschel-Prisma Fabry-Pérot-Interferometer Vergrößerung 103 Welche Vergrößerung ist die Beste? Blickfeld 105 Lichtstärke 106 Kontrast Dämmerungszahl Auflösungsvermögen 108 Strehl-Zahl Luftunruhe (Seeing) 112 Tubusseeing Kuppelseeing Gebäudeseeing Montierungen 113 Nachführfehler
    [Show full text]
  • Negreiros Lecture II
    General Relativity and Neutron Stars - II Rodrigo Negreiros – UFF - Brazil Outline • Compact Stars • Spherically Symmetric • Rotating Compact Stars • Magnetized Compact Stars References for this lecture Compact Stars • Relativistic stars with inner structure • We need to solve Einstein’s equation for the interior as well as the exterior Compact Stars - Spherical • We begin by writing the following metric • Which leads to the following components of the Riemman curvature tensor Compact Stars - Spherical • The Ricci tensor components are calculated as • Ricci scalar is given by Compact Stars - Spherical • Now we can calculate Einstein’s equation as 휇 • Where we used a perfect fluid as sources ( 푇휈 = 푑푖푎푔(휖, 푃, 푃, 푃)) Compact Stars - Spherical • Einstein’s equation define the space-time curvature • We must also enforce energy-momentum conservation • This implies that • Where the four velocity is given by • After some algebra we get Compact Stars - Spherical • Making use of Euler’s equation we get • Thus • Which we can rewrite as Compact Stars - Spherical • Now we introduce • Which allow us to integrate one of Einstein’s equation, leading to • After some shuffling of Einstein’s equation we can write Summary so far... Metric Energy-Momentum Tensor Einstein’s equation Tolmann-Oppenheimer-Volkoff eq. Relativistic Hydrostatic Equilibrium Mass continuity Stellar structure calculation Microscopic Ewuation of State Macroscopic Composition Structure Recapitulando … “Feed” with diferente microscopic models Microscopic Ewuation of State Macroscopic Composition Structure Compare predicted properties with Observed data. Rotating Compact Stars • During its evolution, compact stars may acquire high rotational frequencies (possibly up to 500 hz) • Rotation breaks spherical symmetry, increasing the degrees of freedom.
    [Show full text]
  • Exploring Pulsars
    High-energy astrophysics Explore the PUL SAR menagerie Astronomers are discovering many strange properties of compact stellar objects called pulsars. Here’s how they fit together. by Victoria M. Kaspi f you browse through an astronomy book published 25 years ago, you’d likely assume that astronomers understood extremely dense objects called neutron stars fairly well. The spectacular Crab Nebula’s central body has been a “poster child” for these objects for years. This specific neutron star is a pulsar that I rotates roughly 30 times per second, emitting regular appar- ent pulsations in Earth’s direction through a sort of “light- house” effect as the star rotates. While these textbook descriptions aren’t incorrect, research over roughly the past decade has shown that the picture they portray is fundamentally incomplete. Astrono- mers know that the simple scenario where neutron stars are all born “Crab-like” is not true. Experts in the field could not have imagined the variety of neutron stars they’ve recently observed. We’ve found that bizarre objects repre- sent a significant fraction of the neutron star population. With names like magnetars, anomalous X-ray pulsars, soft gamma repeaters, rotating radio transients, and compact Long the pulsar poster child, central objects, these bodies bear properties radically differ- the Crab Nebula’s central object is a fast-spinning neutron star ent from those of the Crab pulsar. Just how large a fraction that emits jets of radiation at its they represent is still hotly debated, but it’s at least 10 per- magnetic axis. Astronomers cent and maybe even the majority.
    [Show full text]
  • The X-Ray Universe 2011
    THE X-RAY UNIVERSE 2011 27 - 30 June 2011 Berlin, Germany A conference organised by the XMM-Newton Science Operations Centre, European Space Astronomy Centre (ESAC), European Space Agency (ESA) ABSTRACT BOOK Oral Communications and Posters Edited by Andy Pollock with the help of Matthias Ehle, Cristina Hernandez, Jan-Uwe Ness, Norbert Schartel and Martin Stuhlinger Organising Committees Scientific Organising Committee Giorgio Matt (Universit`adegli Studi Roma Tre, Italy) Chair Norbert Schartel (XMM-Newton SOC, Madrid, ESA) Co-Chair M. Ali Alpar (Sabanci University, Istanbul, Turkey) Didier Barret (Centre d’Etude Spatiale des Rayonnements, Toulouse, France) Ehud Behar (Technion Israel Institute of Technology, Haifa, Israel) Hans B¨ohringer (MPE, Garching, Germany) Graziella Branduardi-Raymont (University College London-MSSL, Dorking, UK) Francisco J. Carrera (Instituto de F´ısicade Cantabria, Santander, Spain) Finn E. Christensen (Danmarks Tekniske Universitet, Copenhagen, Denmark) Anne Decourchelle (Commissariat `al’´energie atomique et aux ´energies alternatives, Saclay, France) Jan-Willem den Herder (SRON, Utrecht, The Netherlands) Rosario Gonzalez-Riestra (XMM-Newton SOC, Madrid, ESA) Coel Hellier (Keele University, UK) Stefanie Komossa (MPE, Garching, Germany) Chryssa Kouveliotou (NASA/Marshall Space Flight Center, Huntsville, Alabama, USA) Kazuo Makishima (University of Tokyo, Japan) Sera Markoff (University of Amsterdam, The Netherlands) Brian McBreen (University College Dublin, Ireland) Brian McNamara (University of Waterloo, Canada)
    [Show full text]
  • When the Sun Dies, It Will Make
    When the Sun dies, it will make: 1. A red giant 2. A planetary nebula 3. A white dwarf 4. A supernova 5. 1, 2, and 3 When the Sun dies, it will make: 1. A red giant 2. A planetary nebula 3. A white dwarf 4. A supernova 5. 1, 2, and 3 A white dwarf star: 1. Is the core of the star from which it formed, and contains most of the mass 2. Is about the size of the earth 3. Is supported by electron degeneracy 4. Is so dense that one teaspoonful would weigh about as much as an elephant 5. All of the above A white dwarf star: 1. Is the core of the star from which it formed, and contains most of the mass 2. Is about the size of the earth 3. Is supported by electron degeneracy 4. Is so dense that one teaspoonful would weigh about as much as an elephant 5. All of the above What keeps a white dwarf from collapsing further? 1. It is solid 2. Electrical forces 3. Chemical forces 4. Nuclear forces 5. Degeneracy pressure What keeps a white dwarf from collapsing further? 1. It is solid 2. Electrical forces 3. Chemical forces 4. Nuclear forces 5. Degeneracy pressure If a white dwarf in a binary has a companion close enough that some material begins to spill onto it, the white dwarf can: 1. Be smothered and cool off 2. Disappear behind the material 3. Have new nuclear reactions and become a nova 4. Become much larger 5.
    [Show full text]
  • Star Clusters
    Star Clusters • Eventually, photons and stellar winds clear out the remaining gas and dust and leave behind the stars. • Reflection nebulae provide evidence for remaining dust on the far side of the Pleiades Star Clusters • It may be that all stars are born in clusters. • A good question is therefore why are most stars we see in the Galaxy not members of obvious clusters? • The answer is that the majority of newly-formed clusters are very weakly gravitationally bound. Perturbations from passing molecular clouds, spiral arms or mass loss from the cluster stars `unbind’ most clusters. Star Cluster Ages • We can use the H-R Diagram of the stars in a cluster to determine the age of the cluster. • A cluster starts off with stars along the full main sequence. • Because stars with larger mass evolve more quickly, the hot, luminous end of the main sequence becomes depleted with time. • The `main-sequence turnoff’ moves to progressively lower mass, L and T with time. • Young clusters contain short-lived, massive stars in their main sequence • Other clusters are missing the high-mass MSTO stars and we can infer the cluster age is the main-sequence lifetime of the highest mass star still on the main- sequence. 25Mo 3million years 104 3Mo 500Myrs 102 1M 10Gyr L o 1 0.5Mo 200Gyr 10-2 30000 15000 7500 3750 Temperature Star Clusters Sidetrip • There are two basic types of clusters in the Galaxy. • Globular Clusters are mostly in the halo of the Galaxy, contain >100,000 stars and are very ancient. • Open clusters are in the disk, contain between several and a few thousand stars and range in age from 0 to 10Gyr Galaxy Ages • Deriving galaxy ages is much harder because most galaxies have a star formation history rather than a single-age population of stars.
    [Show full text]
  • Pdf/44/4/905/5386708/44-4-905.Pdf
    MI-TH-214 INT-PUB-21-004 Axions: From Magnetars and Neutron Star Mergers to Beam Dumps and BECs Jean-François Fortin∗ Département de Physique, de Génie Physique et d’Optique, Université Laval, Québec, QC G1V 0A6, Canada Huai-Ke Guoy and Kuver Sinhaz Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019, USA Steven P. Harrisx Institute for Nuclear Theory, University of Washington, Seattle, WA 98195, USA Doojin Kim{ Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA Chen Sun∗∗ School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978, Israel (Dated: February 26, 2021) We review topics in searches for axion-like-particles (ALPs), covering material that is complemen- tary to other recent reviews. The first half of our review covers ALPs in the extreme environments of neutron star cores, the magnetospheres of highly magnetized neutron stars (magnetars), and in neu- tron star mergers. The focus is on possible signals of ALPs in the photon spectrum of neutron stars and gravitational wave/electromagnetic signals from neutron star mergers. We then review recent developments in laboratory-produced ALP searches, focusing mainly on accelerator-based facilities including beam-dump type experiments and collider experiments. We provide a general-purpose discussion of the ALP search pipeline from production to detection, in steps, and our discussion is straightforwardly applicable to most beam-dump type and reactor experiments. We end with a selective look at the rapidly developing field of ultralight dark matter, specifically the formation of Bose-Einstein Condensates (BECs).
    [Show full text]
  • Introduction to Astronomy from Darkness to Blazing Glory
    Introduction to Astronomy From Darkness to Blazing Glory Published by JAS Educational Publications Copyright Pending 2010 JAS Educational Publications All rights reserved. Including the right of reproduction in whole or in part in any form. Second Edition Author: Jeffrey Wright Scott Photographs and Diagrams: Credit NASA, Jet Propulsion Laboratory, USGS, NOAA, Aames Research Center JAS Educational Publications 2601 Oakdale Road, H2 P.O. Box 197 Modesto California 95355 1-888-586-6252 Website: http://.Introastro.com Printing by Minuteman Press, Berkley, California ISBN 978-0-9827200-0-4 1 Introduction to Astronomy From Darkness to Blazing Glory The moon Titan is in the forefront with the moon Tethys behind it. These are two of many of Saturn’s moons Credit: Cassini Imaging Team, ISS, JPL, ESA, NASA 2 Introduction to Astronomy Contents in Brief Chapter 1: Astronomy Basics: Pages 1 – 6 Workbook Pages 1 - 2 Chapter 2: Time: Pages 7 - 10 Workbook Pages 3 - 4 Chapter 3: Solar System Overview: Pages 11 - 14 Workbook Pages 5 - 8 Chapter 4: Our Sun: Pages 15 - 20 Workbook Pages 9 - 16 Chapter 5: The Terrestrial Planets: Page 21 - 39 Workbook Pages 17 - 36 Mercury: Pages 22 - 23 Venus: Pages 24 - 25 Earth: Pages 25 - 34 Mars: Pages 34 - 39 Chapter 6: Outer, Dwarf and Exoplanets Pages: 41-54 Workbook Pages 37 - 48 Jupiter: Pages 41 - 42 Saturn: Pages 42 - 44 Uranus: Pages 44 - 45 Neptune: Pages 45 - 46 Dwarf Planets, Plutoids and Exoplanets: Pages 47 -54 3 Chapter 7: The Moons: Pages: 55 - 66 Workbook Pages 49 - 56 Chapter 8: Rocks and Ice:
    [Show full text]
  • Magnetars: Explosive Neutron Stars with Extreme Magnetic Fields
    Magnetars: explosive neutron stars with extreme magnetic fields Nanda Rea Institute of Space Sciences, CSIC-IEEC, Barcelona 1 How magnetars are discovered? Soft Gamma Repeaters Bright X-ray pulsars with 0.5-10keV spectra modelled by a thermal plus a non-thermal component Anomalous X-ray Pulsars Bright X-ray transients! Transients No more distinction between Anomalous X-ray Pulsars, Soft Gamma Repeaters, and transient magnetars: all showing all kind of magnetars-like activity. Nanda Rea CSIC-IEEC Magnetars general properties 33 36 Swift-XRT COMPTEL • X-ray pulsars Lx ~ 10 -10 erg/s INTEGRAL • strong soft and hard X-ray emission Fermi-LAT • short X/gamma-ray flares and long outbursts (Kuiper et al. 2004; Abdo et al. 2010) • pulsed fractions ranging from ~2-80 % • rotating with periods of ~0.3-12s • period derivatives of ~10-14-10-11 s/s • magnetic fields of ~1013-1015 Gauss (Israel et al. 2010) • glitches and timing noise (Camilo et al. 2006) • faint infrared/optical emission (K~20; sometimes pulsed and transient) • transient radio pulsed emission (see Woods & Thompson 2006, Mereghetti 2008, Rea & Esposito 2011 for a review) Nanda Rea CSIC-IEEC How magnetar persistent emission is believed to work? • Magnetars have magnetic fields twisted up, inside and outside the star. • The surface of a young magnetar is so hot that it glows brightly in X-rays. • Magnetar magnetospheres are filled by charged particles trapped in the twisted field lines, interacting with the surface thermal emission through resonant cyclotron scattering. (Thompson, Lyutikov & Kulkarni 2002; Fernandez & Thompson 2008; Nobili, Turolla & Zane 2008a,b; Rea et al.
    [Show full text]
  • Pos(INTEGRAL 2010)091
    A candidate former companion star to the Magnetar CXOU J164710.2-455216 in the massive Galactic cluster Westerlund 1 PoS(INTEGRAL 2010)091 P.J. Kavanagh 1 School of Physical Sciences and NCPST, Dublin City University Glasnevin, Dublin 9, Ireland E-mail: [email protected] E.J.A. Meurs School of Cosmic Physics, DIAS, and School of Physical Sciences, DCU Glasnevin, Dublin 9, Ireland E-mail: [email protected] L. Norci School of Physical Sciences and NCPST, Dublin City University Glasnevin, Dublin 9, Ireland E-mail: [email protected] Besides carrying the distinction of being the most massive young star cluster in our Galaxy, Westerlund 1 contains the notable Magnetar CXOU J164710.2-455216. While this is the only collapsed stellar remnant known for this cluster, a further ~10² Supernovae may have occurred on the basis of the cluster Initial Mass Function, possibly all leaving Black Holes. We identify a candidate former companion to the Magnetar in view of its high proper motion directed away from the Magnetar region, viz. the Luminous Blue Variable W243. We discuss the properties of W243 and how they pertain to the former Magnetar companion hypothesis. Binary evolution arguments are employed to derive a progenitor mass for the Magnetar of 24-25 M Sun , just within the progenitor mass range for Neutron Star birth. We also draw attention to another candidate to be member of a former massive binary. 8th INTEGRAL Workshop “The Restless Gamma-ray Universe” Dublin, Ireland September 27-30, 2010 1 Speaker Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.
    [Show full text]
  • WHAT's BEHIND the MYSTERIOUS GAMMA-RAY BURSTS? LIGO's
    WHAT’S BEHIND THE MYSTERIOUS GAMMA-RAY BURSTS? LIGO’s SEARCH FOR CLUES TO THEIR ORIGINS The story of gamma-ray bursts (GRBs) began in the 1960s aboard spacecrafts designed to monitor the former Soviet Union for compliance with the nuclear test ban treaty of 1963. The satellites of the Vela series, each armed with a number of caesium iodide scintillation counters, recorded many puzzling bursts of gamma-ray radiation that did not fit the expected signature of a nuclear weapon. The existence of these bursts became public knowledge in 1973, beginning a decades long quest to understand their origin. Since then, scientists have launched many additional satellites to study these bursts (gamma rays are blocked by the earth's atmosphere) and have uncovered many clues. GRBs occur approximately once a day in a random point in the sky. Most FIGURES FROM THE PUBLICATION GRBs originate millions or billions of light years away. The fact that they For more information on how these figures were generated, and are still so bright by the time they get to earth makes them some of the their meaning, see the publication preprint at arXiv. most energetic astrophysical events observed in the electromagnetic spectrum. In fact, a typical GRB will release in just a handful of seconds as much energy as our sun will throughout its entire life. They can last anywhere from hundredths of seconds to thousands of seconds, but are roughly divided into two categories based on duration (long and short). The line between the two classes is taken to be at 2 seconds (although more sophisticated features are also taken into account in the classification).
    [Show full text]
  • Luminous Blue Variables
    Review Luminous Blue Variables Kerstin Weis 1* and Dominik J. Bomans 1,2,3 1 Astronomical Institute, Faculty for Physics and Astronomy, Ruhr University Bochum, 44801 Bochum, Germany 2 Department Plasmas with Complex Interactions, Ruhr University Bochum, 44801 Bochum, Germany 3 Ruhr Astroparticle and Plasma Physics (RAPP) Center, 44801 Bochum, Germany Received: 29 October 2019; Accepted: 18 February 2020; Published: 29 February 2020 Abstract: Luminous Blue Variables are massive evolved stars, here we introduce this outstanding class of objects. Described are the specific characteristics, the evolutionary state and what they are connected to other phases and types of massive stars. Our current knowledge of LBVs is limited by the fact that in comparison to other stellar classes and phases only a few “true” LBVs are known. This results from the lack of a unique, fast and always reliable identification scheme for LBVs. It literally takes time to get a true classification of a LBV. In addition the short duration of the LBV phase makes it even harder to catch and identify a star as LBV. We summarize here what is known so far, give an overview of the LBV population and the list of LBV host galaxies. LBV are clearly an important and still not fully understood phase in the live of (very) massive stars, especially due to the large and time variable mass loss during the LBV phase. We like to emphasize again the problem how to clearly identify LBV and that there are more than just one type of LBVs: The giant eruption LBVs or h Car analogs and the S Dor cycle LBVs.
    [Show full text]